Higher Maternal Diet Quality during Pregnancy and Lactation Is Associated with Lower Infant Weight-For-Length, Body Fat Percent, and Fat Mass in Early Postnatal Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Maternal Diet
2.3. Infant Growth and Body Composition
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Maternal Diet Quality and Infant Growth
3.3. Maternal Diet Quality and Infant Body Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Calkins, K.; Devaskar, S.U. Fetal origins of adult disease. Curr. Probl. Pediatr. Adolesc. Health Care 2011, 41, 158–176. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.J.; Kim, Y.J. What is fetal programming?: A lifetime health is under the control of in utero health. Obstet. Gynecol. Sci. 2017, 60, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.B.; Mackenzie, K.C.; Gahagan, S. The effect of maternal obesity on the offspring. Clin. Obstet. Gynecol. 2014, 57, 508–515. [Google Scholar] [CrossRef]
- Kaar, J.L.; Crume, T.; Brinton, J.T.; Bischoff, K.J.; McDuffie, R.; Dabelea, D. Maternal obesity, gestational weight gain, and offspring adiposity: The exploring perinatal outcomes among children study. J. Pediatr. 2014, 165, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Mourtakos, S.P.; Tambalis, K.D.; Panagiotakos, D.B.; Antonogeorgos, G.; Arnaoutis, G.; Karteroliotis, K.; Sidossiset, L.S. Maternal lifestyle characteristics during pregnancy, and the risk of obesity in the offspring: A study of 5125 children. BMC Pregnancy Childbirth 2015, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Parlee, S.D.; MacDougald, O.A. Maternal nutrition and risk of obesity in offspring: The Trojan horse of developmental plasticity. Biochim. Biophys. Acta 2014, 1842, 495–506. [Google Scholar] [CrossRef]
- Bayol, S.A.; Farrington, S.J.; Stickland, N.C. A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br. J. Nutr. 2007, 98, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Murrin, C.; Shrivastava, A.; Kelleher, C.C.; Lifeways Cross-Generation Cohort Study Steering Group. Maternal macronutrient intake during pregnancy and 5 years postpartum and associations with child weight status aged five. Eur. J. Clin. Nutr. 2013, 67, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.M.; Alexander, B.T.; Roach, L.; Haggerty, D.; Marbury, D.C.; Hutchens, Z.M.; Flynn, E.R.; Maric-Bilkan, C. Exposure to maternal overnutrition and a high-fat diet during early postnatal development increases susceptibility to renal and metabolic injury later in life. Am. J. Physiol. Renal Physiol. 2012, 302, F774–F783. [Google Scholar] [CrossRef] [PubMed]
- Section on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics 2012, 129, 827–841. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Breastfeeding Report Card—United States. 2018. Available online: https://www.cdc.gov/breastfeeding/pdf/2018breastfeedingreportcard.pdf (accessed on 8 December 2018).
