The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. CGMP-AA and Phe-Free l-AA Formulation
2.3. Study Design
- R1: Subjects took CGMP-AA only as their protein substitute and their usual prescribed Phe allowance from food (CGMP-AA + Phe);
- R2: Subjects took CGMP-AA only, but the amount of Phe contained in the CGMP was deducted from their dietary Phe allowance (CGMP-AA − Phe);
- R3: Subjects took Phe-free l-AA with their usual dietary Phe allowance (Phe-free l-AA).
2.4. Standardisation of Meals
2.5. Blood Spots for Phe and Tyr
2.6. Statistics
3. Results
Median Phe Concentrations for Each Subject Compared with Recommended Target Reference Ranges for R1, R2 and R3
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahring, K.K.; Lund, A.M.; Jensen, E.; Jensen, T.G.; Brøndum-Nielsen, K.; Pedersen, M.; Bardow, A.; Holst, J.J.; Rehfeld, J.F.; Møller, L.B. Comparison of Glycomacropeptide with Phenylalanine Free-Synthetic Amino Acids in Test Meals to PKU Patients: No Significant Differences in Biomarkers, Including Plasma Phe Levels. J. Nutr. Metab. 2018, 2018, 6352919. [Google Scholar] [CrossRef] [PubMed]
- Ney, D.M.; Stroup, B.M.; Clayton, M.K.; Murali, S.G.; Rice, G.M.; Rohr, F.; Levy, H.L. Glycomacropeptide for nutritional management of phenylketonuria: A randomized, controlled, crossover trial. Am. J. Clin. Nutr. 2016, 104, 334–345. [Google Scholar] [CrossRef] [PubMed]
- van Calcar, S.C.; MacLeod, E.L.; Gleason, S.T.; Etzel, M.R.; Clayton, M.K.; Wolff, J.A.; Ney, D.M. Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am. J. Clin. Nutr. 2009, 89, 1068–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gropper, S.S.; Gropper, D.M.; Acosta, P.B. Plasma amino acid response to ingestion of l-amino acids and whole protein. J. Pediatr. Gastroenterol. Nutr. 1993, 16, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Monch, E.; Herrmann, M.E.; Brösicke, H.; Schöffer, A.; Keller, M. Utilisation of amino acid mixtures in adolescents with phenylketonuria. Eur. J. Pediatr. 1996, 155, S115–S120. [Google Scholar] [CrossRef] [PubMed]
- Bujko, J.; Schreurs, V.V.A.M.; Nolles, J.A.; Verreijen, A.M.; Koopmanschap, R.E.; Verstegen, M.W.A. Application of a [13CO2] breath test to study short-term amino acid catabolism during the postprandial phase of a meal. Br. J. Nutr. 2007, 97, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Metges, C.C.; Barth, C.A. Metabolic consequences of a high dietary-protein intake in adulthood: Assessment of the available evidence. J. Nutr. 2000, 130, 886–889. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Rylance, G.; Davies, P.; Asplin, D.; Hall, S.K.; Booth, I.W. Administration of protein substitute and quality of control in phenylketonuria: A randomized study. J. Inherit. Metab. Dis. 2003, 26, 319–326. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Rylance, G.; Hall, S.K.; Asplin, D.; Booth, I.W. Factors affecting the variation in plasma phenylalanine in patients with phenylketonuria on diet. Arch. Dis. Child. 1996, 74, 412–417. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Rylance, G.W.; Asplin, D.; Hall, S.K.; Booth, I.W. Does a single plasma phenylalanine predict quality of control in phenylketonuria? Arch. Dis. Child. 1998, 78, 122–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pena, M.J.; Pinto, A.; Daly, A.; MacDonald, A.; Azevedo, L.; Rocha, J.C.; Borges, N. The Use of Glycomacropeptide in Patients with Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1794. [Google Scholar] [CrossRef] [PubMed]
