Applying Methods for Postnatal Growth Assessment in the Clinical Setting: Evaluation in a Longitudinal Cohort of Very Preterm Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Growth Data
2.4. Nutritional Protocols and Nutritional Variables
2.5. Clinical Outcomes
2.6. Statistical Analysis
3. Results
3.1. Description of the Sample
3.2. Growth Velocity (g/kg/day)
3.3. EUGR (z-Score < −1.28)
3.4. Fall in z-Score (FZS > 1.34)
3.5. Early Predictors of Postnatal Growth Failure at 36 Weeks Postmenstrual Age
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cormack, B.E.; Embleton, N.D.; Van Goudoever, J.B.; Hay, W.W.; Bloomfield, F.H. Comparing apples with apples: It is time for standardized reporting of neonatal nutrition and growth studies. Pediatr. Res. 2016, 79, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Schehr, L.K.; Johnson, T.S. Concept Analysis of Growth Failure in Preterm Infants in the NICU. J. Obstet. Gynecol. Neonatal Nurs. 2017, 46, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.L.; Engstrom, J.L.; Meier, P.P.; Kimura, R.E. Accuracy of Methods for Calculating Postnatal Growth Velocity for Extremely Low Birth Weight Infants. Pediatrics 2005, 116, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.L.; Engstrom, J.L.; Meier, P.P.; Jegier, B.J.; Kimura, R.E. Calculating postnatal growth velocity in very low birth weight (VLBW) premature infants. J. Perinatol. 2009, 29, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Green, R.S.; Chen, S.; Wu, H.; Liu, T.; Li, J.; Wei, J.; Lin, J. Quantification of EUGR as a measure of the quality of nutritional care of premature infants. PLoS ONE 2015, 10, e0132584. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Chan, H.T.; Madhu, A.; Griffin, I.J.; Hoyos, A.; Ziegler, E.E.; Groh-Wargo, S.; Carlson, S.J.; Senterre, T.; Anderson, D.; et al. Preterm Infant Growth Velocity Calculations: A Systematic Review. Pediatrics 2017, 139, e20162045. [Google Scholar] [CrossRef]
- Rochow, N.; Raja, P.; Liu, K.; Fenton, T.; Landau-Crangle, E.; Göttler, S.; Jahn, A.; Lee, S.; Seigel, S.; Campbell, D.; et al. Physiological adjustment to postnatal growth trajectories in healthy preterm infants. Pediatr. Res. 2016, 79, 870–879. [Google Scholar] [CrossRef]
- Landau-Crangle, E.; Rochow, N.; Fenton, T.R.; Liu, K.; Ali, A.; So, H.Y.; Fusch, G.; Marrin, M.L.; Fusch, C. Individualized Postnatal Growth Trajectories for Preterm Infants. J. Parenter. Enter. Nutr. 2018, 42, 1084–1092. [Google Scholar] [CrossRef]
- Pearson, F.; Johnson, M.J. How should we chart the growth of very preterm babies? Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F120–F121. [Google Scholar] [CrossRef]
- Bertino, E.; Di Nicola, P.; Giuliani, F.; Coscia, A.; Varalda, A.; Occhi, L.; Rossi, C. Evaluation of postnatal growth of preterm infants. J. Matern. Neonatal Med. 2011, 24, 10–12. [Google Scholar] [CrossRef]
- Greer, F.R.; Olsen, I.E. How Fast Should the Preterm Infant Grow? Curr. Pediatr. Rep. 2013, 1, 240–246. [Google Scholar] [CrossRef]
- Giuliani, F.; Ismail, L.C.; Bertino, E.; Bhutta, Z.A.; Ohuma, E.O.; Rovelli, I. Monitoring postnatal growth of preterm infants: Present and future. Am. J. Clin. Nutr. 2016, 103, 635S–647S. [Google Scholar] [CrossRef] [PubMed]
- Committee on Nutrition Nutritional Needs of Low-Birth-Weight Infants. Pediatrics 1977, 60, 519–530.
