Quantitative Ultrasound and Dual X-Ray Absorptiometry as Indicators of Bone Mineral Density in Young Women and Nutritional Factors Affecting It †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Dietary Analysis
2.4. Bone Densitometry
2.5. Bone Quality
2.6. Statistical Analysis
3. Results
3.1. Demographic
3.2. Nutrient Intake
3.3. Bone Health
3.4. Evaluation of QUS
3.5. Nutrition and Bone Health
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wade, S.W.; Strader, C.; Fitzpatrick, L.A.; Anthony, M.S.; O’Malley, C.D. Estimating prevalence of osteoporosis: Examples from industrialized countries. Arch. Osteoporos. 2014, 9, 182. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; McNeill, R.; Leung, W.; Radwan, E.; Willingale, J. Current and Future Economic Burden of Osteoporosis in New Zealand. Appl. Health Econ. Health Policy 2011, 9, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Correa-Rodríguez, M.; Rio-Valle, J.S.; González-Jiménez, E.; Rueda-Medina, B. The Effects of Body Composition, Dietary Intake, and Physical Activity on Calcaneus Quantitative Ultrasound in Spanish Young Adults. Biol. Res. Nurs. 2016, 18, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Høiberg, M.P.; Rubin, K.H.; Hermann, A.P.; Brixen, K.; Abrahamsen, B. Diagnostic devices for osteoporosis in the general population: A systematic review. Bone 2016, 92, 58–69. [Google Scholar] [CrossRef]
- Robertson, A.; Godavitarne, C.; Peters, J. Bone quantification. Orthop. Trauma. 2017, 31, 326–329. [Google Scholar] [CrossRef]
- Carey, J.J.; Delaney, M.F. T-Scores and Z-Scores. Clin. Rev. Bone Miner. Metab. 2010, 8, 113–121. [Google Scholar] [CrossRef]
- Shenoy, S.; Chawla, J.K.; Sandhu, J.S. Multisite quantitative ultrasound: It’s comparison with dual energy X-ray absorptiometry in the diagnosis of osteoporosis. J. Orthapedics Allied Sci. 2014, 2, 40–44. [Google Scholar] [CrossRef]
- Hammad, L.F. Measurements of bone mineral density and stiffness index in young Saudi females. Pakistan J. Med. Sci. 2016, 32, 399–402. [Google Scholar] [CrossRef]
- Whittle, C.R.; Woodside, J.V.; Cardwell, C.R.; McCourt, H.J.; Young, I.S.; Murray, L.J.; Boreham, C.A.; Gallagher, A.M.; Neville, C.E.; McKinley, M.K. Dietary patterns and bone mineral status in young adults: The Northern Ireland Young Hearts Project. Br. J. Nutr. 2012, 108, 1494–1504. [Google Scholar] [CrossRef]
- Pisani, P.; Greco, A.; Conversano, F.; Renna, M.R.; Casciaro, E.; Quarta, L.; Costanza, D.; Muratore, M.; Casciaro, S. A quantitative ultrasound approach to estimate bone fragility: A first comparison with dual X-ray absorptiometry. Meas. J. Int. Meas. Confed. 2017, 101, 243–249. [Google Scholar] [CrossRef]
- Park, K.A.; Park, Y.H.; Suh, M.H.; Choi-Kwon, S. Lifestyle and genetic predictors of stiffness index in community-dwelling elderly Korean men and women. Asian Nurs. Res. (Korean. Soc. Nurs. Sci) 2015, 9, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Hammad, L.F. Quantitative Ultrasound Measurements of Stiffness Index In Young Adult Females. Arch. Med. 2013, 5, 1–5. [Google Scholar] [CrossRef]
- Chin, K.Y.; Ima-Nirwana, S. Calcaneal quantitative ultrasound as a determinant of bone health status: What properties of bone does it reflect? Int. J. Med. Sci. 2013, 10, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- Trimpou, P.; Bosaeus, I.; Bengtsson, B.Å.; Landin-Wilhelmsen, K. High correlation between quantitative ultrasound and DXA during 7 years of follow-up. Eur. J. Radiol. 2010, 73, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Iida, T.; Chikamura, C.; Aoi, S.; Ikeda, H.; Matsuda, Y.; Oguri, Y.; Ono, Y.; Katada, K.; Ishizaki, F. A study on the validity of quantitative ultrasonic measurement used the bone mineral density values on dual-energy X-ray absorptiometry in young and in middle-aged or older women. Radiol. Phys. Technol. 2010, 3, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef]
- Bainbridge, K.E.; Sowers, M.F.; Crutchfield, M.; Lin, X.; Jannausch, M.; Harlow, S.D. Natural history of bone loss over 6 years among premenopausal and early postmenopausal women. Am. J. Epidemiol. 2002, 156, 410–417. [Google Scholar] [CrossRef]
- Gammage, K.L.; Francoeur, C.; Mack, D.E.; Klentrou, P. Osteoporosis health beliefs and knowledge in college students: The role of dietary restraint. Eat Behav. 2009, 10, 65–67. [Google Scholar] [CrossRef]
- University of Otago and Ministry of Health. A Focus on Nutrition: Key findings of the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2011.
