The Association between Breastmilk Glucocorticoid Concentrations and Macronutrient Contents Throughout the Day
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Milk Sampling
2.3. Laboratory
2.3.1. GC Concentrations
2.3.2. Macronutrient Analysis
2.4. Statistics
3. Results
3.1. Study Population
3.2. Individual Plots
3.3. Correlations
3.4. Linear Mixed Models
4. Discussion
Author Contributions
Funding
Conflicts of interest
References
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breastmilk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Mitoulas, L.R.; Kent, J.C.; Cox, D.B.; Owens, R.A.; Sherriff, J.L.; Hartmann, P.E. Variation in fat, lactose and protein in human milk over 24 h and throughout the first year of lactation. Br. J. Nutr. 2002, 88, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Saarela, T.; Kokkonen, J.; Koivisto, M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005, 94, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Gunther, M.; Stanier, J.E. Diurnal variation in the fat content of breast-milk. Lancet 1949, 2, 235–237. [Google Scholar] [CrossRef]
- Khan, S.; Hepworth, A.R.; Prime, D.K.; Lai, C.T.; Trengove, N.J.; Hartmann, P.E. Variation in fat, lactose, and protein composition in breastmilk over 24 hours: Associations with infant feeding patterns. J. Hum. Lact. 2013, 29, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Daly, S.E.; Di Rosso, A.; Owens, R.A.; Hartmann, P.E. Degree of breast emptying explains changes in the fat content, but not fatty acid composition, of human milk. Exp. Physiol. 1993, 78, 741–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurl, S.; Henker, J.; Taut, H.; Tovar, K.; Sawatzki, G. Variations of neutral oligosaccharides and lactose in human milk during the feeding. Z. Ernahrungswiss 1993, 32, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Truchet, S.; Honvo-Houeto, E. Physiology of milk secretion. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 367–384. [Google Scholar] [CrossRef] [Green Version]
- Bernt, K.M.; Walker, W.a. Human milk as a carrier of biochemical messages. Acta Paediatr. Suppl. 1999, 88, 27–41. [Google Scholar] [CrossRef]
- Smith, R.E.; Maguire, J.A.; Stein-Oakley, A.N.; Sasano, H.; Takahashi, K.; Fukushima, K.; Krozowski, Z.S. Localization of 11 beta-hydroxysteroid dehydrogenase type ii in human epithelial tissues. J. Clin. Endocrinol. Metab. 1996, 81, 3244–3248. [Google Scholar]
- Hollanders, J.J.; Heijboer, A.C.; van der Voorn, B.; Rotteveel, J.; Finken, M.J.J. Nutritional programming by glucocorticoids in breastmilk: Targets, mechanisms and possible implications. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Hinde, K.; Skibiel, A.L.; Foster, A.B.; Del Rosso, L.; Mendoza, S.P.; Capitanio, J.P. Cortisol in mother’s milk across lactation reflects maternal life history and predicts infant temperament. Behav. Ecol. 2015, 26, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, E.C.; Hinde, K.; Mendoza, S.P.; Capitanio, J.P. Cortisol concentrations in the milk of rhesus monkey mothers are associated with confident temperament in sons, but not daughters. Dev. Psychobiol. 2011, 53, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Schwalm, J.W.; Tucker, H.A. Glucocorticoids in mammary secretions and blood serum during reproduction and lactation and distributions of glucocorticoids, progesterone, and estrogens in fractions of milk. J. Dairy Sci. 1978, 61, 550–560. [Google Scholar] [CrossRef]
- Van der Voorn, B.; Martens, F.; Peppelman, N.S.; Rotteveel, J.; Blankenstein, M.A.; Finken, M.J.; Heijboer, A.C. Determination of cortisol and cortisone in human mother’s milk. Clin. Chim. Acta 2015, 444, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Payne, D.W.; Peng, L.H.; Pearlman, W.H. Corticosteroid-binding proteins in human colostrum and milk and rat milk. J. Biol. Chem. 1976, 251, 5272–5279. [Google Scholar] [PubMed]