- Villar, J.; Giuliani, F.; Barros, F.; Roggero, P.; Coronado Zarco, I.A.; Rego, M.A.S.; Ochieng, R.; Gianni, M.L.; Rao, S.; Lambert, A.; et al. Monitoring the Postnatal Growth of Preterm Infants: A Paradigm Change. Pediatrics 2018, 141, e20172467. [Google Scholar] [CrossRef]
- De Curtis, M.; Rigo, J. Extrauterine growth restriction in very-low-birthweight infants. Acta Paediatr. 2004, 93, 1563–1568. [Google Scholar] [CrossRef]
- Sakurai, M.; Itabashi, K.; Sato, Y.; Hibino, S.; Mizuno, K. Extrauterine growth restriction in preterm infants of gestational age < or = 32 weeks. Pediatr. Int. 2008, 50, 70–75. [Google Scholar]
- Horbar, J.D.; Ehrenkranz, R.A.; Badger, G.J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Buzas, J.S.; Bertino, E.; Gagliardi, L.; Bellu, R. Weight Growth Velocity and Postnatal Growth Failure in Infants 501 to 1500 Grams: 2000–2013. Pediatrics 2015, 136, e84–e92. [Google Scholar] [CrossRef]
- Cormack, B.E.; Bloomfield, F.H. Increased protein intake decreases postnatal growth faltering in ELBW babies. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, 399–404. [Google Scholar] [CrossRef]
- Senterre, T.; Rigo, J. Reduction in postnatal cumulative nutritional deficit and improvement of growth in extremely preterm infants. Acta Paediatr. 2012, 101, 64–70. [Google Scholar] [CrossRef]
- Andrews, E.T.; Ashton, J.J.; Pearson, F.; Mark Beattie, R.; Johnson, M.J. Early postnatal growth failure in preterm infants is not inevitable. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 104, 235–241. [Google Scholar] [CrossRef]
- Villar, J.; Giuliani, F.; Bhutta, Z.A.; Bertino, E.; Ohuma, E.O.; Ismail, L.C.; Barros, F.C.; Altman, D.G.; Victora, C.; Noble, J.A.; et al. Postnatal growth standards for preterm infants: The Preterm Postnatal Follow-up Study of the INTERGROWTH-21stProject. Lancet Glob. Heal. 2015, 3, e681–e691. [Google Scholar] [CrossRef]
- Villar, J.; Giuliani, F.; Figueras-Aloy, J.; Barros, F.; Bertino, E.; Bhutta, Z.A.; Kennedy, S.H. Growth of preterm infants at the time of global obesity. Arch. Dis. Child. 2019, 104, 725–727. [Google Scholar] [CrossRef] [PubMed]
- Corpeleijn, W.; Vermeuler, M.; van den Akker, C.; Van Goudoever, J.B. Feeding Very-Low-Birth-Weight Infants: Our Aspirations versus the Reality in Practice. Ann. Nutr. Metab. 2011, 58, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Raturi, S.; Zheng, Q.; Daniel, L.M.; Shi, L.; Rajadurai, V.S.; Agarwal, P.K. Nutritional intake and growth velocity in preterm extremely low-birthweight infants in Asia: Are we doing enough? J. Paediatr. Child Health 2017, 53, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Ramel, S. The impact of neonatal illness on nutritional requirements. One size does not fit all. Curr. Pediatr. Rep. 2014, 2, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, R.; Das, A.; Wrange, L.; Poindexter, B.B.; Higgins, R.; Stoll, B.J.; Oh, W. Early nutrition mediates the influence of severity of illness on extremely low birth weight infants. Pediatr. Res. 2011, 69, 522–529. [Google Scholar] [CrossRef]
- Lucas, A.; Morley, R.; Cole, T.J.; Gore, S.M.; Davis, J.A.; Bamford, M.F.M.; Dossetor, J.F.B. Early diet in preterm infants and developmental status in infancy. Arch. Dis. Child 1989, 64, 1570–1578. [Google Scholar] [CrossRef]