- van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet. J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- van Spronsen, F.J.; van Wegberg, A.M.J.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 2017, 5, 743–756. [Google Scholar] [CrossRef] [Green Version]
- Dangin, M.; Boirie, Y.; Garcia-Rodenas, C.; Gachon, P.; Fauquant, J.; Callier, P.; Ballèvre, O.; Beaufrère, B. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E340–E348. [Google Scholar] [CrossRef] [PubMed]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.-P.; Maubois, J.-L.; Beaufrère, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacroix, M.; Bos, C.; Léonil, J.; Airinei, G.; Luengo, C.; Daré, S.; Benamouzig, R.; Fouillet, H.; Fauquant, J.; Tomé, D.; et al. Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement. Am. J. Clin. Nutr. 2006, 84, 1070–1079. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.; MacLean, D.A. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J. Nutr. 2002, 132, 2174–2182. [Google Scholar] [CrossRef] [PubMed]
- van Loon, L.J.; Saris, W.H.M.; Verhagen, H.; Wagenmakers, A.J.M. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am. J. Clin. Nutr. 2000, 72, 96–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huijbregts, S.C.; De Sonneville, L.M.J.; Licht, R.; Van Spronsen, F.J.; Sergeant, J.A. Short-term dietary interventions in children and adolescents with treated phenylketonuria: Effects on neuropsychological outcome of a well-controlled population. J. Inherit. Metab. Dis. 2002, 25, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, S.C.; de Sonneville, L.M.J.; Licht, R.; van Spronsen, F.J.; Verkerk, P.H.; Sergeant, J.A. Sustained attention and inhibition of cognitive interference in treated phenylketonuria: Associations with concurrent and lifetime phenylalanine concentrations. Neuropsychologia 2002, 40, 7–15. [Google Scholar] [CrossRef]
- Anastasoaie, V.; Kurzius, L.; Forbes, P.; Waisbren, S. Stability of blood phenylalanine levels and IQ in children with phenylketonuria. Mol. Genet. Metab. 2008, 95, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Arnold, G.L.; Kramer, B.M.; Kirby, R.S.; Plumeau, P.B.; Blakely, E.M.; Sanger Cregan, L.S.; Davidson, P.W. Factors affecting cognitive, motor, behavioral and executive functioning in children with phenylketonuria. Acta Paediatr. 1998, 87, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.A.; Young, V.R.; Murray, E.; Scrimshaw, N.S. Daily fluctuation of plasma amino acid levels in adult men: Effect of dietary tryptophan intake and distribution of meals. J. Nutr. 1971, 101, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Scriver, C.R.; Gregory, D.M.; Sovetts, D.; Tissenbaum, G. Normal plasma free amino acid values in adults: The influence of some common physiological variables. Metabolism 1985, 34, 868–873. [Google Scholar] [CrossRef]
- Vilaseca, M.A.; Lambruschini, N.; Gómez-López, L.; Gutiérrez, A.; Fusté, E.; Gassió, R.; Artuch, R.; Campistol, J. Quality of dietary control in phenylketonuric patients and its relationship with general intelligence. Nutr. Hosp. 2010, 25, 60–66. [Google Scholar] [PubMed]
- Waisbren, S.E.; Noel, K.; Fahrbach, K.; Cella, C.; Frame, D.; Dorenbaum, A.; Levya, H. Phenylalanine blood levels and clinical outcomes in phenylketonuria: A systematic literature review and meta-analysis. Mol. Genet. Metab. 2007, 92, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, R.; Schallert, M.; Nguyen, T.; Och, U.; Rutsch, F.; Weglage, J. Children and adolescents with phenylketonuria display fluctuations in their blood phenylalanine levels. Acta Paediatr. 2018, 108, 541–543. [Google Scholar] [CrossRef] [PubMed]
- Ney, D.M.; Murali, S.G.; Stroup, B.M.; Nair, N.; Sawin, E.A.; Rohr, F.; Levy, H.L. Metabolomic changes demonstrate reduced bioavailability of tyrosine and altered metabolism of tryptophan via the kynurenine pathway with ingestion of medical foods in phenylketonuria. Mol. Genet. Metab. 2017, 121, 96–103. [Google Scholar] [CrossRef] [PubMed]
CGMP-AA 20 g PE | l-AA Protein Substitutes 20 g PE | ||||||
---|---|---|---|---|---|---|---|
Nutrients | Units | CGMP-AA 1 sachet 35 g Powder Flavoured | PKU Cooler 20 1 pouch = 174 mL | LQ Lophlex 20 1 pouch = 125 mL | XP Maxamum 1 × 50 g sachet Powder Unflavoured | First spoon 50 g powder Unflavoured | PKU Express 1 × 34 g sachet Powder Flavoured |
Calories | Kcal | 120 | 130 | 120 | 149 | 164 | 101 |
Protein equivalent | G | 20 | 20 | 20 | 19.5 | 20 | 20 |
Total carbohydrate | G | 6.3 | 8.9 | 8.8 | 17 | 19.2 | 4.7 |
Sugars | G | 2.2 | 5.9 | 8.8 | 1.6 | 12.8 | 0.3 |
Total fat | G | 1.6 | 1.6 | 0.44 | <0.25 | 0.6 | 0.07 |
DHA | Mg | 110 | 134 | 150 | 0 | 104 | 0 |
AA | Mg | - | - | - | - | - | - |
Salt | G | 0.55 | 0.26 | 0 | 0 | 0 | 0.43 |
Vitamin A | µg RE | 259 | 261 | 285 | 355 | 600 | 283 |
Vitamin D | µg | 5.0 | 10 | 8 | 3.9 | 13.2 | 4.5 |
Vitamin E | mg αTE | 5.30 | 5.2 | 3.2 | 2.6 | 7.1 | 5.3 |
Vitamin C | Mg | 26 | 37 | 17.8 | 90 | 75 | 36.7 |
Vitamin K | µg | 23 | 24 | 24.9 | 35 | 57 | 34 |
Thiamine | Mg | 0.60 | 0.7 | 0.43 | 0.7 | 0.75 | 0.68 |
Riboflavin | Mg | 0.60 | 0.77 | 0.5 | 0.7 | 0.75 | 0.78 |
Niacin | Mg | 3.20 | 3.5 | 7.1 | 6.8 | 3.4 | 8.4 |
Vitamin B6 | Mg | 0.60 | 0.87 | 0.58 | 1.1 | 0.75 | 1 |
Folic Acid | µg | 102 | 101 | 120 | 250 | 84 | 136 |
Vitamin B12 | µg | 1.6 | 1.6 | 1.8 | 1.8 | 1.9 | 1.6 |
Biotin | µg | 13 | 13 | 53.4 | 70 | 27.8 | 63.9 |
Pantothenic acid | Mg | 2.0 | 1.9 | 1.8 | 2.5 | 4.2 | 2.7 |
Choline | Mg | 204 | 200 | 153 | 161 | 139 | 204 |
Sodium | Mmol | 12 | 4.5 | <10 | 12.1 | 9.1 | 7.5 |
Potassium | Mmol | 5.9 | 6.1 | <25 | 9 | 13.5 | 8 |
Chloride | Mmol | 0.20 | 3.9 | <25 | 7.9 | 9 | 6.9 |
Calcium | Mg | 399 | 400 | 356 | 335 | 626 | 407 |
Phosphorus | Mmol | 13 | 11 | 8.9 | 10.8 | 14.8 | 11.4 |
Magnesium | Mg | 115 | 110 | 107 | 143 | 88 | 128 |
Iron | Mg | 7.4 | 7.3 | 5.3 | 11.8 | 12.4 | 7.3 |
Copper | Mg | 0.60 | 0.73 | 0.53 | 0.7 | 0.63 | 0.75 |
Zinc | Mg | 7.4 | 5.6 | 3.9 | 6.8 | 8.8 | 7.3 |
Manganese | Mg | 0.40 | 0.5 | 0.53 | 1.1 | 0.65 | 1.1 |
Iodine | µg | 84 | 85 | 58.4 | 53.3 | 127 | 85.7 |
Molybdenum | µg | 20 | 23 | 25 | 53.5 | 18.4 | 49 |
Selenium | µg | 30 | 26 | 26.8 | 25 | 23.8 | 29.9 |
Chromium | µg | 12 | 14 | 10.6 | 25 | 21 | 29.9 |
Amino acid profile | |||||||
