Tryptophan Intake and Tryptophan Losses in Hemodialysis Patients: A Balance Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Population
2.2. Dialysis Settings
2.3. Sample Collection
2.4. Laboratory Measurements
2.5. Dietary Intake Assessment
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Clinical and Laboratory Parameters Before and After Dialysis
3.3. Tryptophan Intake and Excretion
3.4. Linear Regression Analyses
3.5. All-Cause Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Palmer, S.; Vecchio, M.; Craig, J.C.; Tonelli, M.; Johnson, D.W.; Nicolucci, A.; Pellegrini, F.; Saglimbene, V.; Logroscino, G.; Fishbane, S.; et al. Prevalence of Depression in Chronic Kidney Disease: Systematic Review and Meta-Analysis of Observational Studies. Kidney Int. 2013, 84, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, S.S.; Bosworth, H.B.; Briley, L.P.; Sloane, R.J.; Pieper, C.F.; Kimmel, P.L.; Szczech, L.A. Death Or Hospitalization of Patients on Chronic Hemodialysis is Associated with a Physician-Based Diagnosis of Depression. Kidney Int. 2008, 74, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, P.L.; Peterson, R.A.; Weihs, K.L.; Simmens, S.J.; Alleyne, S.; Cruz, I.; Veis, J.H. Multiple Measurements of Depression Predict Mortality in a Longitudinal Study of Chronic Hemodialysis Outpatients. Kidney Int. 2000, 57, 2093–2098. [Google Scholar] [CrossRef] [PubMed]
- Lacson, E., Jr.; Bruce, L.; Li, N.C.; Mooney, A.; Maddux, F.W. Depressive Affect and Hospitalization Risk in Incident Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.A.; Bragg, J.; Young, E.; Goodkin, D.; Mapes, D.; Combe, C.; Piera, L.; Held, P.; Gillespie, B.; Port, F.K.; et al. Depression as a Predictor of Mortality and Hospitalization among Hemodialysis Patients in the United States and Europe. Kidney Int. 2002, 62, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Shidler, N.R.; Peterson, R.A.; Kimmel, P.L. Quality of Life and Psychosocial Relationships in Patients with Chronic Renal Insufficiency. Am. J. Kidney Dis. 1998, 32, 557–566. [Google Scholar] [CrossRef]
- Valderrabano, F.; Jofre, R.; Lopez-Gomez, J.M. Quality of Life in End-Stage Renal Disease Patients. Am. J. Kidney Dis. 2001, 38, 443–464. [Google Scholar] [CrossRef]
- Sjoholm, L.; Lavebratt, C.; Forsell, Y. A Multifactorial Developmental Model for the Etiology of Major Depression in a Population-Based Sample. J. Affect. Disord. 2009, 113, 66–76. [Google Scholar] [CrossRef]
- Chilcot, J.; Wellsted, D.; Da Silva-Gane, M.; Farrington, K. Depression on Dialysis. Nephron Clin. Pract. 2008, 108, c256–c264. [Google Scholar] [CrossRef]
- Bell, C.; Abrams, J.; Nutt, D. Tryptophan Depletion and its Implications for Psychiatry. Br. J. Psychiatry 2001, 178, 399–405. [Google Scholar] [CrossRef]