- Tan, M.J.; Cooke, R.W. Improving head growth in very preterm infants-a randomised controlled trial I: Neonatal outcomes. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F337–F341. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef]
- Neubauer, V.; Griesmaier, E.; Pehböck-Walser, N.; Pupp-Peglow, U.; Kiechl-Kohlendorfer, U. Poor postnatal head growth in very preterm infants is associated with impaired neurodevelopment outcome. Acta Paediatr. Int. J. Paediatr. 2013, 102, 883–888. [Google Scholar] [CrossRef]
- Schneider, J.; Fischer Fumeaux, C.J.; Duerden, E.G.; Guo, T.; Foong, J.; Graz, M.B.; Hagmann, P.; Chakravarty, M.M.; Hüppi, P.S.; Beauport, L.; et al. Nutrient Intake in the First Two Weeks of Life and Brain Growth in Preterm Neonates. Pediatrics 2018, 141, e20172169. [Google Scholar] [CrossRef] [PubMed]
- Lapillonne, A.; Griffin, I.J. Feeding Preterm Infants Today for Later Metabolic and Cardiovascular Outcomes. J. Pediatr. 2013, 162, S7–S16. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.K.; Kennedy, K. Postnatal growth in preterm infants and later health outcomes: A systematic review. Acta Paediatr. 2015, 104, 974–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corpeleijn, W.E.; Kouwenhoven, S.M.P. Optimal Growth of Preterm Infants. World Rev. Nutr. Diet 2013, 106, 149–155. [Google Scholar]
- Figueras, F.; Gratacos, E. An integrated approach to fetal growth restriction. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 38, 48–58. [Google Scholar] [CrossRef]
- Departament de Salut. Corbes de Referència de Pes, Perímetre Cranial i Longitud en Néixer de Nounats D’embarassos Únics, de Bessons i de Trigèmins a Catalunya; Barcelona Departament de Salut: Barcelona, Spain, 2008. [Google Scholar]
- Clark, R.H.; Thomas, P.; Peabody, J. Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics 2003, 111, 986–990. [Google Scholar] [CrossRef]
- Ong, K.K.; Ahmed, M.L.; Emmett, P.M.; Preece, M.A.; Dunger, D.B. Association between postnatal catch-up growth and obesity in childhood: Prospective cohort study. BMJ 2000, 320, 967–971. [Google Scholar] [CrossRef] [Green Version]
- Tudehope, D.I. Human milk and the nutritional needs of preterm infants. J. Pediatr. 2013, 162, S17–S25. [Google Scholar] [CrossRef]
- Sánchez Luna, M.; Moreno Hernando, J.; Botet Mussons, F.; Fernández Lorenzo, J.R.; Herranz Carrillo, G.; Rite Gracia, S.; Salguero García, E.; Echaniz Urcelay, I. Bronchopulmonary dysplasia: Definitions and classifications. An. Pediatr. 2013, 79, 262.e1–262.e6. [Google Scholar] [CrossRef]
- Bell, M.J.; Ternberg, J.L.; Feigin, R.D.; Keating, J.P.; Marshall, R.; Barton, L.; Brotherton, T. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann. Surg. 1978, 187, 1–7. [Google Scholar] [CrossRef]
- Patz, A. The new international classification of retinopathy of prematurity. Arch. Ophthalmol. 1984, 102, 1129. [Google Scholar] [CrossRef] [PubMed]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. lncidence and evolution of subependimal and intraventricular hemorrhage: A study of infants with birth weight less than 1500 gr. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- McKenzie, B.L.; Edmonds, L.; Thomson, R.; Haszard, J.J.; Houghton, L.A. Nutrition Practices and Predictors of Postnatal Growth in Preterm Infants During Hospitalization: A Longitudinal Study. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 312–317. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committe; Technical Report Series No. 854. W.T.R.S.N.; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Avila-Alvarez, A.; Solar Boga, A.; Bermúdez-Hormigo, C.; Fuentes Carballal, J. Restricción del crecimiento extrauterino en recién nacidos de menos de 1.500 gramos de peso al nacer☆. An. Pediatría 2018, 89, 325–332. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, N.; Namgung, R.; Park, M.; Park, K.; Jeon, J. Prediction of Postnatal Growth Failure among Very Low Birth Weight Infants. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Azara, P.; Lima, T.; De Carvalho, M.; Carolina, A.; Elisabeth, M.; Moreira, L. Variables associated with extra uterine growth restriction in very low birth weight infants. J. Pediatr. 2014, 90, 22–27. [Google Scholar]
- Anderson, N.H.; Sadler, L.C.; McKinlay, C.J.D.; McCowan, L.M.E. INTERGROWTH-21st vs customized birthweight standards for identification of perinatal mortality and morbidity. Am. J. Obstet. Gynecol. 2016, 214, 509.e1–509.e7. [Google Scholar] [CrossRef] [Green Version]
- Tuzun, F.; Yucesoy, E.; Baysal, B.; Kumral, A.; Duman, N.; Ozkan, H. Comparison of INTERGROWTH-21 and Fenton growth standards to assess size at birth and extrauterine growth in very preterm infants. J. Matern. Neonatal Med. 2018, 31, 2252–2257. [Google Scholar] [CrossRef]
- Kozuki, N.; Katz, J.; Christian, P.; Lee, A.C.C.; Liu, L.; Silveira, M.F.; Barros, F.; Tielsch, J.; Schmiegelow, C.; Sania, A.; et al. Comparison of US birthweight references and the international fetal and newborn growth consortium for the 21st century standard. JAMA Pediatr. 2015, 169, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Metcalfe, A.; León, J.A.; Sauve, R.; Kramer, M.S.; Joseph, K.S. Evaluation of the INTERGROWTH-21st project newborn standard for use in Canada. PLoS ONE 2017, 12, e0172910. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Statnikov, Y.; Santhakumaran, S.; Pan, H.; Modi, N. Birth weight and longitudinal growth in infants born below 32 weeks’ gestation: A UK population study. Arch. Dis. Child. Fetal Neonatal Ed. 2014, 99, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofek Shlomai, N.; Reichman, B.; Lerner-Geva, L.; Boyko, V.; Bar-Oz, B. Population-based study shows improved postnatal growth in preterm very-low-birthweight infants between 1995 and 2010. Acta Paediatr. Int. J. Paediatr. 2014, 103, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo Renau, M.; Marínez-Monseny, A.F.; González Carretero, P.; Pociella Almiñana, N.; Iglesias-Platas, I. In-Hospital Postnatal Growth of Very Preterm Infants (VPI) With and Without Intrauterine Growth Restriction (IUGR). In Proceedings of the 2nd International Conference on Nutrition and Growth, Barcelona, Spain, 30 January–1 February 2014. [Google Scholar]
- Giabicani, E.; Pham, A.; Brioude, F.; Mitanchez, D.; Netchine, I. Diagnosis and management of postnatal fetal growth restriction. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Demartini, A.A.; Boguszewski, M.C.S.; Alves, C.A.D. Postnatal management of growth failure in children born small for gestational age. J. Pediatr. (Rio. J.) 2019, 95, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Rover, M.M.S.; Viera, C.S.; Silveira, R.C.; Guimarães, A.T.B.; Grassiolli, S. Risk factors associated with growth failure in the follow-up of very low birth weight newborns. J. Pediatr. (Rio. J.) 2016, 92, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, J.; Martin, C.R.; Allred, E.; Chen, M.L.; Ehrenkranz, R.A.; Dammann, O.; Leviton, A. Risk factors and correlates of neonatal growth velocity in extremely low gestational age newborns. the ELGAN study. Neonatology 2013, 104, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Rochow, N.; Fusch, G.; Mühlinghaus, A.; Niesytto, C.; Straube, S.; Utzig, N.; Fusch, C. A nutritional program to improve outcome of very low birth weight infants. Clin. Nutr. 2012, 31, 124–131. [Google Scholar] [CrossRef]
- Stevens, T.P.; Shields, E.; Campbell, D.; Combs, A.; Horgan, M.; La Gamma, E.F.; Xiong, K.; Kacica, M. Variation in Enteral Feeding Practices and Growth Outcomes among Very Premature Infants: A Report from the New York State Perinatal Quality Collaborative. Am. J. Perinatol. 2015, 33, 9–19. [Google Scholar]
- Poindexter, B.B.; Langer, J.C.; Dusick, A.M.; Ehrenkranz, R.A. Early provision of parenteral amino acids in extremely low birth weight infants: Relation to growth and neurodevelopmental outcome. J. Pediatr. 2006, 148, 300–305. [Google Scholar] [CrossRef]
- Wilson, D.C.; Cairns, P.; Halliday, H.L.; Reid, M.; McClure, G.; Dodge, J.A. Randomised controlled trial of an aggressive nutritional regimen in sick very low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 1997, 77, F4–F11. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, M.; Martínez-Monseny, A.F.; Pociello, N.; Gonzalez, P.; Del Rio, R.; Iriondo, M.; Iglesias-Platas, I. Changes in Parenteral Nutrition during the First Week of Life Influence Early but Not Late Postnatal Growth in Very Low-Birth-Weight Infants. Nutr. Clin. Pract. 2016, 31, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R.; Brown, Y.F.; Ehrenkranz, R.A.; O’Shea, T.M.; Allred, E.N.; Belfort, M.B.; McCormick, M.C.; Leviton, A. Nutritional Practices and Growth Velocity in the First Month of Life in Extremely Premature Infants. Pediatrics 2009, 124, 649–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genoni, G.; Binotti, M.; Monzani, A.; Bernascone, E.; Stasi, I.; Bona, G.; Ferrero, F. Nonrandomised interventional study showed that early aggressive nutrition was effective in reducing postnatal growth restriction in preterm infants. Acta Paediatr. Int. J. Paediatr. 2017, 106, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Sundström Rehal, M.; Tjäder, I.; Wernerman, J. Nutritional needs for the critically ill in relation to inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Ismail, J.; Bansal, A.; Jayashree, M.; Nallasamy, K.; Attri, S.V. Energy Balance in Critically Ill Children With Severe Sepsis Using Indirect Calorimetry: A Prospective Cohort Study. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 868–873. [Google Scholar] [CrossRef]
- De Pipaón, M.S.; Martínez-Biarge, M.; Dorronsoro, I.; Salas, S.; Madero, R.; Martos, G.Á.; Argente, J.; Quero, J. Growth in preterm infants until 36 weeks’ postmenstrual age is close to target recommendations. Neonatology 2014, 106, 30–36. [Google Scholar] [CrossRef]
Gestational Age (weeks) | ||||||
---|---|---|---|---|---|---|
23–24.6 (n = 14) | 25–26.6 (n = 31) | 27–28.6 (n = 40) | 29–30.6 (n = 68) | 31–32.0 (n = 44) | p-Value | |
Weight z-score | ||||||
Birth | −0.39 ± 0.75 | 0.21 ± 1.02 | −0.09 ± 1.33 | −0.02 ± 0.71 | −0.21 ± 0.85 | 0.248 |
