Muscular Fitness Mediates the Association between 25-Hydroxyvitamin D and Areal Bone Mineral Density in Children with Overweight/Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Measures
2.2.1. Anthropometrics and Sexual Maturation
2.2.2. Vitamin D
2.2.3. Muscular Fitness
2.2.4. Body Composition
2.3. Statistical Analysis
3. Results
Mediation Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Who Scientific Group on the Assessment of Osteoporosis At Primary Health. World Health 2007. Available online: https://www.who.int/chp/topics/Osteoporosis.pdf (accessed on 3 April 2019).
- Kelley, J.C.; Crabtree, N.; Zemel, B.S. Bone Density in the Obese Child: Clinical Considerations and Diagnostic Challenges. Calcif. Tissue Int. 2017, 100, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Rokoff, L.B.; Rifas-Shiman, S.L.; Switkowski, K.M.; Young, J.G.; Rosen, C.J.; Oken, E.; Fleisch, A.F. Body composition and bone mineral density in childhood. Bone 2019, 121, 9–15. [Google Scholar] [CrossRef]
- Durá-Travé, T.; Gallinas-Victoriano, F.; Chueca-Guindulain, M.J.; Berrade-Zubiri, S. Prevalence of hypovitaminosis D and associated factors in obese Spanish children. Nutr. Diabetes 2017, 7, e248. [Google Scholar]
- Alemzadeh, R.; Kichler, J.; Babar, G.; Calhoun, M. Hypovitaminosis D in obese children and adolescents: Relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism 2008, 57, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Gil, Á.; Plaza-Diaz, J.; Mesa, M.D. Vitamin D: Classic and Novel Actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef]
- Pekkinen, M.; Viljakainen, H.; Saarnio, E.; Lamberg-Allardt, C.; Mäkitie, O. Vitamin D is a major determinant of bone mineral density at school age. PLoS ONE 2012, 7, e40090. [Google Scholar] [CrossRef]
- Cheng, S.; Tylavsky, F.; Kröger, H.; Kärkkäinen, M.; Lyytikainen, A.; Koistinen, A.; Mahonen, A.; Alen, M.; Halleen, J.; Väänänen, K.; et al. Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am. J. Clin. Nutr. 2003, 78, 485–492. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef]
- Torres-Costoso, A.; Gracia-Marco, L.; Sánchez-López, M.; García-Prieto, J.C.; García-Hermoso, A.; Díez-Fernández, A.; Martínez-Vizcaíno, V. Lean mass as a total mediator of the influence of muscular fitness on bone health in schoolchildren: A mediation analysis. J. Sports Sci. 2015, 33, 817–830. [Google Scholar] [CrossRef]
- Hazell, T.J.; Deguire, J.R.; Weiler, H.A. Vitamin D: An overview of its role in skeletal muscle physiology in children and adolescents. Nutr. Rev. 2012, 70, 520–533. [Google Scholar] [CrossRef] [PubMed]
- Brunner, A.; de Boland, A.R. 1,25-Dihydroxyvitamin D3 Affects the Synthesis, Phosphorylation and in vitro Calmodulin Binding of Myoblast Cytoskeletal Proteins. Zeitschrift für Naturforschung C 2018, 45, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Zanello, S.B.; Boland, R.L.; Norman, A.W. cDNA sequence identity of a vitamin D-dependent calcium-binding protein in the chick to calbindin D-9K. Endocrinology 1995, 136, 2784–2787. [Google Scholar] [CrossRef] [PubMed]
- Barton-Davis, E.R.; Shoturma, D.I.; Musaro, A.; Rosenthal, N.; Sweeney, H.L. Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc. Natl. Acad. Sci. USA 1998, 95, 15603–15607. [Google Scholar] [CrossRef] [PubMed]
- Boland, R.; de Boland, A.R.; Marinissen, M.J.; Santillan, G.; Vazquez, G.; Zanello, S. Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. Mol. Cell. Endocrinol. 1995, 114, 1–8. [Google Scholar] [CrossRef]
- De Boland, A.R.; Nemere, I. Rapid actions of vitamin D compounds. J. Cell. Biochem. 1992, 49, 32–36. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Cadenas-Sánchez, C.; Mora-González, J.; Migueles, J.H.; Martín-Matillas, M.; Gómez-Vida, J.; Escolano-Margarit, M.V.; Maldonado, J.; Enriquez, G.M.; Pastor-Villaescusa, B.; de Teresa, C.; et al. An exercise-based randomized controlled trial on brain, cognition, physical health and mental health in overweight/obese children (ActiveBrains project): Rationale, design and methods. Contemp. Clin. Trials 2016, 47, 315–324. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.G.; Cameron, N.; Brasher, P.M.A. Enhancing a somatic maturity prediction model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Castro-piñero, J.; España-romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.M.; Jimenez-pavón, D.; Chillón, P.; Girela-rejón, M.J.; Mora, J.; et al. Field-based fitness assessment in young people: The ALPHA health-related fi tness test battery for children and adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, N.J.; Arabi, A.; Bachrach, L.K.; Fewtrell, M.; El-Hajj Fuleihan, G.; Kecskemethy, H.H.; Jaworski, M.; Gordon, C.M. Dual-energy x-ray absorptiometry interpretation and reporting in children and adolescents: The revised 2013 ISCD pediatric official positions. J. Clin. Densitom. 2014, 17, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Ubago-Guisado, E.; Vlachopoulos, D.; Fatouros, I.G.; Deli, C.K.; Leontsini, D.; Moreno, L.A.; Courteix, D.; Gracia-Marco, L. Longitudinal determinants of 12-month changes on bone health in adolescent male athletes. Arch. Osteoporos. 2018, 13, 106. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, D.; Ubago-Guisado, E.; Barker, A.R.; Metcalf, B.S.; Fatouros, I.G.; Avloniti, A.; Knapp, K.M.; Moreno, L.A.; Williams, C.A.; Gracia-Marco, L. Determinants of Bone Outcomes in Adolescent Athletes at Baseline: The PRO-BONE Study. Med. Sci. Sports Exerc. 2017, 49, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F. Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef]
- Hauksson, H.H.; Hrafnkelsson, H.; Magnusson, K.T.; Johannsson, E.; Sigurdsson, E.L. Vitamin D status of Icelandic children and its influence on bone accrual. J. Bone Miner. Metab. 2016, 34, 580–586. [Google Scholar] [CrossRef]
- Zhu, K.; Oddy, W.H.; Holt, P.; Ping-Delfos, W.C.S.; Mountain, J.; Lye, S.; Pennell, C.; Hart, P.H.; Walsh, J.P. Tracking of Vitamin D status from childhood to early adulthood and its association with peak bone mass. Am. J. Clin. Nutr. 2017, 106, 276–283. [Google Scholar] [CrossRef]
- Stein, E.M.; Laing, E.M.; Hall, D.B.; Hausman, D.B.; Kimlin, M.G.; Johnson, M.A.; Modlesky, C.M.; Wilson, A.R.; Lewis, R.D. Serum 25-hydroxyvitamin D concentrations in girls aged 4-8 y living in the southeastern United States. Am. J. Clin. Nutr. 2006, 83, 75–81. [Google Scholar] [CrossRef]
- Zhai, L.; Liu, J.; Zhao, J.; Liu, J.; Bai, Y.; Jia, L.; Yao, X. Association of obesity with onset of puberty and sex hormones in Chinese girls: A 4-year longitudinal study. PLoS ONE 2015, 10, e0134656. [Google Scholar] [CrossRef]
- Zhai, L.; Zhao, J.; Bai, Y.; Liu, L.; Zheng, L.; Jia, L.; Yao, X. Sexual development in prepubertal obese boys: A 4-year longitudinal study. J. Pediatr. Endocrinol. Metab. 2013, 26, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Foo, L.H.; Zhang, Q.; Zhu, K.; Ma, G.; Hu, X.; Greenfield, H.; Fraser, D.R. Low Vitamin D Status Has an Adverse Influence on Bone Mass, Bone Turnover, and Muscle Strength in Chinese Adolescent Girls. J. Nutr. 2009, 139, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.A.; Das, G.; Berry, J.L.; Roberts, S.A.; Rawer, R.; Adams, J.E.; Mughal, Z. Vitamin D status and muscle function in post-menarchal adolescent girls. J. Clin. Endocrinol. Metab. 2009, 94, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blakeley, C.E.; Van Rompay, M.I.; Schultz, N.S.; Sacheck, J.M. Relationship between muscle strength and dyslipidemia, serum 25(OH)D, and weight status among diverse schoolchildren: A cross-sectional analysis. BMC Pediatr. 2018, 18, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, H.M. Bone’s Mechanostat: A 2003 Update. Anat. Rec.—Part A Discov. Mol. Cell. Evol. Biol. 2003, 275, 1081–1101. [Google Scholar] [CrossRef]
