Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-β1 Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Red Quinoa and its Extracts.
2.2. Animals Grouping and Treatment
2.3. Tissue Sampling
2.4. Liver Function Tests and Kidney Function Tests
2.5. Determination of Thiobarbituric Acid Reactive Substances (TBARS) and Reactive Oxygen Species (ROS) Levels in Hippocampus and Cortex
2.6. Activities of Anti-Oxidative Enzymes
2.7. Histologic Analysis
2.8. Western Blotting
2.9. Enzyme-Linked Immunosorbent Assay
2.10. Statistical Analysis
3. Results
3.1. Body Weight, Liver Weight and Liver Weight/Body Weight Ratio
3.2. The Parameters of Hepatic Function
3.3. The Parameters of Renal Function
3.4. Liver TBARS Assay
3.5. The Activities of Anti-Oxidative Enzymes in Liver
3.6. Hepatic Pathological Changes and Collagen Accumulation
3.7. Pro-Inflammatory and Fibrosis Factors Expression
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Friedman, S.L. Liver fibrosis—from bench to bedside. J. Hepatol 2003, 38, S38–S53. [Google Scholar] [CrossRef]
- Brunt, E.M.; Wong, V.W.; Nobili, V.; Day, C.P.; Sookoian, S.; Maher, J.J.; Bugianesi, E.; Sirlin, C.B.; Neuschwander-Tetri, B.A.; Rinella, M.E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Primers 2015, 1, 15080. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Matsuzaki, K.; Mori, S.; Tahashi, Y.; Yamagata, H.; Furukawa, F.; Seki, T.; Nishizawa, M.; Fujisawa, J.; Okazaki, K. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am. J. Pathol. 2005, 166, 1029–1039. [Google Scholar] [CrossRef]
- Duarte, S.; Baber, J.; Fujii, T.; Coito, A.J. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol. 2015, 44–46, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Weber, L.W.; Boll, M.; Stampfl, A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol. 2003, 33, 105–136. [Google Scholar] [CrossRef]
- Tsai, P.J.; Chen, Y.S.; Sheu, C.H.; Chen, C.Y. Effect of nanogrinding on the pigment and bioactivity of Djulis (Chenopodium formosanum Koidz.). J. Agric. Food Chem. 2011, 59, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.H.; Huang, Y.L.; Liu, Y.C.; Tsai, P.J. Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models. Biomed. Res. Int. 2016, 2016, 7368797. [Google Scholar] [CrossRef]
- Tsai, P.J.; Sheu, C.H.; Wu, P.H.; Sun, Y.F. Thermal and pH stability of betacyanin pigment of Djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. J. Agric. Food Chem. 2010, 58, 1020–1025. [Google Scholar] [CrossRef]
- Sikder, K.; Kesh, S.B.; Das, N.; Manna, K.; Dey, S. The high antioxidative power of quercetin (aglycone flavonoid) and its glycone (rutin) avert high cholesterol diet induced hepatotoxicity and inflammation in Swiss albino mice. Food Funct. 2014, 5, 1294–1303. [Google Scholar] [CrossRef]
- Nafees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: role of NFkappaB/MAPK pathway. Chem. Biol. Interact. 2015, 231, 98–107. [Google Scholar] [CrossRef]