- Russo, S.; Kema, I.P.; Bosker, F.; Haavik, J.; Korf, J. Tryptophan as an Evolutionarily Conserved Signal to Brain Serotonin: Molecular Evidence and Psychiatric Implications. World J. Biol. Psychiatry. 2009, 10, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Lukic, I.; Getselter, D.; Koren, O.; Elliott, E. Role of Tryptophan in Microbiota-Induced Depressive-Like Behavior: Evidence from Tryptophan Depletion Study. Front. Behav. Neurosci. 2019, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Carmassi, C.; Mucci, F.; Marazziti, D. Depression, Serotonin and Tryptophan. Curr. Pharm. Des. 2016, 22, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, D.; Pawlak, K.; Malyszko, J.; Mysliwiec, M.; Buczko, W. Accumulation of Toxic Products Degradation of Kynurenine in Hemodialyzed Patients. Int. Urol. Nephrol. 2001, 33, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Niwa, T.; Maeda, K.; Kobayashi, K.; Yamamoto, Y.; Ohta, K. Tryptophan and Indolic Tryptophan Metabolites in Chronic Renal Failure. Am. J. Clin. Nutr. 1980, 33, 1402–1406. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Fujigaki, S.; Heyes, M.P.; Shibata, K.; Takemura, M.; Fujii, H.; Wada, H.; Noma, A.; Seishima, M. Mechanism of Increases in L-Kynurenine and Quinolinic Acid in Renal Insufficiency. Am. J. Physiol. Renal Physiol. 2000, 279, F565–F572. [Google Scholar] [CrossRef] [PubMed]
- Schefold, J.C.; Zeden, J.P.; Fotopoulou, C.; von Haehling, S.; Pschowski, R.; Hasper, D.; Volk, H.D.; Schuett, C.; Reinke, P. Increased Indoleamine 2,3-Dioxygenase (IDO) Activity and Elevated Serum Levels of Tryptophan Catabolites in Patients with Chronic Kidney Disease: A Possible Link between Chronic Inflammation and Uraemic Symptoms. Nephrol. Dial. Transplant. 2009, 24, 1901–1908. [Google Scholar] [CrossRef]
- Koenig, P.; Nagl, C.; Neurauter, G.; Schennach, H.; Brandacher, G.; Fuchs, D. Enhanced Degradation of Tryptophan in Patients on Hemodialysis. Clin. Nephrol. 2010, 74, 465–470. [Google Scholar] [CrossRef]
- Bipath, P.; Levay, P.F.; Viljoen, M. Tryptophan Depletion in Context of the Inflammatory and General Nutritional Status of a Low-Income South African HIV-Infected Population. J. Health Popul. Nutr. 2016, 35, 5. [Google Scholar] [CrossRef]
- Widner, B.; Laich, A.; Sperner-Unterweger, B.; Ledochowski, M.; Fuchs, D. Neopterin Production, Tryptophan Degradation, and Mental Depression--what is the Link? Brain Behav. Immun. 2002, 16, 590–595. [Google Scholar] [CrossRef]
- Pawlak, K.; Domaniewski, T.; Mysliwiec, M.; Pawlak, D. The Kynurenines are Associated with Oxidative Stress, Inflammation and the Prevalence of Cardiovascular Disease in Patients with End-Stage Renal Disease. Atherosclerosis 2009, 204, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Malnutrition in Dialysis Patients--the Need for Intervention Despite Uncertain Benefits. Semin. Dial. 2016, 29, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, D.; Du Bois, E.F. A Formula to Estimate the Approximate Surface Area if Height and Weight be Known. 1916. Nutrition 1989, 5, 303–311. [Google Scholar] [PubMed]