- Ceglia, L. Vitamin D and Its Role in Skeletal Muscle. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Cossio-Bolaños, M.; Lee-Andruske, C.; de Arruda, M.; Luarte-Rocha, C.; Almonacid-Fierro, A.; Gómez-Campos, R. Hand grip strength and maximum peak expiratory flow: Determinants of bone mineral density of adolescent students. BMC Pediatr. 2018, 18, 96. [Google Scholar] [CrossRef] [Green Version]
- Foley, S.; Quinn, S.; Dwyer, T.; Venn, A.; Jones, G. Measures of childhood fitness and body mass index are associated with bone mass in adulthood: A 20-year prospective study. J. Bone Miner. Res. 2008, 23, 994–1001. [Google Scholar] [CrossRef]
Variables | All (n = 81) | Boys (n = 53) | Girls (n = 28) |
---|---|---|---|
Age (years) | 10.0 ± 1.2 | 10.2 ± 1.2 | 9.7 ± 1.2 |
Years from PHV (years) | −2.4 ± 0.9 | −2.6 ± 0.9 | −1.8 ± 1.1 |
Height (cm) | 143.9 ± 8.7 | 144.5 ± 8.1 | 142.7 ± 9.8 |
Body mass (kg) | 54.8 ± 10.7 | 55.8 ± 10.7 | 53.1 ± 10.8 |
TBLH fat mass (kg) a | 21.9 ± 5.8 | 22.1 ± 5.9 | 21.5 ± 5.8 |
TBLH lean mass (kg) a | 26.6 ± 5.2 | 27.3 ± 4.9 | 25.5 ± 5.3 |
BMI (kg·m−2) | 26.3 ± 3.4 | 26.5 ± 3.4 | 25.9 ± 3.3 |
Overweight (%) | 28.4 | 26.4 | 32.1 |
Obesity (%) | 71.6 | 73.6 | 67.9 |
Autumn (%) | 91.4 | 90.6 | 92.9 |
Winter (%) | 8.6 | 9.4 | 7.1 |
25(OH)D (nmol/L) a,* | 31.5 ± 9.5 | 32.7 ± 9.6 | 29.2 ± 8.9 |
Deficiency (%) | 46.9 | 43.4 | 53.6 |
Insufficiency (%) | 46.9 | 49.1 | 42.9 |
Sufficiency (%) | 6.2 | 7.5 | 3.6 |
Muscular fitness z-score b | 0.000 ± 1.000 | 0.032 ± 0.098 | −0.061 ± 1.037 |
Handgrip strength (kg)/body mass (kg) a | 0.307 ± 0.059 | 0.309 ± 0.058 | 0.303 ± 0.059 |
Standing long jump (cm) a | 106.2 ± 17.8 | 106.5 ± 17.9 | 105.7 ± 17.9 |
TBLH (g·m−2) a | 0.772 ± 0.059 | 0.775 ± 0.059 | 0.766 ± 0.058 |
Arms (g·m−2) a | 0.607 ± 0.041 | 0.613 ± 0.041 | 0.596 ± 0.040 |
Legs (g·m−2) a | 0.913 ± 0.079 | 0.917 ± 0.082 | 0.906 ± 0.074 |
Muscular Fitness z-Score b | Handgrip Strength/Body Mass | Standing Long Jump | TBLH aBMD | Arms aBMD | Legs aBMD | |
---|---|---|---|---|---|---|
25(OH)D | 0.275 * | 0.285 * | 0.186 | 0.039 | 0.043 | −0.011 |
Muscular fitness z-score b | - | 0.881 ** | 0.869 ** | 0.244 * | 0.352 * | 0.182 |
Handgrip strength/body mass | - | 0.540 ** | 0.165 | 0.320 * | 0.089 | |
Standing long jump | - | 0.266 * | 0.295 * | 0.233 * | ||
TBLH aBMD | - | 0.764 ** | 0.894 ** | |||
Arms aBMD | - | 0.577 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Cosano, J.J.; Gracia-Marco, L.; Ubago-Guisado, E.; Migueles, J.H.; Mora-Gonzalez, J.; Escolano-Margarit, M.V.; Gómez-Vida, J.; Maldonado, J.; Ortega, F.B. Muscular Fitness Mediates the Association between 25-Hydroxyvitamin D and Areal Bone Mineral Density in Children with Overweight/Obesity. Nutrients 2019, 11, 2760. https://doi.org/10.3390/nu11112760
Gil-Cosano JJ, Gracia-Marco L, Ubago-Guisado E, Migueles JH, Mora-Gonzalez J, Escolano-Margarit MV, Gómez-Vida J, Maldonado J, Ortega FB. Muscular Fitness Mediates the Association between 25-Hydroxyvitamin D and Areal Bone Mineral Density in Children with Overweight/Obesity. Nutrients. 2019; 11(11):2760. https://doi.org/10.3390/nu11112760
Chicago/Turabian StyleGil-Cosano, Jose J., Luis Gracia-Marco, Esther Ubago-Guisado, Jairo H. Migueles, Jose Mora-Gonzalez, María V. Escolano-Margarit, José Gómez-Vida, José Maldonado, and Francisco B. Ortega. 2019. "Muscular Fitness Mediates the Association between 25-Hydroxyvitamin D and Areal Bone Mineral Density in Children with Overweight/Obesity" Nutrients 11, no. 11: 2760. https://doi.org/10.3390/nu11112760
APA StyleGil-Cosano, J. J., Gracia-Marco, L., Ubago-Guisado, E., Migueles, J. H., Mora-Gonzalez, J., Escolano-Margarit, M. V., Gómez-Vida, J., Maldonado, J., & Ortega, F. B. (2019). Muscular Fitness Mediates the Association between 25-Hydroxyvitamin D and Areal Bone Mineral Density in Children with Overweight/Obesity. Nutrients, 11(11), 2760. https://doi.org/10.3390/nu11112760