Innovative Techniques of Processing Human Milk to Preserve Key Components
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Methods of Human Milk Processing
3.2. Temperature and High Pressure Influence on Microbial Purity of Human Milk
3.3. The Influence of Processing on Bioactive Components of Human Milk
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO; UNICEF. Global Strategy for Infant and Young Child Feeding; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Ojo-Okunola, A.; Nicol, M.; du Toit, E. Human Breast Milk Bacteriome in Health and Disease. Nutrients 2018, 10, 1643. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.M. The origin of human milk bacteria: Is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv. Nutr. 2014, 5, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.; Barnes, R.; Adappa, R.; Doherty, C. Quality control of expressed breast milk. J. Hosp. Infect. 2006, 62, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, D.; Ruiz, P.; Martinez-Costa, C.; Plaza, A.; Lopez, M. Effect of pasteurization on the bactericidal capacity of human milk. J. Hum. Lact. 2008, 24, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Czank, C.; Prime, D.K.; Hartmann, B.; Simmer, K.; Hartmann, P.E. Retention of the immunological proteins of pasteurized human milk in relation to pasteurizer design and practice. Pediatric Res. 2009, 66, 374. [Google Scholar] [CrossRef] [PubMed]
- Viazis, S.; Farkas, B.; Jaykus, L. Inactivation of bacterial pathogens in human milk by high-pressure processing. J. Food Prot. 2008, 71, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Permanyer, M.; Castellote, C.; Ramírez-Santana, C.; Audí, C.; Pérez-Cano, F.; Castell, M.; López-Sabater, M.; Franch, A. Maintenance of breast milk immunoglobulin A after high-pressure processing. J. Dairy Sci. 2010, 93, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Windyga, B.; Rutkowska, M.; Sokołowska, B.; Skąpska, S.; Wesołowska, A.; Wilińska, M.; Fonberg-Broczek, M.; Rzoska, S.J. Inactivation of Staphylococcus aureus and native microflora in human milk by high pressure processing. High Press. Res. 2015, 35, 181–188. [Google Scholar] [CrossRef]
- Klotz, D.; Joellenbeck, M.; Winkler, K.; Kunze, M.; Huzly, D.; Hentschel, R. High-temperature short-time pasteurisation of human breastmilk is efficient in retaining protein and reducing the bacterial count. Acta Paediatr. 2017, 106, 763–767. [Google Scholar] [CrossRef]
- Escuder-Vieco, D.; Espinosa-Martos, I.; Rodriguez, J.M.; Corzo, N.; Montilla, A.; Siegfried, P.; Pallás-Alonso, C.R.; Fernández, L. High-Temperature Short-Time pasteurization system for donor milk in a human milk bank setting. Front. Microbiol. 2018, 9, 926. [Google Scholar] [CrossRef]
- Wesolowska, A.M.; Sinkiewicz-Darol, E.; Barbarska, O.; Strom, K.; Rutkowska, M.; Karzeł, K.; Rosiak, E.; Olędzka, G.; Orczyk-Pawiłowicz, M.; Rzoska, S.J. New achievements in high-pressure processing to preserve human milk bioactivity. Front. Pediatrics 2018, 6, 323. [Google Scholar] [CrossRef]
- Demazeau, G.; Plumecocq, A.; Lehours, P.; Martin, P.; Couëdelo, L.; Billeaud, C. A new high hydrostatic pressure process to assure the microbial safety of human milk while preserving the biological activity of its main components. Front. Public Health 2018, 6, 306. [Google Scholar] [CrossRef]
- Malinowska-Pańczyk, E.; Królik, K.; Skorupska, K.; Puta, M.; Martysiak-Żurowska, D.; Kiełbratowska, B. Microwave heat treatment application to pasteurization of human milk. Innov. Food Sci. Emerg. Technol. 2019, 52, 42–48. [Google Scholar] [CrossRef]
- Hamilton Spence, E.; Huff, M.; Shattuck, K.; Vickers, A.; Yun, N.; Paessler, S. Ebola virus and Marburg virus in human milk are inactivated by Holder pasteurization. J. Hum. Lact. 2017, 33, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Pfaender, S.; Vielle, N.J.; Ebert, N.; Steinmann, E.; Alves, M.P.; Thiel, V. Inactivation of Zika virus in human breast milk by prolonged storage or pasteurization. Virus Res. 2017, 228, 58–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamprecht, K.; Maschmann, J.; Müller, D.; Dietz, K.; Besenthal, I.; Goelz, R.; Middeldorp, J.M.; Speer, C.P.; Jahn, G. Cytomegalovirus (CMV) inactivation in breast milk: Reassessment of pasteurization and freeze-thawing. Pediatric Res. 2004, 56, 529. [Google Scholar] [CrossRef]
- Goelz, R.; Hihn, E.; Hamprecht, K.; Dietz, K.; Jahn, G.; Poets, C.; Elmlinger, M. Effects of different CMV-heat-inactivation-methods on growth factors in human breast milk. Pediatric Res. 2009, 65, 458. [Google Scholar] [CrossRef]
- Ben-Shoshan, M.; Mandel, D.; Lubetzky, R.; Dollberg, S.; Mimouni, F.B. Eradication of cytomegalovirus from human milk by microwave irradiation: A pilot study. Breastfeed. Med. 2016, 11, 186–187. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Taguchi, H.; Yoshimoto, S.; Fujishita, M.; Yamashita, M.; Ohtsuki, Y.; Hoshino, H.; