Magnesium Intake Predicts Bone Turnover in Postmenopausal Black South African Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometry, Bone Mineral Density and Bone Turnover Markers
2.3. Questionnaires
2.4. Nutrient Intake and Dietary Patterns
2.5. Oblique Rotation Principal Component Factoring
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics, Nutrient Intake, and Dietary Patterns
3.2. Bone Mineral Density and Bone Turnover
3.3. Regression Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wright, N.C.; Saag, K.G.; Curtis, J.R.; Smith, W.K.; Kilgore, M.L.; Morrisey, M.A.; Yun, H.; Zhang, J.; Delzell, E.S. Recent trends in hip fracture rates by race/ethnicity among older US adults. J. Bone Miner. Res. 2012, 27, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Looker, A.; Melton, L.; Borrud, L.; Shepherd, J. Changes in femur neck bone density in US adults between 1988–1994 and 2005–2008: Demographic patterns and possible determinants. Metab. Bone Dis. 2012, 23, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Chantler, S.; Dickie, K.; Goedecke, J.H.; Levitt, N.S.; Lambert, E.V.; Evans, J.; Joffe, Y.; Micklesfield, L.K. Site-specific differences in bone mineral density in black and white premenopausal South African women. Osteoporos. Int. 2012, 23, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.A.; Pettifor, J.M.; Barondess, D.A.; Cody, D.D.; Uusi-Rasi, K.; Beck, T.J. Comparison of cross-sectional geometry of the proximal femur in white and black women from Detroit and Johannesburg. J. Bone Miner. Res. 2004, 19, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Vorster, H.H., Jr.; Venter, C.S.; Kruger, M.C.; Vorster, H.H.; Kruger, H.S. Impact of urbanisation on risk factors for osteoporosis in postmenopausal black South African women. JEMDSA 2002, 7, 92–99. [Google Scholar]
- Kruger, M.C.; De Winter, R.M.; Becker, P.J.; Vorster, H.H. Changes in markers of bone turnover following urbanisation of black South African women. J. Endocrinol. Metab. Diabetes S. Afr. 2004, 9, 8–14. [Google Scholar] [CrossRef]
- Conradie, M.; Conradie, M.M.; Scher, A.T.; Kidd, M.; Hough, S. Vertebral fracture prevalence in black and white South African women. Arch. Osteoporos. 2015, 10, 203. [Google Scholar] [CrossRef]
- Vorster, H.H.; Wissing, M.P.; Venter, C.S.; Kruger, H.S.; Kruger, A.; Malan, N.T.; De Ridder, J.H.; Veldman, F.J.; Steyn, H.S.; Margetts, B.M.; et al. The impact of urbanization on physical, physiological and mental health of Africans in the North West Province of South Africa: The THUSA study. S. Afr. J. Sci. 2000, 96, 505–514. [Google Scholar]
- Kruger, H.S.; Venter, C.S.; Vorster, H.H. Obesity in African women in the North West Province, South Africa is associated with an increased risk of non-communicable diseases: The THUSA study. Br. J. Nutr. 2001, 86, 733–740. [Google Scholar] [CrossRef]
- Felson, D.T.; Zhang, Y.; Hannan, M.T.; Anderson, J.J. Effects of weight and body mass index on bone mineral density in men and women: The Framingham study. J. Bone Miner. Res. 1993, 8, 567–573. [Google Scholar] [CrossRef]
- Asomaning, K.; Bertone-Johnson, E.R.; Nasca, P.C.; Hooven, F.; Pekow, P.S. The association between body mass index and osteoporosis in patients referred for a bone mineral density examination. J. Womens Health 2006, 15, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.H.; Venners, S.A.; Terwedow, H.A.; Feng, Y.; Niu, T.; Li, Z.; Laird, N.; Brain, J.D.; Cummings, S.R.; Bouxsein, M.L.; et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am. J. Clin. Nutr. 2006, 83, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilesanmi-Oyelere, B.L.; Coad, J.; Roy, N.; Kruger, M.C. Lean Body Mass in the Prediction of Bone Mineral Density in Postmenopausal Women. BioRes. Open Access 2018, 7, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Sotunde, O.F.; Kruger, H.S.; Wright, H.H.; Havemann-Nel, L.; Kruger, I.M.; Wentzel-Viljoen, E.; Kruger, A.; Tieland, M. Lean Mass Appears to Be More Strongly Associated with Bone Health than Fat Mass in Urban Black South African Women. J. Nutr. Health Aging 2015, 19, 628–636. [Google Scholar] [CrossRef] [PubMed]