- Post, A.; Ozyilmaz, A.; Westerhuis, R.; Ipema, K.J.R.; Bakker, S.J.L.; Franssen, C.F.M. Complementary Biomarker Assessment of Components Absorbed from Diet and Creatinine Excretion Rate Reflecting Muscle Mass in Dialysis Patients. Nutrients 2018, 10, 1827. [Google Scholar] [CrossRef] [PubMed]
- de Jong, W.H.; Smit, R.; Bakker, S.J.; de Vries, E.G.; Kema, I.P. Plasma Tryptophan, Kynurenine and 3-Hydroxykynurenine Measurement using Automated on-Line Solid-Phase Extraction HPLC-Tandem Mass Spectrometry. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2009, 877, 603–609. [Google Scholar] [CrossRef]
- Daugirdas, J.T. Second Generation Logarithmic Estimates of Single-Pool Variable Volume Kt/V: An Analysis of Error. J. Am. Soc. Nephrol. 1993, 4, 1205–1213. [Google Scholar]
- Post, A.; Minovic, I.; van den Berg, E.; Eggersdorfer, M.L.; Navis, G.J.; Geleijnse, J.M.; Gans, R.O.B.; van Goor, H.; Struck, J.; Franssen, C.F.M.; et al. Renal Sulfate Reabsorption in Healthy Individuals and Renal Transplant Recipients. Physiol. Rep. 2018, 6, e13670. [Google Scholar] [CrossRef]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J. Amino Acids 2016, 2016, 8952520. [Google Scholar] [CrossRef]
- Le Floc’h, N.; Otten, W.; Merlot, E. Tryptophan Metabolism, from Nutrition to Potential Therapeutic Applications. Amino Acids 2011, 41, 1195–1205. [Google Scholar] [CrossRef]
- Wurtman, R.J.; Hefti, F.; Melamed, E. Precursor Control of Neurotransmitter Synthesis. Pharmacol. Rev. 1980, 32, 315–335. [Google Scholar]
- Sainio, E.L.; Pulkki, K.; Young, S.N. L-Tryptophan: Biochemical, Nutritional and Pharmacological Aspects. Amino Acids 1996, 10, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Murr, C.; Grammer, T.B.; Kleber, M.E.; Meinitzer, A.; Marz, W.; Fuchs, D. Low Serum Tryptophan Predicts Higher Mortality in Cardiovascular Disease. Eur. J. Clin. Investig. 2015, 45, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Burrowes, J.D.; Larive, B.; Chertow, G.M.; Cockram, D.B.; Dwyer, J.T.; Greene, T.; Kusek, J.W.; Leung, J.; Rocco, M.V.; Hemodialysis (HEMO) Study Group. Self-Reported Appetite, Hospitalization and Death in Haemodialysis Patients: Findings from the Hemodialysis (HEMO) Study. Nephrol. Dial. Transplant. 2005, 20, 2765–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO/WHO/UNU Expert Consultation. Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. World Health. Organ. Tech. Rep. Ser. 1985, 724, 1–206. [Google Scholar]
- Lieberman, H.R.; Agarwal, S.; Fulgoni, V.L., 3rd. Tryptophan Intake in the US Adult Population is Not Related to Liver Or Kidney Function but is Associated with Depression and Sleep Outcomes. J. Nutr. 2016, 146, 2609S–2615S. [Google Scholar] [CrossRef] [Green Version]
- Moller, S.E. Pharmacokinetics of Tryptophan, Renal Handling of Kynurenine and the Effect of Nicotinamide on its Appearance in Plasma and Urine Following L-Tryptophan Loading of Healthy Subjects. Eur. J. Clin. Pharmacol. 1981, 21, 137–142. [Google Scholar] [CrossRef]