- Nguyen, P.T.; Lewis, J.G.; Sneyd, J.; Lee, R.S.; Torpy, D.J.; Shorten, P.R. Development of a formula for estimating plasma free cortisol concentration from a measured total cortisol concentration when elastase-cleaved and intact corticosteroid binding globulin coexist. J. Steroid Biochem. Mol. Biol. 2014, 141, 16–25. [Google Scholar] [CrossRef]
- Van der Voorn, B.; de Waard, M.; van Goudoever, J.B.; Rotteveel, J.; Heijboer, A.C.; Finken, M.J. Breast-milk cortisol and cortisone concentrations follow the diurnal rhythm of maternal hypothalamus-pituitary-adrenal axis activity. J. Nutr. 2016, 146, 2174–2179. [Google Scholar] [CrossRef]
- Pundir, S.; Wall, C.R.; Mitchell, C.J.; Thorstensen, E.B.; Lai, C.T.; Geddes, D.T.; Cameron-Smith, D. Variation of human milk glucocorticoids over 24 hour period. J. Mammary Gland Biol. Neoplasia 2017, 22, 85–92. [Google Scholar] [CrossRef]
- Jarcho, M.R.; Slavich, G.M.; Tylova-Stein, H.; Wolkowitz, O.M.; Burke, H.M. Dysregulated diurnal cortisol pattern is associated with glucocorticoid resistance in women with major depressive disorder. Biol. Psychol. 2013, 93, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Vreeburg, S.A.; Hoogendijk, W.J.; DeRijk, R.H.; van Dyck, R.; Smit, J.H.; Zitman, F.G.; Penninx, B.W. Salivary cortisol levels and the 2-year course of depressive and anxiety disorders. Psychoneuroendocrinology 2013, 38, 1494–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, C. International experiences with the hospital anxiety and depression scale--a review of validation data and clinical results. J. Psychosom. Res. 1997, 42, 17–41. [Google Scholar] [CrossRef]
- Patacchioli, F.; Cigliana, G. Maternal plasma and milk free cortisol during the first 3 days of breast-feeding following spontaneous delivery or elective cesarean section. Gynecol. Obstet. Investig. 1992, 34, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Umberkoman-Wiita, B.; Hansen, S.; Herbert, J.; Moore, G.F. Circadian rhythms in serum and csf cortisol of rhesus monkeys, and their modulation by timed injections of l-5-hydroxytryptophan. Brain Res. 1981, 222, 235–252. [Google Scholar] [CrossRef]
- Nagasawa, T.; Kiyosawa, I.; Fukuwatari, Y.; Kitayama, T.; Uechi, M. Alpha-lactalbumin and serum albumin in human milk. J. Dairy Sci. 1973, 56, 177–180. [Google Scholar] [CrossRef]
- Agrimonti, F.; Frairia, R.; Fornaro, D.; Torta, M.; Borretta, G.; Trapani, G.; Bertino, E.; Angeli, A. Circadian and circaseptan rhythmicities in corticosteroid-binding globulin (cbg) binding activity of human milk. Chronobiologia 1982, 9, 281–290. [Google Scholar]
- Grey, K.R.; Davis, E.P.; Sandman, C.A.; Glynn, L.M. Human milk cortisol is associated with infant temperament. Psychoneuroendocrinology 2013, 38, 1178–1185. [Google Scholar] [CrossRef] [Green Version]
- Hahn-Holbrook, J.; Le, T.B.; Chung, A.; Davis, E.P.; Glynn, L.M. Cortisol in human milk predicts child bmi. Obesity 2016, 24, 2471–2474. [Google Scholar] [CrossRef]
- Hart, S.; Boylan, L.M.; Border, B.; Carroll, S.R.; McGunegle, D.; Lampe, R.M. Breast milk levels of cortisol and secretory immunoglobulin a (siga) differ with maternal mood and infant neuro-behavioral functioning. Infant Behav. Dev. 2004, 27, 101–106. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Foster, J.A.; McVey Neufeld, K.A. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Berkow, S.E.; Freed, L.M.; Hamosh, M.; Bitman, J.; Wood, D.L.; Happ, B.; Hamosh, P. Lipases and lipids in human-milk—Effect of freeze-thawing and storage. Pediatr. Res. 1984, 18, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lara, N.R.; Escuder-Vieco, D.; Garcia-Algar, O.; De la Cruz, J.; Lora, D.; Pallas-Alonso, C. Effect of freezing time on macronutrients and energy content of breastmilk. Breastfeed. Med. 2012, 7, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Ahrabi, A.F.; Handa, D.; Codipilly, C.N.; Shah, S.; Williams, J.E.; McGuire, M.A.; Potak, D.; Aharon, G.G.; Schanler, R.J. Effects of extended freezer storage on the integrity of human milk. J. Pediatr. 2016, 177, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.; McArthur, A.; Munn, Z. Safe management of expressed breastmilk: A systematic review. Women Birth 2016, 29, 473–481. [Google Scholar] [CrossRef] [PubMed]
- De Waard, M.; Mank, E.; van Dijk, K.; Schoonderwoerd, A.; van Goudoever, J.B. Holder-pasteurized human donor milk: How long can it be preserved? J. Pediatr. Gastroenterol. Nutr. 2018, 66, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Chen, C.H.; Lin, M.C. The macronutrients in human milk change after storage in various containers. Pediatr. Neonatol. 2012, 53, 205–209. [Google Scholar] [CrossRef] [PubMed]
Cortisol | Cortisone | Fat | Protein | Carbohydrates | Total Solids | Energy | |
---|---|---|---|---|---|---|---|
Cortisol | 1 | ||||||
Cortisone | 0.827 * | 1 | |||||
Fat | −0.096 | −0.050 | 1 | ||||
Protein | −0.071 | −0.119 | −0.455 * | 1 | |||
Carbohydrates | −0.016 | −0.050 | −0.639 * | −0.090 | 1 | ||
Total solids | −0.127 | −0.088 | −0.988 * | −0.404 * | −0.564 * | 1 | |
Energy | −0.109 | −0.068 | −0.998 * | −0.432 * | −0.615 * | 0.995 * | 1 |
Cortisol | Cortisone | |||||||
---|---|---|---|---|---|---|---|---|
Crude Analyses | Adjusted for Time of Collection | Crude Analyses | Adjusted for Time of Collection | |||||
β (95% CI) | p Value | β (95% CI) | p Value | β (95% CI) | p Value | β (95% CI) | p Value | |
Fat | −0.3 (−1.3 to 0.7) | 0.54 | −0.1 (−1.0 to 0.7) | 0.75 | −0.4 (−3.2 to 2.3) | 0.75 | 0.0 (−2.5 to 2.5) | 0.998 |
Protein | −2.0 (−11.0 to 6.9) | 0.65 | −4.9 (−12.9 to 3.1) | 0.22 | −9.6 (−34.6 to 15.4) | 0.44 | −17.4 (−39.8 to 5.0) | 0.13 |
Carbohydrates | −0.3 (−6.3 to 5.7) | 0.92 | −0.3 (−5.6 to 5.0) | 0.90 | −2.7 (−19.4 to 14.1) | 0.75 | −2.7 (−17.7 to 12.3) | 0.72 |
Total solids | −0.5 (−1.7 to 0.7) | 0.41 | −0.3 (−1.4 to 0.8) | 0.55 | −1.0 −4.3 to 2.4) | 0.57 | −0.5 (−3.6 to 2.6) | 0.74 |
Energy | 0.0 (−0.2 to 0.1) | 0.48 | 0.0 (−0.1 to 0.1) | 0.66 | −0.1 (−0.4 to 0.3) | 0.66 | 0.0 (−0.3 to 0.3) | 0.88 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollanders, J.J.; Kouwenhoven, S.M.P.; van der Voorn, B.; van Goudoever, J.B.; Rotteveel, J.; Finken, M.J.J. The Association between Breastmilk Glucocorticoid Concentrations and Macronutrient Contents Throughout the Day. Nutrients 2019, 11, 259. https://doi.org/10.3390/nu11020259
Hollanders JJ, Kouwenhoven SMP, van der Voorn B, van Goudoever JB, Rotteveel J, Finken MJJ. The Association between Breastmilk Glucocorticoid Concentrations and Macronutrient Contents Throughout the Day. Nutrients. 2019; 11(2):259. https://doi.org/10.3390/nu11020259
Chicago/Turabian StyleHollanders, Jonneke J., Stefanie M. P. Kouwenhoven, Bibian van der Voorn, Johannes B. van Goudoever, Joost Rotteveel, and Martijn J. J. Finken. 2019. "The Association between Breastmilk Glucocorticoid Concentrations and Macronutrient Contents Throughout the Day" Nutrients 11, no. 2: 259. https://doi.org/10.3390/nu11020259
APA StyleHollanders, J. J., Kouwenhoven, S. M. P., van der Voorn, B., van Goudoever, J. B., Rotteveel, J., & Finken, M. J. J. (2019). The Association between Breastmilk Glucocorticoid Concentrations and Macronutrient Contents Throughout the Day. Nutrients, 11(2), 259. https://doi.org/10.3390/nu11020259