- Vatanparast, H.; Bailey, D.A.; Baxter-Jones, A.D.; Whiting, S.J. The effects of dietary protein on bone mineral mass in young adults may be modulated by adolescent calcium intake. J. Nutr. 2007, 137, 2674–2679. [Google Scholar] [CrossRef]
- Holi, M.S.; Radhakrishnan, S.; Swaranamani, S. Quantitative ultrasound technique for the assessment of osteoporosis and prediction of fracture risk. J. Pure Appl. Ultrason. 2005, 27, 55–60. [Google Scholar]
- Hulley, S.B.; Cummings, S.R.; Browner, W.S.; Grady, D.G.; Newman, T.B. Designing Clinical Research: An Epidemiologic Approach, 4th ed.; Lippincott Williams & Wilkin: Philadelphia, PA, USA, 2013. [Google Scholar]
- Charan, J.; Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Research New Zealand. Special Report on the 2013 Census of New Zealand’s Population and Dwellings; Research New Zealand: Wellington, New Zealand, 2014. [Google Scholar]
- Black, A.E. The sensitivity and specificity of the Goldberg cut-off for EI: BMR for identifying diet reports of poor validity. Eur. J. Clin. Nutr. 2000, 54, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Barger-Lux, M.J.; Davies, K.M.; Heaney, R.P. Calcium supplementation does not augment bone gain in young women consuming diets moderately low in calcium. J. Nutr. 2005, 135, 2362–2366. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; So, W.Y.; Kim, J.; Sung, D.J. Relationship between bone-specific physical activity scores and measures for body composition and bone mineral density in healthy young college women. PLoS ONE 2016, 11, 1–11. [Google Scholar] [CrossRef]
- Uenishi, K.; Ishida, H.; Toba, Y.; Aoe, S.; Itabashi, A.; Takada, Y. Milk basic protein increases bone mineral density and improves bone metabolism in healthy young women. Osteoporos. Int. 2007, 18, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Callréus, M.; McGuigan, F.; Ringsberg, K.; Åkesson, K. Self-reported recreational exercise combining regularity and impact is necessary to maximize bone mineral density in young adult women: A population-based study of 1,061 women 25 years of age. Osteoporos. Int. 2012, 23, 2517–2526. [Google Scholar] [CrossRef]
- Rizzoli, R.; Bonjour, J.P. Dietary Protein and Bone Health. J. Bone Miner. Res. 2004, 19, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Australian Government. Department of Health and Ageing. New Zealand Ministry of Health. Nutrient Reference Values for Australia and New Zealand; National Health and Medical Research Council: Canberra, Australia, 2006; ISBN 1864962550.
- Rouf, A.; Clayton, S.; Allman-Farinelli, M. The barriers and enablers to achieving adequate calcium intake in young adults: A qualitative study using focus groups. J. Hum. Nutr. Diet. 2019, 32, 443–454. [Google Scholar] [CrossRef]
- Marcinow, M.L.; Randall Simpson, J.A.; Whiting, S.J.; Jung, M.E.; Buchholz, A.C. Young adults’ perceptions of calcium intake and health: A qualitative study. Health Educ. Behav. 2017, 44, 898–906. [Google Scholar] [CrossRef]
- Smith, C.; Gray, A.R.; Mainvil, L.A.; Fleming, E.A.; Parnell, W.R. Secular changes in intakes of foods among New Zealand adults from 1997 to 2008/09. Public Health Nutr. 2015, 18, 3249–3259. [Google Scholar] [CrossRef] [Green Version]
- Rozenberg, S.; Body, J.J.; Bruyère, O.; Bergmann, P.; Brandi, M.L.; Cooper, C.; Devogelaer, J.P.; Gielen, E.; Goemaere, S.; Kaufman, J.M.; et al. Effects of Dairy Products Consumption on Health: Benefits and Beliefs—A Commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif. Tissue Int. 2016, 98, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Horwath, C.C. Dietary intake and nutritional status among university undergraduates. Nutr. Res. 1991, 11, 395–404. [Google Scholar] [CrossRef]