- Hannedouche, T.; Laude, D.; Dechaux, M.; Grunfeld, J.P.; Elghozi, J.L. Plasma 5-Hydroxyindoleacetic Acid as an Endogenous Index of Renal Plasma Flow. Kidney Int. 1989, 35, 95–98. [Google Scholar] [CrossRef] [Green Version]
Baseline Characteristics | Average/Number |
---|---|
Demographics | |
Age, years | 66 ± 15 |
Gender, n male (%) | 27 (68) |
Race, n Caucasian (%) | 37 (93) |
Dialysis-related | |
Dialysis sessions, n (%) | |
Two sessions per week | 3 (8) |
Three sessions per week | 37 (93) |
Hours per dialysis, n (%) | |
3 to 3.5 h | 3 (8) |
4 h | 32 (80) |
4.5 to 5 h | 5 (13) |
Residual diuresis, n (%) | 27 (68) |
Urinary volume, L | 0.97 ± 0.66 |
Dialysis vintage, months | 17 (11–48) |
Ultrafiltration volume, mL | 1876 ± 903 |
Equilibrated Kt/V per dialysis | 1.27 ± 0.45 |
Protein catabolic rate, g/kg/24 h | 1.08 ± 0.31 |
Body composition | |
Target body weight, kg | 80.8 ± 18.5 |
Interdialytic weight gain, kg | 1.12 ± 1.14 |
Height, m | 1.76 ± 0.10 |
BMI, kg/m2 | 25.2 ± 4.5 |
BSA, m2 | 1.95 ± 0.24 |
Pre-existing disease | |
Hypertension, n (%) | 23 (58) |
Diabetes, n (%) | 9 (23) |
Cardiovascular disease, n (%) | 12 (30) |
Variable | Before Dialysis | After Dialysis | Change | P-Value |
---|---|---|---|---|
Laboratory measurements | ||||
Tryptophan, µmol/L | 27.0 ± 9.0 | 31.3 ± 8.2 | +16% | 0.001 |
Kynurenine, µmol/L | 5.1 ± 2.3 | 3.0 ± 0.9 | −41% | <0.001 |
5-HIAA, µmol/L | 1.38 ± 0.72 | 0.53 ± 0.30 | −62% | <0.001 |
Kynurenine/tryptophan ratio | 0.19 ± 0.06 | 0.10 ± 0.03 | −47% | <0.001 |
Hemoglobin, mmol/L | 7.0 ± 0.6 | 7.5 ± 0.9 | +7% | 0.001 |
Hematocrit, v/v | 0.35 ± 0.03 | 0.37 ± 0.04 | +6% | 0.003 |
Albumin, g/L | 38 ± 5 | 42 ± 6 | +11% | <0.001 |
Urea, mmol/L | 19 ± 5 | 6 ± 2 | −68% | <0.001 |
Creatinine, µmol/L | 691 ± 207 | 257 ± 95 | −63% | <0.001 |
Clinical measurements | ||||
Systolic blood pressure, mmHg | 145 ± 22 | 141 ± 28 | −3% | 0.18 |
Diastolic blood pressure, mmHg | 69 ± 12 | 68 ± 12 | −1% | 0.09 |
Pulse, min−1 | 73 ± 13 | 71 ± 19 | −3% | 0.36 |
Body weight, kg | 80.0 ± 18.0 | 78.7 ± 17.8 | −2% | <0.001 |
Variable | Whole Cohort (n = 40) | Subgroup with Dietary Intake (n = 26) | Percentage of Dietary Intake * |
---|---|---|---|
Intake | |||
Dietary tryptophan intake, µmol/24 h | 4454 ± 1149 | ||
Dietary energy intake, kCal/24 h | 1869 ± 423 | ||
Dietary protein intake, g/24 h | 75 ± 22 | ||
Urinary removal | |||
Urinary excretion rate | |||
Tryptophan excretion, µmol/24 h | 15.0 ± 12.3 | 12.8 ± 10.6 | 0.3% |
Kynurenine, µmol/24 h | 3.1 ± 2.4 | 3.0 ± 2.4 | 0.1% |
5-HIAA, µmol/24 h | 12.3 ± 7.4 | 11.5 ± 5.4 | 0.3% |
Urinary clearance | |||
Tryptophan excretion, mL/min | 0.25 ± 0.21 | 0.22 ± 0.19 | |
Kynurenine, mL/min | 0.33 ± 0.24 | 0.31 ± 0.21 | |
5-HIAA, mL/min | 8.5 ± 8.4 | 8.0 ± 4.7 | |
Fractional reabsorption | |||
Tryptophan excretion, % | 95 ± 4 | 96 ± 3 | |
Kynurenine, % | 94 ± 4 | 94 ± 3 | |