- Kim, H.Y.; Nam, S.Y.; Hong, S.W.; Kim, M.J.; Jeong, H.J.; Kim, H.M. Protective effects of rutin through regulation of vascular endothelial growth factor in allergic rhinitis. Am. J. Rhinol. Allergy 2015, 29, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Hafez, M.M.; Al-Harbi, N.O.; Al-Hoshani, A.R.; Al-Hosaini, K.A.; Al Shrari, S.D.; Al Rejaie, S.S.; Sayed-Ahmed, M.M.; Al-Shabanah, O.A. Hepato-protective effect of rutin via IL-6/STAT3 pathway in CCl4-induced hepatotoxicity in rats. Biol. Res. 2015, 48, 30. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Lee, C.L.; Kuo, T.F.; Wang, J.J.; Pan, T.M. Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid beta-infused rat by repressing amyloid beta accumulation. J. Neurosci. Res. 2007, 85, 3171–3182. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Shahani, L.; Bhatnagar, P. Hepatoprotective effect of Chenopodium quinoa seed against CCL4-induced liver toxicity in Swiss albino male mice. Asian J. Pharmaceutical Clin. Res. 2017, 10, 273–276. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, N.; Yang, D.; Yang, M.; Guo, X.; He, J.; Wu, W.; Ji, B.; Cheng, Q.; Zhou, F. Protective Effects of Five Structurally Diverse Flavonoid Subgroups against Chronic Alcohol-Induced Hepatic Damage in a Mouse Model. Nutrients 2018, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Bataller, R.; Brenner, D.A. Liver fibrosis. J. Clin. Invest. 2005, 115, 209–218. [Google Scholar] [CrossRef] [PubMed]
- de Meijer, V.E.; Sverdlov, D.Y.; Popov, Y.; Le, H.D.; Meisel, J.A.; Nose, V.; Schuppan, D.; Puder, M. Broad-spectrum matrix metalloproteinase inhibition curbs inflammation and liver injury but aggravates experimental liver fibrosis in mice. PLoS ONE 2010, 5, e11256. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, E.; Ilgaz, Y.; Gurgor, P.N.; Oztas, Y.; Topal, T.; Oztas, E. Rutin ameliorates methotrexate induced hepatic injury in rats. Acta Cir. Bras. 2015, 30, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [PubMed]
- Dai, N.; Zou, Y.; Zhu, L.; Wang, H.F.; Dai, M.G. Antioxidant properties of proanthocyanidins attenuate carbon tetrachloride (CCl4)-induced steatosis and liver injury in rats via CYP2E1 regulation. J. Med. Food 2014, 17, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.M.; Al-Kahtani, M.A.; El-Kersh, M.A.; Al-Omair, M.A. Free Radical-Scavenging, Anti-Inflammatory/Anti-Fibrotic and Hepatoprotective Actions of Taurine and Silymarin against CCl4 Induced Rat Liver Damage. PLoS ONE 2015, 10, e0144509. [Google Scholar] [CrossRef] [PubMed]
- Aziza, S.A.; Azab Mel, S.; El-Shall, S.K. Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats. Pak. J. Biol. Sci. 2014, 17, 964–977. [Google Scholar] [CrossRef] [PubMed]
- Hafez, M.M.; Al-Shabanah, O.A.; Al-Harbi, N.O.; Al-Harbi, M.M.; Al-Rejaie, S.S.; Alsurayea, S.M.; Sayed-Ahmed, M.M. Association between paraoxonases gene expression and oxidative stress in hepatotoxicity induced by CCl4. Oxid. Med. Cell Longev. 2014, 2014, 893212. [Google Scholar] [CrossRef]
- Lee, C.C.; Shen, S.R.; Lai, Y.J.; Wu, S.C. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct. 2013, 4, 794–802. [Google Scholar] [CrossRef]
- AlSharari, S.D.; Al-Rejaie, S.S.; Abuohashish, H.M.; Ahmed, M.M.; Hafez, M.M. Rutin Attenuates Hepatotoxicity in High-Cholesterol-Diet-Fed Rats. Oxid. Med. Cell Longev. 2016, 2016, 5436745. [Google Scholar] [CrossRef] [PubMed]
Groups | Body Weight (g) | |||