- Kerstetter, J.E.; O’Brien, K.O.; Caseria, D.M.; Wall, D.E.; Insogna, K.L. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J. Clin. Endocrinol. Metab. 2005, 90, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Shams-White, M.M.; Chung, M.; Du, M.; Fu, Z.; Insogna, K.L.; Karlsen, M.C.; LeBoff, M.S.; Shapses, S.A.; Sackey, J.; Wallace, T.C.; et al. Dietary protein and bone health: A systematic review and meta-analysis from the National Osteoporosis Foundation. Am. J. Clin. Nutr. 2017, 105, 1528–1543. [Google Scholar] [CrossRef] [PubMed]
- Gorgulho, B.; Marchioni, D.M.; Conceicão, A.B.; Steluti, J.; Mussi, M.H.; Nagai-Manelli, R.; Teixeira, L.R.; Luz, A.A.; Fischer, F.M. Quality of diet of working college students. Work 2012, 41, 5806–5809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, H.; Wadsworth, D.P.; Penny, S.; van Assema, P.; Page, R. Psychosocial determinants of fruit and vegetable consumption among students in a New Zealand university. Results of focus group interviews. Appetite 2013, 65, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, D.; Ramsey, R.; Ong, K.W. Food insecurity: Is it an issue among tertiary students? Higher Educ. 2014, 67, 497–510. [Google Scholar] [CrossRef]
- Watson, S.J.; Barber, B.L. The Role of Economizing and Financial Strain in Australian University Students’ Psychological Well-Being. J. Fam. Econ. Issues 2015, 36, 421–433. [Google Scholar] [CrossRef]
- Slof-Op’t Landt, M.C.T.; van Furth, E.F.; van Beijsterveldt, C.E.M.; Bartels, M.; Willemsen, G.; de Geus, E.J.; Ligthart, L.; Boomsma, D.I. Prevalence of dieting and fear of weight gain across ages: A community sample from adolescents to the elderly. Int. J. Public Health 2017, 62, 911–919. [Google Scholar] [CrossRef]
- Rankin, D.; Ellis, S.M.; Macintyre, U.E.; Hanekom, S.M.; Wright, H.H. Dietary intakes assessed by 24-h recalls in peri-urban African adolescents: Validity of energy intake compared with estimated energy expenditure. Eur. J. Clin. Nutr. 2011, 65, 910–919. [Google Scholar] [CrossRef]
- Kouvelioti, R.; Josse, A.R.; Klentrou, P. Effects of Dairy Consumption on Body Composition and Bone Properties in Youth: A Systematic Review. Curr. Dev. Nutr. 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Dairy and bone health. J. Am. Coll. Nutr. 2009, 28, 82S–90S. [Google Scholar] [CrossRef] [PubMed]
- Wadolowska, L.; Sobas, K.; Szczepanska, J.W.; Slowinska, M.A.; Czlapka-Matyasik, M.; Niedzwiedzka, E. Dairy products, dietary calcium and bone health: Possibility of prevention of osteoporosis in women: The polish experience. Nutrients 2013, 5, 2684–2707. [Google Scholar] [CrossRef] [PubMed]
- Fardellone, P.; Séjourné, A.; Blain, H.; Cortet, B.; Thomas, T. Osteoporosis: Is milk a kindness or a curse? Joint Bone Spine 2017, 84, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Rubio-López, N.; Llopis-González, A.; Morales-Suárez-Varela, M. Calcium intake and nutritional adequacy in Spanish children: The ANIVA study. Nutrients 2017, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Suriawati, A.A.; Majid, H.A.; Al-Sadat, N.; Mohamed, M.N.A.; Jalaludin, M.Y. Vitamin D and calcium intakes, physical activity, and calcaneus BMC among school-going 13-year old Malaysian adolescents. Nutrients 2016, 8. [Google Scholar] [CrossRef]
- Hammad, L.F.; Benajiba, N. Lifestyle factors influencing bone health in young adult women in Saudi Arabia. Afr. Health Sci. 2017, 17, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Tsanzi, E.; Fitch, C.W.; Tou, J.C. Effect of consuming different caloric sweeteners on bone health and possible mechanisms. Nutr. Rev. 2008, 66, 301–309. [Google Scholar] [CrossRef]