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Indrio, F.; Martini, S.; Francavilla, R.; Corvaglia, L.; Cristofori, F.; Mastrolia, S.A.; Neu, J.; Rautava, S.; Spena, G.R.; Raimondi, F.; et al. Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development. Front. Pediatr. 2017, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.M.; Meyer, K.M.; Prince, A.L.; Aagaard, K.M. Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes 2016, 7, 459–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhana, K.; Haines, J.; Liu, G.; Zhang, C.; Wang, X.; Field, A.E.; Chavarro, J.E.; Sun, Q. Association between maternal adherence to healthy lifestyle practices and risk of obesity in offspring: Results from two prospective cohort studies of mother-child pairs in the United States. BMJ 2018, 362, k2486. [Google Scholar] [CrossRef]
- Tielemans, M.J.; Steegers, E.A.P.; Voortman, T.; Jaddoe, V.W.V.; Rivadeneira, F.; Franco, O.H.; Kiefte-de Jong, J.C. Protein intake during pregnancy and offspring body composition at 6 years: The Generation R Study. Eur. J. Nutr. 2017, 56, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.J.; Harvey, N.C.; Robinson, S.M.; Ntani, G.; Davies, J.H.; Inskip, H.M.; Godfrey, K.M.; Dennison, E.M.; Calder, P.C.; Cooper, C.; et al. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J. Clin. Endocrinol. Metab. 2013, 98, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Mckenzie, K.M.; Dissanayake, H.U.; McMullan, R.; ICaterson, I.D.; Celermajer, D.S.; Gordon, A.; Hyett, J.; Meroni, A.; Phang, M.; Raynes-Greenow, C.; et al. Quantity and Quality of Carbohydrate Intake during Pregnancy, Newborn Body Fatness and Cardiac Autonomic Control: Conferred Cardiovascular Risk? Nutrients 2017, 9, 1375. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G. Diet quality as assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension score, and health outcomes: A systematic review and meta-analysis of cohort studies. J. Acad. Nutr. Diet. 2015, 115, 780–800. [Google Scholar] [CrossRef]
- Poon, A.K.; Yeung, E.; Boghossian, N.; Albert, P.S.; Zhang, C. Maternal Dietary Patterns during Third Trimester in Association with Birthweight Characteristics and Early Infant Growth. Scientifica 2013, 2013, 786409. [Google Scholar] [CrossRef]
- Rodríguez-Bernal, C.L.; Rebagliato, M.; Iñiguez, C.; Vioque, J.; Navarrete-Muñoz, E.M.; Murcia, M.; Bolumar, F.; Marco, A.; Ballester, F. Diet quality in early pregnancy and its effects on fetal growth outcomes: The Infancia y Medio Ambiente (Childhood and Environment) Mother and Child Cohort Study in Spain. Am. J. Clin. Nutr. 2010, 91, 1659–1666. [Google Scholar] [CrossRef]
- Shapiro, A.L.; Kaar, J.L.; Crume, T.L.; Starling, A.P.; Siega-Riz, A.M.; Ringham, B.M.; Glueck, D.H.; Norris, J.M.; Barbour, L.A.; Friedman, J.E.; et al. Maternal diet quality in pregnancy and neonatal adiposity: The Healthy Start Study. Int. J. Obes. 2016, 40, 1056–1062. [Google Scholar] [CrossRef] [Green Version]
- Chatzi, L.; Rifas-Shiman, S.L.; Georgiou, V.; Joung, K.E.; Koinaki, S.; Chalkiadaki, G.; Margioris, A.; Sarri, K.; Vassilaki, M.; Vafeiadi, M.; et al. Adherence to the Mediterranean diet during pregnancy and offspring adiposity and cardiometabolic traits in childhood. Pediatr. Obes. 2017, 12, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Broek, M.; Leermakers, E.T.; Jaddoe, V.W.; Steegers, E.A.; Rivadeneira, F.; Raat, H.; Hofman, A.; Franco, O.H.; Kiefte-de Jong, J.C. Maternal dietary patterns during pregnancy and body composition of the child at age 6 y: The Generation R Study. Am. J. Clin. Nutr. 2015, 102, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Gillman, M.W. Early infancy as a critical period for development of obesity and related conditions. In Importance of Growth for Health and Development; Nestec Ltd.: Vevey, Switzerland; S. Karger AG: Basel, Switzerland, 2010; Volume 65, pp. 13–20. [Google Scholar]
- Rolland-Cachera, M.F.; Péneau, S. Growth trajectories associated with adult obesity. World Rev. Nutr. Diet. 2013, 106, 127–134. [Google Scholar] [PubMed]
- Whitaker, K.M.; Marino, R.C.; Haapala, J.L.; Foster, L.; Smith, K.D.; Teague, A.M.; Jacobs, D.R., Jr.; Fontaine, P.L.; McGovern, P.M.; Schoenfuss, T.C.; et al. Associations of Maternal Weight Status Before, During, and After Pregnancy with Inflammatory Markers in Breast Milk. Obesity 2017, 25, 2092–2099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kipnis, V.; Subar, A.F.; Midthune, D.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Structure of dietary measurement error: Results of the OPEN biomarker study. Am. J. Epidemiol. 2003, 158, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef]
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef]
- Pick, M.E.; Edwards, M.; Moreau, D.; Ryan, E.A. Assessment of diet quality in pregnant women using the Healthy Eating Index. J. Am. Diet. Assoc. 2005, 105, 240–246. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. SAS Code. US Department of Health and Human Services. 2018. Available online: https://epi.grants.cancer.gov/hei/sas-code.html (accessed on 22 January 2019).
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. Suppl. 2006, 450, 76–85. [Google Scholar]
- Mazess, R.B.; Barden, H.S.; Bisek, J.P.; Hanson, J. Dual-energy X-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am. J. Clin. Nutr. 1990, 51, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.M.R.; Roche, A.F. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 2011. [Google Scholar]
- Weber, D.R.; Leonard, M.B.; Zemel, B.S. Body composition analysis in the pediatric population. Pediatr. Endocrinol. Rev. 2012, 10, 130–139. [Google Scholar] [PubMed]
- Rifas-Shiman, S.L.; Rich-Edwards, J.W.; Kleinman, K.P.; Oken, E.; Gillman, M.W. Dietary quality during pregnancy varies by maternal characteristics in Project Viva: A US cohort. J. Am. Diet. Assoc. 2009, 109, 1004–1011. [Google Scholar] [CrossRef]
- George, S.M.; Ballard-Barbash, R.; Manson, J.E.; Reedy, J.; Shikany, J.M.; Subar, A.F.; Tinker, L.F.; Vitolins, M.; Neuhouser, M.L. Comparing indices of diet quality with chronic disease mortality risk in postmenopausal women in the Women’s Health Initiative Observational Study: Evidence to inform national dietary guidance. Am. J. Epidemiol. 2014, 180, 616–625. [Google Scholar] [CrossRef]
- Fallaize, R.; Livingstone, K.M.; Celis-Morales, C.; Macready, A.L.; San-Cristobal, R.; Navas-Carretero, S.; Marsaux, C.F.; O’Donovan, C.B.; Kolossa, S.; Moschonis, G.; et al. Association between Diet-Quality Scores, Adiposity, Total Cholesterol and Markers of Nutritional Status in European Adults: Findings from the Food4Me Study. Nutrients 2018, 10, 49. [Google Scholar] [CrossRef]
- United States Department of Agriculture. The Center for Nutrition Policy and Promotion. HEI Scores for Americans. Available online: https://www.cnpp.usda.gov/hei-scores-americans (accessed on 22 January 2019).
- Forbes, L.E.; Graham, J.E.; Berglund, C.; Bell, R.C. Dietary Change during Pregnancy and Women’s Reasons for Change. Nutrients 2018, 10, 1032. [Google Scholar] [CrossRef]
- Black, M.H.; Sacks, D.A.; Xiang, A.H.; Lawrence, J.M. The relative contribution of prepregnancy overweight and obesity, gestational weight gain, and IADPSG-defined gestational diabetes mellitus to fetal overgrowth. Diabetes Care 2013, 36, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Haire-Joshu, D.; Tabak, R. Preventing Obesity Across Generations: Evidence for Early Life Intervention. Annu. Rev. Public Health 2016, 37, 253–271. [Google Scholar] [CrossRef] [Green Version]
- Mühlhäusler, B.S.; Adam, C.L.; McMillen, I.C. Maternal nutrition and the programming of obesity: The brain. Organogenesis 2008, 4, 144–152. [Google Scholar] [CrossRef]
- Hann, C.S.; Rock, C.L.; King, I.; Drewnowski, A. Validation of the Healthy Eating Index with use of plasma biomarkers in a clinical sample of women. Am. J. Clin. Nutr. 2001, 74, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Murrin, C.; Sweeney, M.R.; Heavey, P.; Kelleher, C.C.; Lifeways Cross-generation Cohort Study Steering Group. Familial intergenerational and maternal aggregation patterns in nutrient intakes in the Lifeways Cross-Generation Cohort Study. Public Health Nutr. 2013, 16, 1476–1486. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [PubMed]
- Kocaadam, B.; Köksal, E.; Türkyılmaz, C. Are breast milk adipokines affected by maternal dietary factors? J. Pediatr. Endocrinol. Metab. 2018, 31, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Jiang, J.; Wu, K.; Li, D. Epidermal growth factor and transforming growth factor-α in human milk of different lactation stages and different regions and their relationship with maternal diet. Food Funct. 2018, 9, 1199–1204. [Google Scholar] [CrossRef]
- Lind, M.V.; Larnkjær, A.; Mølgaard, C.; Michaelsen, K.F. Breastfeeding, Breast Milk Composition, and Growth Outcomes. In Recent Research in Nutrition and Growth; Nestlé Nutrition Institute: Vevey, Switzerland; S. Karger AG: Basel, Switzerland, 2018; Volume 89, pp. 63–77. [Google Scholar]
- Demerath, E.W.; Fields, D.A. Body composition assessment in the infant. Am. J. Hum. Biol. 2014, 26, 291–304. [Google Scholar] [CrossRef]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary assessment methods in epidemiological research: Current state of the art and future prospects. F1000Research 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maslova, E.; Rytter, D.; Bech, B.H.; Henriksen, T.B.; Rasmussen, M.A.; Olsen, S.F.; Halldorsson, T.I. Maternal protein intake during pregnancy and offspring overweight 20 y later. Am. J. Clin. Nutr. 2014, 100, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslova, E.; Rytter, D.; Bech, B.H.; Henriksen, T.B.; Olsen, S.F.; Halldorsson, T.I. Maternal intake of fat in pregnancy and offspring metabolic health—A prospective study with 20 years of follow-up. Clin. Nutr. 2016, 35, 475–483. [Google Scholar] [CrossRef] [PubMed]
Participant Characteristics | HEI–2015 Tertiles (T) a | ||||
---|---|---|---|---|---|
Total | T1 (n = 109) | T2 (n = 110) | T3 (n = 110) | ||
N (%) or Mean ± SD | p-Value | ||||
Study site | 0.47 | ||||
Minnesota | 233 (66) | 69 (63) | 72 (65) | 78 (71) | |
Oklahoma | 121 (34) | 40 (37) | 38 (35) | 32 (29) | |
Age, years | 30.9 ± 4.1 | 30.2 ± 4.3 | 30.7 ± 4.4 | 31.4 ± 3.7 | 0.1 |
Race | 0.71 | ||||
White | 299 (86) | 92 (85) | 93 (87) | 97 (89) | |
Other | 49 (14) | 16 (15) | 14 (13) | 12 (11) | |
Education | <0.001 * | ||||
High school/GED/Associates degree | 80 (24) | 37 (36) | 26 (24) | 11 (11) | |
Bachelor’s degree | 136 (40) | 42 (41) | 38 (36) | 48 (46) | |
Graduate degree | 121 (36) | 24 (23) | 42 (40) | 45 (43) | |
Household income | 0.19 | ||||
<$60,000 | 105 (31) | 37 (36) | 34 (32) | 25 (24) | |
$60,000–90,000 | 85 (25) | 30 (29) | 24 (23) | 27 (26) | |
>90,000 | 147 (44) | 36 (35) | 48 (45) | 52 (50) | |
Parity | 0.01 * | ||||
0 | 146 (42) | 33 (31) | 54 (50) | 52 (47) | |
≥1 | 204 (58) | 74 (69) | 55 (50) | 58 (53) | |
Pre-pregnancy BMI, kg/m2 | 26.4 ± 5.4 | 27.2 ± 6.2 | 26.4 ± 4.9 | 25.5 ± 5.0 | 0.06 |
Gestational weight gain | 0.23 | ||||
Below or within IOM guidelines | 200 (57) | 54 (501) | 67 (62) | 63 (57) | |
Exceeding IOM guidelines | 149 (43) | 53 (50) | 41 (38) | 47 (43) | |
Energy intake during pregnancy | 1827 ± 530 | 1747 ± 550 | 1876 ± 535 | 1859 ± 498 | 0.15 |
Mode of delivery | 0.39 | ||||
Vaginal | 278 (80) | 90 (83) | 82 (76) | 87 (81) | |
Caesarean section | 70 (20) | 18 (17) | 26 (24) | 21 (19) | |
HEI–2015 score during third trimester of pregnancy | 67.2 ± 8.7 | 57.5 ± 5.8 | 67.8 ± 2.1 | 76.1 ± 4.0 | <0.001 * |
HEI–2015 score at one month postpartum | 65.9 ± 8.4 | 60.6 ± 7.5 | 65.2 ± 7.0 | 71.2 ± 7.6 | <0.001 * |
HEI–2015 score at three months postpartum | 66.1 ± 8.7 | 60.5 ± 7.9 | 65.3 ± 7.2 | 71.5 ± 7.4 | <0.001 * |
Duration of exclusive breastfeeding | |||||
one month | 21 (7) | 7 (7) | 10 (10) | 2 (2) | 0.16 |
three months | 58 (18) | 20 (22) | 16 (16) | 20 (19) | |
six months | 235 (75) | 65 (71) | 74 (74) | 81 (79) | |
Infant gestational age, weeks | 39.8 ± 1.1 | 39.7 ± 1.0 | 39.6 ± 1.1 | 40.0 ± 1.1 | 0.04 * |
Infant sex | 0.84 | ||||
Male | 178 (50) | 53 (49) | 57 (52) | 53 (48) | |
Female | 176 (50) | 56 (51) | 53 (48) | 57 (52) |
Infant Characteristics | N | Mean ± SD |
---|---|---|
Infant Growth from Birth to Six Months | ||
Weight-for-age, Z-scores | ||
Birth | 350 | 0.46 ± 0.87 |
one month | 343 | 0.13 ± 0.87 |
three months | 332 | −0.07 ± 0.88 |
six months | 321 | 0.04 ± 0.96 |
Length-for-age, Z-scores | ||
Birth | 342 | 1.17 ± 1.23 |
one month | 346 | 0.06 ± 1.09 |
three months | 332 | −0.03 ± 1.06 |
six months | 321 | −0.20 ± 1.09 |
Weight-for-length, Z-scores | ||
Birth | 341 | −0.72 ± 1.40 |
one month | 342 | 0.12 ± 1.08 |
three months | 332 | 0.02 ± 0.98 |
six months | 321 | 0.33 ± 1.07 |
Infant body composition at six months | ||
Total body fat, % | 317 | 33.98 ± 3.76 |
Fat mass, kg | 317 | 2.76 ± 0.48 |
Fat-free mass, kg | 317 | 5.29 ± 0.67 |