l-Alanine | G | 0.83 | 0.92 | 1.16 | 0.85 | 0.95 | 0.87 |
l-Arginine | G | 0.96 | 1.5 | 2 | 1.6 | 1.65 | 1.41 |
l-Aspartic acid | G | 1.31 | 2.37 | 1.75 | 1.5 | 1.55 | 2.23 |
l-Cystine | G | 0.24 | 0.61 | 0.51 | 0.6 | 0.62 | 0.57 |
l-Glutamine | G | 2.70 | 0 | 2.6 | 0 | 1.73 | |
Glycine | G | 0.71 | 2.35 | 1.88 | 1.5 | 1.47 | 2.22 |
l-Histidine | G | 0.70 | 0.92 | 0.79 | 0.9 | 0.95 | 0.87 |
l-Isoleucine | G | 1.42 | 1.62 | 1.24 | 1.4 | 1.47 | 1.52 |
l-Leucine | G | 3.02 | 2.54 | 2.13 | 2.4 | 2.48 | 2.39 |
l-Lysine | G | 0.95 | 1.67 | 1.63 | 1.9 | 1.71 | 1.58 |
l-Methionine | G | 0.28 | 0.45 | 0.34 | 0.4 | 0.39 | 0.42 |
l-Phenylalanine | G | 0.036 | - | 0 | 0 | 0 | 0 |
l-Proline | G | 1.60 | 1.69 | 2 | 1.7 | 1.79 | 1.59 |
l-Serine | G | 1.01 | 1.04 | 1.09 | 1.1 | 1.09 | 0.99 |
l-Threonine | G | 2.29 | 1.62 | 1.04 | 1.2 | 1.23 | 1.54 |
l-Tryptophan | G | 0.40 | 0.5 | 0.41 | 0.45 | 0.48 | 0.48 |
l-Tyrosine | G | 2.25 | 2.38 | 1.88 | 2.1 | 2.2 | 2.24 |
l-Valine | G | 1.14 | 1.86 | 1.38 | 1.6 | 1.58 | 1.76 |
R1 | R2 | R3 | |
---|---|---|---|
Phe μmol/L | 290 (30–580) * | 220 (10–670) T | 165 (10–640) TT |
Tyr μmol/L | 70 (20–240) ** | 70 (20–220) § | 60 (10–200) §§ |
Time | R1 | R2 | R3 | |||
---|---|---|---|---|---|---|
Phe μmol/L | Tyr μmol/L | Phe μmol/L | Tyr μmol/L | Phe μmol/L | Tyr μmol/L | |
08.00 | 310 (150–490) T | 40 (30–120) | 230 (115–560) 1 | 50 (30–120) | 220 (80–440) TT | 40 (20–200) |
12.00 | 290 (80–450) T | 90 (40–150) | 220 (40–600) 2 | 90 (20–170) | 185 (30–480) TT | 80 (20–200) |
16.00 | 280 (80–500) T | 90 (30–240) § | 225 (70–670) 3 | 90 (30–220) ** | 190 (20–640) TT | 70 (30–160) §§** |
20.00 | 300 (80–580) T | 80 (20–190) | 210 (50–570) 4 | 75 (20–150) | 170 (20–480) TT | 80 (10–180) |
24.00 | 275 (30–500) T | 70 (30–150) | 185 (10–490) 5 | 85 (30–180) *** | 125 (10–440) TT | 60 (30–190) *** |
04.00 | 275 (50–550) T | 60 (30–110) § | 210 (70–610) 6 | 60 (30–280) **** | 150 (40–440) TT | 50 (30–100) §§**** |
Time | R1 Phe μmol/L | R2 Phe μmol/L | R3 Phe μmol/L |
---|---|---|---|
08.00–16.00 | −30 | −5 | −35 |
16.00–24.00 | −5 | −40 | −65 |
24.00–08.00 | +35 | +20 | +70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daly, A.; Evans, S.; Chahal, S.; Santra, S.; Pinto, A.; Gingell, C.; Rocha, J.C.; van Spronsen, F.; Jackson, R.; MacDonald, A. The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled Trial. Nutrients 2019, 11, 520. https://doi.org/10.3390/nu11030520
Daly A, Evans S, Chahal S, Santra S, Pinto A, Gingell C, Rocha JC, van Spronsen F, Jackson R, MacDonald A. The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled Trial. Nutrients. 2019; 11(3):520. https://doi.org/10.3390/nu11030520
Chicago/Turabian StyleDaly, Anne, Sharon Evans, Satnam Chahal, Saikat Santra, Alex Pinto, Cerys Gingell, Júlio César Rocha, Francjan van Spronsen, Richard Jackson, and Anita MacDonald. 2019. "The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled Trial" Nutrients 11, no. 3: 520. https://doi.org/10.3390/nu11030520
APA StyleDaly, A., Evans, S., Chahal, S., Santra, S., Pinto, A., Gingell, C., Rocha, J. C., van Spronsen, F., Jackson, R., & MacDonald, A. (2019). The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled Trial. Nutrients, 11(3), 520. https://doi.org/10.3390/nu11030520