- ICF; NDoH. South Africa Demographic and Health Survey; National Department of Health: Pretoria, South Africa, 2019. [Google Scholar]
- Mundy, G.R. Osteoporosis and inflammation. Nutr. Rev. 2007, 65, S147–S151. [Google Scholar] [CrossRef]
- Bonjour, J.P.; Gueguen, L.; Palacios, C.; Shearer, M.J.; Weaver, C.M. Minerals and vitamins in bone health: The potential value of dietary enhancement. Br. J. Nutr. 2009, 101, 1581–1596. [Google Scholar] [CrossRef]
- McNaughton, S.; Wattanapenpaiboon, N.; Wark, J.; Nowson, C. An Energy-Dense, Nutrient-Poor Dietary Pattern Is Inversely Associated with Bone Health in Women1-3. J. Nutr. 2011, 141, 1516–1523. [Google Scholar] [CrossRef]
- Wu, F.; Wills, K.; Laslett, L.L.; Oldenburg, B.; Jones, G.; Winzenberg, T. Associations of dietary patterns with bone mass, muscle strength and balance in a cohort of Australian middle-aged women. Br. J. Nutr. 2017, 118, 598–606. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, A.C.; Aucott, L.; Fraser, W.D.; Reid, D.M.; Macdonald, H.M. Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur. J. Clin. Nutr. 2011, 65, 378–385. [Google Scholar] [CrossRef]
- Melaku, Y.A.; Gill, T.K.; Adams, R.; Shi, Z. Association between dietary patterns and low bone mineral density among adults aged 50 years and above: Findings from the North West Adelaide Health Study (NWAHS). Br. J. Nutr. 2016, 116, 1437–1446. [Google Scholar] [CrossRef]
- Wentzel-Viljoen, E.; Lee, S.; Laubscher, R.; Vorster, H.H. Accelerated nutrition transition in the North West Province of South Africa: Results from the Prospective Urban and Rural Epidemiology (PURE-NWP-SA) cohort study, 2005 to 2010. Public Health Nutr. 2018, 21, 2630–2641. [Google Scholar] [CrossRef] [PubMed]
- Marfell-Jones, M.; International Society for Advancement of Kinanthropometry. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Potchefstroom, South Africa, 2006. [Google Scholar]
- Borque, L.; Bellod, L.; Rus, A.; Seco, M.L.; Galisteo-González, F. Development and Validation of an Automated and Ultrasensitive Immunoturbidimetric Assay for C-Reactive Protein. Clin. Chem. 2000, 46, 1839–1842. [Google Scholar] [PubMed]
- Teo, K.; Chow, C.K.; Vaz, M.; Rangarajan, S.; Yusuf, S. The Prospective Urban Rural Epidemiology (PURE) study: Examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am. Heart J. 2009, 158, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wentzel-Viljoen, E.; Laubscher, R.; Kruger, A. Using different approaches to assess the reproducibility of a culturally sensitive quantified food frequency questionnaire. S. Afr. J. Clin. Nutr. 2011, 24, 143–148. [Google Scholar] [CrossRef]
- Kruger, H.; Venter, C.; Steyn, H.S. A standardised physical activity questionnaire for a population in transition: The THUSA study. Afr. J. Phys. Health Educ. Recreat. Dance 2000, 6, 54–64. [Google Scholar]
- Kruger, M.C.; Kruger, I.M.; Wentzel-Viljoen, E.; Kruger, A. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover. Nutr. Res. 2011, 31, 748–758. [Google Scholar] [CrossRef]
- Wolmarans, P.; Danster, N.; Dalton, A.; Rossouw, K.; Schönfeldt, H. Condensed food Composition Tables for South Africa; South African Medical Research Council: Cape Town, South Africa, 2010; pp. 1–126. [Google Scholar]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark IV. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Field, A.P. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Institute of Medicine Committee to Review Dietary Reference Intakes for Calcium and Vitamin D. The National Academies Collection: Reports funded by National Institutes of Health. In Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press (US) National Academy of Sciences: Washington, DC, USA, 2011. [Google Scholar]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Cashman, K.D. Diet, nutrition, and bone health. J. Nutr. 2007, 137, 2507S–2512S. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- de Jonge, E.A.L.; Rivadeneira, F.; Erler, N.S.; Hofman, A.; Uitterlinden, A.G.; Franco, O.H.; Kiefte-de Jong, J.C. Dietary patterns in an elderly population and their relation with bone mineral density: The Rotterdam Study. Eur. J. Nutr. 2018, 57, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Langsetmo, L.; Poliquin, S.; Hanley, D.; Prior, J.; Barr, S.; Anastassiades, T.; Towheed, T.; Goltzman, D.; Kreiger, N. Dietary patterns in Canadian men and women ages 25 and older: Relationship to demographics, body mass index, and bone mineral density. BMC Musculoskelet. Disord. 2010, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R. Nutritional aspects of bone health. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 795–808. [Google Scholar] [CrossRef]
- Alissa, E.M.; Alnahdi, W.A.; Alama, N.; Ferns, G.A. Relationship between nutritional profile, measures of adiposity, and bone mineral density in postmenopausal Saudi women. J. Am. Coll. Nutr. 2014, 33, 206–214. [Google Scholar] [CrossRef]
- Aloia, J.; Bojadzievski, T.; Yusupov, E.; Shahzad, G.; Pollack, S.; Mikhail, M.; Yeh, J. The relative influence of calcium intake and vitamin D status on serum parathyroid hormone and bone turnover biomarkers in a double-blind, placebo-controlled parallel group, longitudinal factorial design. J. Clin. Endocrinol. Metab. 2010, 95, 3216–3224. [Google Scholar] [CrossRef]
- New, S.A.; Robins, S.P.; Campbell, M.K.; Martin, J.C.; Garton, M.J.; Bolton-Smith, C.; Grubb, D.A.; Lee, S.J.; Reid, D.M. Dietary influences on bone mass and bone metabolism: Further evidence of a positive link between fruit and vegetable consumption and bone health? Am. J. Clin. Nutr. 2000, 71, 142–151. [Google Scholar] [CrossRef]
- New, S.A.; Bolton-Smith, C.; Grubb, D.A.; Reid, D.M. Nutritional influences on bone mineral density: A cross-sectional study in premenopausal women. Am. J. Clin. Nutr. 1997, 65, 1831–1839. [Google Scholar] [CrossRef]
- Lenora, J.; Ivaska, K.; Obrant, K.; Gerdhem, P. Prediction of bone loss using biochemical markers of bone turnover. Metab. Bone Dis. 2007, 18, 1297–1305. [Google Scholar] [CrossRef] [Green Version]
- Arabi, A.; Baddoura, R.; El-Rassi, R.; El-Hajj Fuleihan, G. PTH level but not 25 (OH) vitamin D level predicts bone loss rates in the elderly. Osteoporos. Int. 2012, 23, 971–980. [Google Scholar] [CrossRef]
- Eastell, R.; Hannon, R.A. Biomarkers of bone health and osteoporosis risk. Proc. Nutr. Soc. 2008, 67, 157–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotunde, O.F.; Kruger, H.S.; Wright, H.H.; Havemann-Nel, L.; Mels, C.M.; Ravyse, C.; Pieters, M. Association of 25-hydroxyvitamin D and parathyroid hormone with the metabolic syndrome in black South African women. Appl. Physiol. Nutr. Metab. 2017, 42, 413–419. [Google Scholar] [CrossRef] [PubMed]
Food Group | Foods in the Group | Number |
---|---|---|
Starches and grains | Starchy grains (cereals, pasta, rice, mealies/corn, samp), cooked porridge, and maize-based drinks | 1 |
Bread | White, brown, and whole-wheat bread and rolls, ‘vetkoek’ (fried rolls) | 2 |
Vegetables | All fresh and canned vegetables, excluding starchy vegetables | 3 |
Starchy vegetables | Starchy vegetables (potato, sweet potato), fried hot chips | 4 |
Fruit | All fresh and dried fruit, (mostly apples, pears, bananas, oranges) | 5 |
Dairy | Milk and milk products (fresh and sour), yoghurt, cheese | 6 |
Sweetened milk products | Custard sauce, ice-cream, milk desserts, dairy-juice drinks | 7 |
Unprocessed meat | Meat, chicken, fish, and products, animal protein stew with potato and/or vegetables | 8 |
Processed meat | Processed meats, e.g., frankfurters, viennas, ham, bacon, boerewors | 9 |
Fats | All fats and oils (excluding ice cream), butter, margarine, oil, lard, salad dressings | 10 |
Sugars | Sugar, syrups, sweets, jam | 11 |
Savoury and sweet baked/fried starchy foods | Savoury snacks, dry crackers, popcorn, cakes, biscuits, cheese crisps, commercial dry potato chips | 12 |
Drinks | Sugar-sweetened drinks, fruit juice | 13 |
Variable | Total Group (n) | Median | IQR 1 |
---|---|---|---|
Age (y) | 144 | 59.4 | 54–66 |
Weight (kg) | 144 | 67.4 | 55.5–80.2 |
BMI 2 (kg/m2) | 144 | 27.9 | 22.8–33.0 |
Waist circumference (cm) | 141 | 86.8 | 76.9–95.3 |
Physical activity score | 141 | 2.96 | 2.62–3.12 |
Energy intake (MJ/d) | 142 | 11.2 | 8.7–13.5 |
Percentage protein intake (%) | 142 | 12.6 | 11.2V14.3 |
Protein per body weight (g/kg) | 142 | 1.2 | 0.9–1.7 |
Percentage carbohydrate intake (%) | 142 | 54 | 48–58 |
Added sugar (g/d) | 142 | 62 | 34–93 |
Fiber (g/d) | 142 | 30 | 21-41 |
Percentage fat intake (%) | 142 | 26 | 22–31 |
Calcium intake (mg/d) | 142 | 540.4 | 358–708 |
Magnesium intake (mg/d) | 142 | 367.0 | 273–508 |
Alcohol intake (g/d) | 142 | 0 | 0V5.1 |
Variable | N | n | Percentage (%) |
Waist circumference cut-off <80 cm ≥80 cm ≥120 cm | 142 | 42 100 - | 29.6 70.4 - |
Smokers | 141 | 11 | 7.8 |
HIV 3 positive | 144 | 12 | 8.3 |
Variable | N | 2010 | 2012 | P-Value | d 4 |
---|---|---|---|---|---|
Distal radius BMD 1 (g/cm2) | 134 | 0.42 (0.1) | 0.3 (0.14) | <.001 | 0.3 |
Spine (L1-L4) BMD 1 (g/cm2) | 143 | 0.84 (0.15) | 0.83 (0.15) | 0.090 | 0.14 |
Femoral neck of the hip BMD 1 (g/cm2) | 142 | 0.83 (0.14) | 0.81 (0.14) | <.001 | 0.38 |
BMI 2 (kg/m2) | 144 | 27.9 (22.8–33.0) | 27.7 (22.8–33.3) | 0.001 | |
High sensitivity C-reactive protein (mg/L) | 141 | 4.83 (1.70–9.94) | 4.42 (2.24–8.26) | 0.720 | |
C-Telopeptide of type 1 collagen (CTx-1) (ng/mL) | 132 | 0.47 (0.31–0.69) | 0.54 (0.35–0.80) | 0.004 | |
Parathyroid hormone (ng/mL) | 132 | 41.4 (29.1–55.6) | 45.8 (35.5–63.3) | <0.0001 | |
25(OH)D3 3 (ng/mL) | 132 | 35.6 (27.4–46.4) | 30.7 (23.1–36.8) | <0.0001 |
Standardised β | P-Value | |
---|---|---|
Final Model * | ||
CTx-1 1 Baseline (ng/mL) | −0.45 | <0.0001 |
Magnesium Intake (mg) | −0.175 | 0.03 |
HIV infected | 0.131 | 0.096 |
Adjusted R-squared | 0.220 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, H.H.; Kruger, M.C.; Schutte, W.D.; Wentzel-Viljoen, E.; Kruger, I.M.; Kruger, H.S. Magnesium Intake Predicts Bone Turnover in Postmenopausal Black South African Women. Nutrients 2019, 11, 2519. https://doi.org/10.3390/nu11102519
Wright HH, Kruger MC, Schutte WD, Wentzel-Viljoen E, Kruger IM, Kruger HS. Magnesium Intake Predicts Bone Turnover in Postmenopausal Black South African Women. Nutrients. 2019; 11(10):2519. https://doi.org/10.3390/nu11102519
Chicago/Turabian StyleWright, Hattie H., Marlena C. Kruger, Willem D. Schutte, Edelweiss Wentzel-Viljoen, Iolanthe M. Kruger, and Herculina S. Kruger. 2019. "Magnesium Intake Predicts Bone Turnover in Postmenopausal Black South African Women" Nutrients 11, no. 10: 2519. https://doi.org/10.3390/nu11102519
APA StyleWright, H. H., Kruger, M. C., Schutte, W. D., Wentzel-Viljoen, E., Kruger, I. M., & Kruger, H. S. (2019). Magnesium Intake Predicts Bone Turnover in Postmenopausal Black South African Women. Nutrients, 11(10), 2519. https://doi.org/10.3390/nu11102519