14 days | −1.22 ± 0.58 | −0.74 ± 0.68 | −0.72 ± 0.88 | −0.83 ± 0.55 | −1.19 ± 0.72 | 0.005 |
28 days | −1.41 ± 0.62 | −0.92 ± 0.57 | −0.99 ± 0.84 | −1.12 ± 0.63 | −1.51 ± 0.66 | 0.002 |
36 weeks | −2.42 ± 0.63 | −1.75 ± 0.74 | −1.84 ± 1.03 | −1.46 ± 0.64 | −1.49 ± 0.75 | <0.001 * |
Nutrition first week | ||||||
Parenteral Protein (g/kg/day) | 2.8 (2.6–3.1) | 2.9 (2.7–3.2) | 2.9 (2.6–3.0) | 2.6 (2.2–2.9) | 2.2 (1.6–2.8) | <0.001 * |
Parenteral Carbohydrates (g/kg/day) | 8.3 (7.1–9.6) | 9.9 (8.8–10.5) | 9.6 (9.0–10.6) | 9.8 (8.6–10.7) | 9.2 (7.4–10.5) | 0.006 |
Parenteral Lipids (g/kg/day) | 2.3 (1.9–2.5) | 2.3 (2.1–2.6) | 2.1 (1.8–2.4) | 1.8 (1.3–2.2) | 1.4 (0.9–2.0) | <0.001 * |
Protein/100 kcal ratio | 4.0 (3.7–4.3) | 3.9 (3.7–4.1) | 3.8 (3.5–3.9) | 3.6 (3.3–3.8) | 3.4 (3.1–3.7) | <0.001 * |
Average milk intake (mL/kg/day) | 9.6 ± 6.1 | 14.7 ± 11.1 | 17.8 ± 15.3 | 29.8 ± 17.6 | 31.8 ± 19.0 | <0.001 * |
Weight gain and enteral tolerance (0–28 days) | ||||||
2-point weight GV * (g/kg/day) | 8.0 ± 3.7 | 9.3 ± 5.0 | 9.8 ± 5.9 | 11.1 ± 3.8 | 11.3 ± 4.6 | 0.083 * |
Maximum % weight loss | 5.8 ± 3.4 | 8.2 ± 5.3 | 8.5 ± 5.5 | 8.9 ± 4.4 | 8.2 ± 3.2 | 0.312 |
DOL to regain birth weight | 9.5 (5.8–12.5) | 8.5 (6.8–12) | 9 (7–16) | 10 (8–12) | 10 (7–12) | 0.256 |
DOL full enteral feeds | 13.5 (12–22.5) | 13.0 (11–18.5) | 12 (10–20.5) | 9 (7.3–11.8) | 8 (7–10) | <0.001 * |
PN (days) | 27.5 (15–37) | 13 (11–23) | 12.5 (9–21) | 8 (7–11) | 8 (6–9) | <0.001 * |
Growth from birth to discharge | ||||||
Fall in z-scores | ||||||
Weight | −1.54 ± 0.92 | −1.82 ± 0.89 | −1.72 ± 0.77 | −1.34 ± 0.51 | −1.06 ± 0.48 | <0.001 * |
Length | −2.16 ± 1.17 | −1.72 ± 1.44 | −1.62 ± 1.12 | −1.08 ± 0.81 | −0.69 ± 0.93 | <0.001 * |
Head circumference | −0.26 ± 1.0 | −0.57 ± 1.36 | −0.38 ± 1.05 | −0.88 ± 1.19 | −0.51 ± 0.80 | 0.125 |
Growth velocity (g/kg/day) | ||||||
2-point weight GV (birth-discharge) | 26.5 ± 4.9 | 20.2 ± 4.5 | 17.8 ± 5.7 | 13.8 ± 3.4 | 12.6 ± 4.2 | <0.001 * |
EUGR at 36 weeks (%) | 100 | 72.0 | 69.7 | 48.3 | 48.6 | <0.001 * |
EUGR at discharge (%) | 78.6 | 57.1 | 63.6 | 41.7 | 28.6 | <0.001 * |
Fall in weight z-score | ||||||
Birth-14 days | −0.84 ± 0.50 | −0.95 ± 0.64 | −0.63 ± 0.66 | −0.80 ± 0.40 | −0.98 ± 0.33 | 0.022 |
Birth-28 days | −1.02 ± 0.46 | −1.08 ± 0.71 | −0.89 ± 0.68 | −1.07 ± 0.38 | −1.09 ± 0.43 | 0.459 |
Birth-36 weeks | −2.05 ± 0.73 | −1.92 ± 0.98 | −1.75 ± 0.68 | −1.44 ± 0.38 | −1.27 ± 0.43 | <0.001 * |
PGF-36 weeks (%) | 92.3 | 82.1 | 72.5 | 63.2 | 52.3 | 0.017 * |
Postnatal Growth Failure | p-Value | ||
---|---|---|---|
Yes (n = 130) | No (n = 63) | ||
Birth gestational age (weeks) | 28.7 ± 2.4 | 29.9 ± 1.8 | <0.001 |
Birth weight (grams) | 1218 ± 368 | 1186 ± 344 | 0.559 |
Birth weight z-score (SD) Ɨ | 0.21 ± 0.8 | −0.66 ± 0.9 | <0.001 |
Male gender | 68 (52.3) | 33 (52.4) | 0.992 |
IUGR | 13 (10.0) | 14 (22.2) | 0.022 |
Antenatal steroids (≥1) | 112 (86.2) | 57 (90.5) | 0.394 |
Caesarean section | 86 (66.2) | 45 (71.4) | 0.462 |
Multiple birth | 43 (33.1) | 24 (38.1) | 0.492 |
Apgar at 5 min (<6) | 10 (7.8) | 4 (6.3) | 0.726 |
Surfactant administration | 63 (48.5) | 14 (22.2) | <0.001 |
Early sepsis | 2 (1.5) | 0 (0) | 0.322 |
Temperature at admission (°C) | 36.4 ± 0.7 | 36.3 ± 0.7 | 0.771 |
Postnatal Growth Failure | p-Value | ||
---|---|---|---|
Yes (n = 130) | No (n = 63) | ||
MV (days) | 6.1 ± 13 | 2.5 ± 7 | 0.018 |