5-HIAA, % | −36 ± 60 | −39 ± 53 | |
Dialysate removal | |||
Single dialysis removal | |||
Tryptophan excretion, µmol/dialysis | 499 ± 146 | 492 ± 148 | |
Kynurenine, µmol/dialysis | 74 ± 33 | 67 ± 19 | |
5-HIAA, µmol/dialysis | 23 ± 11 | 21 ± 9 | |
Dialysate excretion rate | |||
Tryptophan excretion, µmol/24 h | 209 ± 67 | 208 ± 65 | 4.7% |
Kynurenine, µmol/24 h | 31 ± 15 | 28 ± 8 | 0.6% |
5-HIAA, µmol/24 h | 10 ± 5 | 9 ± 4 | 0.2% |
Dialysate clearance | |||
Tryptophan excretion, mL/min | 3.5 ± 1.0 | 3.5 ± 0.9 | |
Kynurenine, mL/min | 3.3 ± 0.8 | 3.2 ± 0.8 | |
5-HIAA, mL/min | 4.3 ± 1.1 | 4.1 ± 1.0 | |
Combined removal | |||
Combined excretion rate | |||
Tryptophan excretion, µmol/24 h | 219 ± 66 | 218 ± 68 | 4.9% |
Kynurenine, µmol/24 h | 33 ± 15 | 31 ± 9 | 0.7% |
5-HIAA, µmol/24 h | 18 ± 7 | 17 ± 5 | 0.4% |
Plasma Tryptophan | Intradialytic Plasma Tryptophan Increase | |||||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||||
Dependent Variables | Std. β | P-Value | Std. β | P-Value | Std. β | P-Value | Std. β | P-Value |
Demographics | ||||||||
Age, years | 0.204 | 0.22 | 0.240 | 0.16 | −0.117 | 0.48 | −0.140 | 0.42 |
Sex, n male (%) | 0.135 | 0.42 | 0.183 | 0.28 | −0.103 | 0.54 | −0.121 | 0.48 |
BMI, kg/m2 | −0.144 | 0.39 | −0.113 | 0.53 | 0.217 | 0.19 | 0.188 | 0.28 |
BSA, m2 | −0.217 | 0.19 | −0.038 | 0.68 | 0.107 | 0.52 | −0.100 | 0.27 |
Dialysis | ||||||||
Dialysis vintage, months | −0.018 | 0.91 | −0.020 | 0.91 | 0.110 | 0.51 | 0.106 | 0.56 |
Dialysis per week, hours | 0.276 | 0.09 | 0.355 | 0.03 | −0.241 | 0.15 | −0.319 | 0.05 |
Ultrafiltration, ml/day | −0.040 | 0.82 | 0.128 | 0.50 | 0.274 | 0.12 | 0.179 | 0.35 |
Equilibrated Kt/V per dialysis | 0.161 | 0.33 | 0.138 | 0.42 | −0.180 | 0.28 | −0.189 | 0.26 |
Protein catabolic rate, g/kg/24 h | 0.265 | 0.11 | 0.253 | 0.15 | 0.034 | 0.84 | 0.063 | 0.72 |
Muscle | ||||||||
Handgrip strength, kg | −0.302 | 0.07 | −0.158 | 0.27 | 0.246 | 0.14 | 0.172 | 0.22 |
Creatinine excretion, mmol/24 h | −0.227 | 0.17 | −0.006 | 0.96 | 0.335 | 0.04 | 0.159 | 0.17 |
Blood pressure | ||||||||
Systolic blood pressure, mmHg | −0.097 | 0.56 | −0.052 | 0.76 | 0.059 | 0.73 | 0.034 | 0.84 |
Diastolic blood pressure, mmHg | −0.162 | 0.33 | −0.119 | 0.50 | 0.222 | 0.18 | 0.239 | 0.17 |
Laboratory measurements | ||||||||
Hemoglobin, mmol/L | 0.217 | 0.19 | 0.218 | 0.22 | 0.140 | 0.40 | 0.154 | 0.39 |
Hematocrit, v/v | 0.256 | 0.12 | 0.180 | 0.30 | 0.059 | 0.73 | 0.169 | 0.33 |
Plasma sodium, mmol/L | −0.050 | 0.77 | −0.066 | 0.72 | 0.058 | 0.73 | 0.087 | 0.64 |
Plasma potassium, mmol/L | −0.093 | 0.58 | −0.088 | 0.63 | 0.149 | 0.37 | 0.156 | 0.38 |
Plasma iron, µmol/L | 0.420 | 0.009 | 0.451 | 0.009 | −0.361 | 0.03 | −0.386 | 0.03 |
Plasma albumin, g/L | 0.312 | 0.06 | 0.359 | 0.04 | 0.208 | 0.21 | 0.213 | 0.24 |
Plasma urea, mmol/L | 0.035 | 0.83 | 0.038 | 0.81 | 0.231 | 0.16 | 0.280 | 0.07 |
Plasma creatinine, µmol/L | −0.275 | 0.10 | −0.162 | 0.30 | 0.368 | 0.02 | 0.259 | 0.09 |