---|---|---|---|---|
0th Week | 2nd Week | 4th Week | 6th Week | |
NOR | 25.8 ± 1.4 a | 26.4 ± 0.5 b | 27.5 ± 1.8 b | 29.0 ± 0.9 b |
CCL | 26.0 ± 1.5 a | 24.5 ± 0.8 a | 24.5 ± 3.4 a | 26.5 ± 1.9 a |
HL-P | 25.5 ± 1.6 a | 25.0 ± 1.3 a | 24.6 ± 2.2 a | 26.5 ± 1.2 a |
HL-E | 25.9 ± 1.5 a | 24.4 ± 1.1 a | 24.3 ± 2.8 a | 26.6 ± 1.6 a |
HL-W | 25.6 ± 1.6 a | 24.8 ± 1.0 a | 24.2 ± 1.5 a | 26.0 ± 2.3 a |
Rutin | 25.8 ± 1.5 a | 24.4 ± 2.1 a | 24.7 ± 3.3 a | 26.0 ± 2.3 a |
Groups | Liver Weight (g) | Body Weight (g) | Liver Weight/Body Weight (%) |
---|---|---|---|
NOR | 1.38 ± 0.10 a | 27.63 ± 1.41 d | 5.00 ± 0.15 a |
CCL | 2.00 ± 0.18 cd | 25.50 ± 1.07 abc | 7.87 ± 0.75 cd |
HL-P | 1.82 ± 0.16 bc | 24.63 ± 1.92 ab | 7.39 ± 0.36 bc |
HL-E | 2.20 ± 0.28 d | 27.00 ± 2.20 d | 8.11 ± 0.61 de |
HL-W | 2.20 ± 0.35 d | 25.75 ± 1.91 cd | 8.51 ± 0.90 e |
Rutin | 1.65 ± 0.31 b | 23.38 ± 3.25 a | 7.04 ± 0.48 b |
Groups | AST Activity (U/L) | ALT Activity (U/L) | ALP Activity (IU/L) |
---|---|---|---|
NOR | 63.6 ± 4.2 a | 41.3 ± 3.2 a | 97.9 ± 10.0 c |
CCL | 230.0 ± 69.8 c | 309.3 ± 31.6 d | 84.3 ± 4.8 b |
HL-P | 95.8 ± 9.3 a | 215.0 ± 33.2 b | 84.9 ± 4.9 b |
HL-E | 174.6 ± 45.5 b | 209.0 ± 36.9 b | 76.8 ± 2.8 a |
HL-W | 173.9 ± 60.9 b | 226.8 ± 64.9 bc | 82.5 ± 6.6 ab |
Rutin | 112.1 ± 19.6 a | 264.1 ± 71.0 c | 75.8 ± 6.9 a |
Groups | Total Protein (g/dL) | Albumin (g/dL) | Globulin (g/dL) | A/G Ratio | TBIL (mg/dL) |
---|---|---|---|---|---|
NOR | 5.46 ± 0.28 a | 3.59 ± 0.16 a | 1.85 ± 0.11 a | 1.91 ± 0.06 a | 0.04 ± 0.01 a |
CCL | 7.40 ± 0.80 c | 4.79 ± 0.22 c | 2.51 ± 0.50 c | 2.15 ± 0.17 b | 0.12 ± 0.02 d |
HL-P | 6.59 ± 0.16 b | 4.38 ± 0.05 b | 2.20 ± 0.15 bc | 1.90 ± 0.11 a | 0.08 ± 0.01 b |
HL-E | 6.64 ± 0.29 b | 4.43 ± 0.13 b | 2.25 ± 0.18 bc | 1.81 ± 0.08 a | 0.08 ± 0.01 b |
HL-W | 6.81 ± 0.69 b | 4.46 ± 0.35 b | 2.35 ± 0.38 bc | 1.94 ± 0.26 a | 0.10 ± 0.03 cd |
Rutin | 6.30 ± 0.52 b | 4.30 ± 0.25 b | 2.04 ± 0.21 ab | 1.83 ± 0.16 a | 0.09 ± 0.01 ab |
Groups | BUN (mg/dL) | CRE (mg/dL) |
---|---|---|
NOR | 23.33 ± 2.13 a | 0.15 ± 0.02 a |
CCL | 31.45 ± 5.39 b | 0.25 ± 0.05 d |
HL-P | 26.54 ± 5.77 ab | 0.22 ± 0.06 cd |
HL-E | 27.64 ± 4.02 ab | 0.19 ± 0.03 ab |
HL-W | 33.99 ± 12.69 b | 0.21 ± 0.05 cd |
Rutin | 32.85 ± 6.28 b | 0.21 ± 0.04 cd |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-A.; Ke, B.-J.; Cheng, C.-S.; Wang, J.-J.; Wei, B.-L.; Lee, C.-L. Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-β1 Pathway. Nutrients 2019, 11, 395. https://doi.org/10.3390/nu11020395
Lin T-A, Ke B-J, Cheng C-S, Wang J-J, Wei B-L, Lee C-L. Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-β1 Pathway. Nutrients. 2019; 11(2):395. https://doi.org/10.3390/nu11020395
Chicago/Turabian StyleLin, Ting-An, Bo-Jun Ke, Cheng-Shih Cheng, Jyh-Jye Wang, Bai-Luh Wei, and Chun-Lin Lee. 2019. "Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-β1 Pathway" Nutrients 11, no. 2: 395. https://doi.org/10.3390/nu11020395
APA StyleLin, T. -A., Ke, B. -J., Cheng, C. -S., Wang, J. -J., Wei, B. -L., & Lee, C. -L. (2019). Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-β1 Pathway. Nutrients, 11(2), 395. https://doi.org/10.3390/nu11020395