Oxygen (days) | 22.8 ± 37 | 10.4 ± 27 | 0.009 |
NIV (days) | 27.6 ± 26 | 18.5 ± 23 | 0.018 |
PN (days) | 14.1 ± 12 | 13.2 ± 16 | 0.663 |
Insulin therapy first week | 18 (13.8) | 5 (7.9) | 0.235 |
Antibiotics (days) | 13.3 ± 16 | 8.2 ± 11 | 0.009 |
Diuretics (days) | 18.4 ± 29 | 7.3 ± 19 | 0.002 |
Central line catheter (days) | 14.3 ± 11 | 13.4 ± 15 | 0.654 |
NICU days | 36.3 ± 34 | 24.4 ± 28 | 0.011 |
PDA | 61 (46.9) | 19 (30.2) | 0.027 |
Surgical PDA | 11 (8.5) | 3 (4.8) | 0.353 |
ROP | 46 (37.4) | 12 (21.1) | 0.029 |
ROP > 2 or plus disease | 5 (4.1) | 2 (3.5) | 0.857 |
IVH | 32 (24.6) | 5 (7.9) | 0.006 |
IVH > 2 | 7 (5.4) | 2 (3.2) | 0.495 |
NEC > 2 | 4 (3.1) | 3 (4.8) | 0.557 |
BPD | 38 (29.5) | 8 (12.9) | 0.012 |
LOS | 37 (28.5) | 6 (9.5) | 0.003 |
Length of stay (days) | 66 ± 32 | 55 ± 28 | 0.021 |
Beta Coefficient for Fall in Weight z-Score Adjusted for Gestational Age (CI 95%) | ||||
---|---|---|---|---|
At 14 days | p-Value | At 28 days | p-Value | |
Lipids | +0.20 (0.10–0.32) | 0.002 | +0.16 (0.02–0.31) | 0.027 |
Proteins | +0.15 (0.19–0.27) | 0.025 | +0.12 (−0.04–0.28) | 0.150 |
Carbohydrates | +0.01 (−0.04–0.05) | 0.744 | −0.01 (−0.06–0.04) | 0.815 |
Protein/100 kcal ratio | +0.38 (0.02–0.56) | <0.001 | +0.27 (0.05–0.49) | 0.017 |
Predictors of PGF | |||
---|---|---|---|
Adjusted OR | 95% CI | p-Value | |
IUGR | 0.44 | 0.19–1.03 | 0.058 |
Oxygen during admission | 2.61 | 1.29–5.26 | 0.008 |
Surfactant administration | 2.57 | 1.26–5.25 | 0.010 |
Antibiotics (days) | 1.01 | 0.97–1.04 | 0.695 |
PDA | 0.70 | 0.35–1.39 | 0.305 |
IVH | 0.37 | 0.13–1.05 | 0.062 |
LOS | 0.45 | 0.16–1.27 | 0.131 |
Maximum % weight loss | 1.25 | 1.14–1.38 | <0.001 |
Time to regain birth weight | 1.16 | 1.06–1.27 | 0.001 |
PN Lipids in the first week | 0.59 | 0.34–1.01 | 0.055 |
PN Proteins in the first week | 0.76 | 0.44–1.31 | 0.324 |
PN Protein/100 kcal in the first week | 0.76 | 0.34–1.70 | 0.508 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izquierdo Renau, M.; Aldecoa-Bilbao, V.; Balcells Esponera, C.; del Rey Hurtado de Mendoza, B.; Iriondo Sanz, M.; Iglesias-Platas, I. Applying Methods for Postnatal Growth Assessment in the Clinical Setting: Evaluation in a Longitudinal Cohort of Very Preterm Infants. Nutrients 2019, 11, 2772. https://doi.org/10.3390/nu11112772
Izquierdo Renau M, Aldecoa-Bilbao V, Balcells Esponera C, del Rey Hurtado de Mendoza B, Iriondo Sanz M, Iglesias-Platas I. Applying Methods for Postnatal Growth Assessment in the Clinical Setting: Evaluation in a Longitudinal Cohort of Very Preterm Infants. Nutrients. 2019; 11(11):2772. https://doi.org/10.3390/nu11112772
Chicago/Turabian StyleIzquierdo Renau, Montserrat, Victoria Aldecoa-Bilbao, Carla Balcells Esponera, Beatriz del Rey Hurtado de Mendoza, Martin Iriondo Sanz, and Isabel Iglesias-Platas. 2019. "Applying Methods for Postnatal Growth Assessment in the Clinical Setting: Evaluation in a Longitudinal Cohort of Very Preterm Infants" Nutrients 11, no. 11: 2772. https://doi.org/10.3390/nu11112772
APA StyleIzquierdo Renau, M., Aldecoa-Bilbao, V., Balcells Esponera, C., del Rey Hurtado de Mendoza, B., Iriondo Sanz, M., & Iglesias-Platas, I. (2019). Applying Methods for Postnatal Growth Assessment in the Clinical Setting: Evaluation in a Longitudinal Cohort of Very Preterm Infants. Nutrients, 11(11), 2772. https://doi.org/10.3390/nu11112772