Inflammatory markers | ||||||||
Hs-CRP, mg/L | −0.027 | 0.87 | −0.084 | 0.64 | −0.205 | 0.22 | −0.215 | 0.21 |
Il-6, pg/mL | −0.061 | 0.72 | −0.139 | 0.41 | −0.231 | 0.16 | −0.228 | 0.17 |
Tryptophan homeostasis | ||||||||
Dietary Tryptophan intake, µmol/24 h | 0.129 | 0.53 | 0.378 | 0.07 | 0.212 | 0.30 | 0.085 | 0.71 |
Plasma kynurenine, µmol/L | 0.745 | <0.001 | 0.698 | <0.001 | −0.530 | 0.001 | −0.488 | 0.002 |
Plasma 5-HIAA, µmol/L | 0.013 | 0.94 | −0.107 | 0.49 | 0.009 | 0.96 | 0.060 | 0.70 |
Kynurenine/tryptophan ratio | 0.069 | 0.68 | −0.002 | 0.99 | −0.234 | 0.16 | −0.206 | 0.23 |
Tryptophan excretion, µmol/24 h | 0.588 | <0.001 | 0.738 | <0.001 | −0.119 | 0.48 | −0.250 | 0.13 |
Kynurenine excretion, µmol/24 h | 0.531 | 0.001 | 0.576 | <0.001 | −0.380 | 0.02 | −0.445 | 0.006 |
5-HIAA excretion, µmol/24 h | −0.022 | 0.89 | 0.021 | 0.91 | 0.316 | 0.05 | 0.285 | 0.09 |
Plasma Tryptophan | Intradialytic Tryptophan Increase | |||
---|---|---|---|---|
Model | HR (95% CI) | P-Value | HR (95% CI) | P-Value |
Model 1 | 1.00 (0.93–1.08) | 0.98 | 0.91 (0.83–0.99) | 0.04 |
Model 2 | 0.97 (0.87–1.07) | 0.54 | 0.87 (0.76–0.99) | 0.04 |
Model 3 | 0.97 (0.87–1.07) | 0.53 | 0.87 (0.76–0.99) | 0.04 |
Model 4 | 0.97 (0.87–1.07) | 0.53 | 0.87 (0.75–0.99) | 0.04 |
Model 5 | 0.93 (0.81–1.07) | 0.31 | 0.86 (0.75–0.99) | 0.03 |
Model 6 | 0.93 (0.82–1.05) | 0.23 | 0.86 (0.74–1.00) | 0.05 |
Model 7 | 0.97 (0.87–1.07) | 0.51 | 0.84 (0.73–0.98) | 0.02 |
Model 8 | 0.98 (0.88–1.09) | 0.73 | 0.86 (0.75–0.99) | 0.04 |
Model 9 | 1.00 (0.91–1.10) | 0.96 | 0.94 (0.84–1.07) | 0.36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Post, A.; Huberts, M.; Poppe, E.; van Faassen, M.; P. Kema, I.; Vogels, S.; M. Geleijnse, J.; Westerhuis, R.; J. R. Ipema, K.; J. L. Bakker, S.; et al. Tryptophan Intake and Tryptophan Losses in Hemodialysis Patients: A Balance Study. Nutrients 2019, 11, 2851. https://doi.org/10.3390/nu11122851
Post A, Huberts M, Poppe E, van Faassen M, P. Kema I, Vogels S, M. Geleijnse J, Westerhuis R, J. R. Ipema K, J. L. Bakker S, et al. Tryptophan Intake and Tryptophan Losses in Hemodialysis Patients: A Balance Study. Nutrients. 2019; 11(12):2851. https://doi.org/10.3390/nu11122851
Chicago/Turabian StylePost, Adrian, Marleen Huberts, Enya Poppe, Martijn van Faassen, Ido P. Kema, Steffie Vogels, Johanna M. Geleijnse, Ralf Westerhuis, Karin J. R. Ipema, Stephan J. L. Bakker, and et al. 2019. "Tryptophan Intake and Tryptophan Losses in Hemodialysis Patients: A Balance Study" Nutrients 11, no. 12: 2851. https://doi.org/10.3390/nu11122851
APA StylePost, A., Huberts, M., Poppe, E., van Faassen, M., P. Kema, I., Vogels, S., M. Geleijnse, J., Westerhuis, R., J. R. Ipema, K., J. L. Bakker, S., & F. M. Franssen, C. (2019). Tryptophan Intake and Tryptophan Losses in Hemodialysis Patients: A Balance Study. Nutrients, 11(12), 2851. https://doi.org/10.3390/nu11122851