- Tian, L.; Yu, X. Fat, sugar, and bone health: A complex relationship. Nutrients 2017, 9, 506. [Google Scholar] [CrossRef]
- Chepulis, L.; Mearns, G.; Hill, S.; Wu, J.H.; Crino, M.; Alderton, S.; Jenner, K. The nutritional content of supermarket beverages: A cross-sectional analysis of New Zealand, Australia, Canada and the UK. Public Health Nutr. 2018, 21, 2507–2516. [Google Scholar] [CrossRef]
- Noh, J.W.; Park, H.; Kim, M.; Kwon, Y.D. Gender Differences and Socioeconomic Factors Related to Osteoporosis: A Cross-Sectional Analysis of Nationally Representative Data. J. Women’s Health 2018, 27, 196–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, A. Premenopausal osteoporosis. Endocrinol. Metab. Clin. North Am. 2017, 46, 117–133. [Google Scholar] [CrossRef] [PubMed]
Parameters | Participants (n = 54) | Range |
---|---|---|
Age (years) | 20 (19, 22) * | 18–26 |
Height (cm) | 167.8 ± 6.2 † | 151.5–181.2 |
Weight (kg) | 66.2 ± 9.3 † | 49.7–93 |
BMI (kg/m2) | 23.5 ± 3.0 † | 18.4–33.8 |
Nutrient | Study Group (n = 54) | NZ Women 1 | Nutrient Reference Values (NRVs) | |
---|---|---|---|---|
EAR 2 | ||||
14–18 Years | 19–30 Years | |||
Calcium (mg) | 784 (659, 976) * | 704 * | 1050 | 840 |
Protein (g) | 83.7 (72.0, 101.4) * | 72 * | 35 g/day (0.62 g/kg) | 37 g/day (0.60 g/kg) |
Protein (%EI) | 18.7† ± 5.6 | 15.4 † | 18.4–33.8 | |
Energy kJ | 8245 (6817, 9482) * | 7448 * |
BMD (g/cm2) | BMC | Z-Score | BUA | SOS | ||
---|---|---|---|---|---|---|
Heel | 0.41 ± 1.08† | 177.61 ± 12.81† | 1598.29 ± 40.01† | |||
(94.1–149.3) | (1516.6–1700.9) | |||||
Hip | Total | 0.97 ± 0.15† | 32.38 ± 6.25† | 0.19 ± 1.199† | ||
(0.63–1.35) | (19.52–51.20) | (−2.6–3.4) | ||||
FN | 0.86 ± 0.14† | |||||
(0.57–1.15) | ||||||
Spine | 1.00 ± 0.12† | 59.56 ± 11.37† | −0.20 ± 1.13† | |||
(0.77–1.36) | (38.03–90.60) | (−2.4–2.9) |
Linear Regression (R2) | Correlation Coefficient (R) | P-Value for Correlation | |
---|---|---|---|
BUA versus Hip BMD | 0.340 | 0.583 | 0.0001 |
BUA versus Lumbar spine BMD | 0.357 | 0.597 | 0.0001 |
BUA versus Femoral Neck BMD | 0.247 | 0.497 | 0.0002 |
SOS versus Hip BMD | 0.291 | 0.539 | 0.0001 |
SOS versus Lumbar spine BMD | 0.134 | 0.366 | 0.0007 |
SOS versus Femoral Neck BMD | 0.230 | 0.479 | 0.0003 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schraders, K.; Zatta, G.; Kruger, M.; Coad, J.; Weber, J.; Brough, L.; Thomson, J. Quantitative Ultrasound and Dual X-Ray Absorptiometry as Indicators of Bone Mineral Density in Young Women and Nutritional Factors Affecting It. Nutrients 2019, 11, 2336. https://doi.org/10.3390/nu11102336
Schraders K, Zatta G, Kruger M, Coad J, Weber J, Brough L, Thomson J. Quantitative Ultrasound and Dual X-Ray Absorptiometry as Indicators of Bone Mineral Density in Young Women and Nutritional Factors Affecting It. Nutrients. 2019; 11(10):2336. https://doi.org/10.3390/nu11102336
Chicago/Turabian StyleSchraders, Katie, Giancarla Zatta, Marlena Kruger, Jane Coad, Janet Weber, Louise Brough, and Jasmine Thomson. 2019. "Quantitative Ultrasound and Dual X-Ray Absorptiometry as Indicators of Bone Mineral Density in Young Women and Nutritional Factors Affecting It" Nutrients 11, no. 10: 2336. https://doi.org/10.3390/nu11102336
APA StyleSchraders, K., Zatta, G., Kruger, M., Coad, J., Weber, J., Brough, L., & Thomson, J. (2019). Quantitative Ultrasound and Dual X-Ray Absorptiometry as Indicators of Bone Mineral Density in Young Women and Nutritional Factors Affecting It. Nutrients, 11(10), 2336. https://doi.org/10.3390/nu11102336