Trunk fat mass, kg | 317 | 0.92 ± 0.22 |
Arm fat mass, kg | 317 | 0.38 ± 0.20 |
Leg fat mass, kg | 317 | 1.08 ± 0.23 |
Model 1 | Model 2 | |||||||
---|---|---|---|---|---|---|---|---|
Infant Growth Measures from Birth to Six Months | N | β a | SE | p-Value | N | β a | SE | p-Value |
LAZ | 330 | 0.05 | 0.04 | 0.25 | 290 | 0.02 | 0.04 | 0.58 |
WAZ | 330 | −0.02 | 0.03 | 0.43 | 290 | −0.04 | 0.03 | 0.15 |
WLZ | 330 | −0.13 | 0.05 | 0.01 | 290 | −0.12 | 0.05 | 0.02 |
Model 1 | Model 2 | |||||||
---|---|---|---|---|---|---|---|---|
Infant Body Composition Measures at Six Months | N | β a | SE | p-Value | N | β a | SE | p-Value |
HEI–2015 total scores during pregnancy | ||||||||
BF% | 281 | −0.72 | 0.28 | 0.01 | 262 | −0.58 | 0.29 | 0.05 |
FM | 281 | −0.06 | 0.04 | 0.12 | 262 | −0.03 | 0.04 | 0.36 |
FFM | 281 | 0.002 | 0.05 | 0.97 | 262 | −0.001 | 0.05 | 0.99 |
HEI–2015 total scores at one month postpartum | ||||||||
BF% | 254 | −1.22 | 0.30 | <0.001 | 235 | −1.28 | 0.30 | <0.001 |
FM | 254 | −0.10 | 0.04 | 0.01 | 235 | −0.13 | 0.04 | 0.001 |
FFM | 254 | −0.003 | 0.05 | 0.94 | 235 | −0.05 | 0.04 | 0.28 |
HEI–2015 total scores at three months postpartum | ||||||||
BF% | 248 | −0.69 | 0.25 | 0.01 | 229 | −0.66 | 0.26 | 0.01 |
FM | 248 | −0.09 | 0.04 | 0.02 | 229 | −0.10 | 0.04 | 0.01 |
FFM | 248 | −0.04 | 0.05 | 0.52 | 229 | −0.05 | 0.06 | 0.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, M.J.; Haapala, J.L.; Foster, L.P.; Duncan, K.M.; Teague, A.M.; Kharbanda, E.O.; McGovern, P.M.; Whitaker, K.M.; Rasmussen, K.M.; Fields, D.A.; et al. Higher Maternal Diet Quality during Pregnancy and Lactation Is Associated with Lower Infant Weight-For-Length, Body Fat Percent, and Fat Mass in Early Postnatal Life. Nutrients 2019, 11, 632. https://doi.org/10.3390/nu11030632
Tahir MJ, Haapala JL, Foster LP, Duncan KM, Teague AM, Kharbanda EO, McGovern PM, Whitaker KM, Rasmussen KM, Fields DA, et al. Higher Maternal Diet Quality during Pregnancy and Lactation Is Associated with Lower Infant Weight-For-Length, Body Fat Percent, and Fat Mass in Early Postnatal Life. Nutrients. 2019; 11(3):632. https://doi.org/10.3390/nu11030632
Chicago/Turabian StyleTahir, Muna J., Jacob L. Haapala, Laurie P. Foster, Katy M. Duncan, April M. Teague, Elyse O. Kharbanda, Patricia M. McGovern, Kara M. Whitaker, Kathleen M. Rasmussen, David A. Fields, and et al. 2019. "Higher Maternal Diet Quality during Pregnancy and Lactation Is Associated with Lower Infant Weight-For-Length, Body Fat Percent, and Fat Mass in Early Postnatal Life" Nutrients 11, no. 3: 632. https://doi.org/10.3390/nu11030632
APA StyleTahir, M. J., Haapala, J. L., Foster, L. P., Duncan, K. M., Teague, A. M., Kharbanda, E. O., McGovern, P. M., Whitaker, K. M., Rasmussen, K. M., Fields, D. A., Jacobs, D. R., Jr., Harnack, L. J., & Demerath, E. W. (2019). Higher Maternal Diet Quality during Pregnancy and Lactation Is Associated with Lower Infant Weight-For-Length, Body Fat Percent, and Fat Mass in Early Postnatal Life. Nutrients, 11(3), 632. https://doi.org/10.3390/nu11030632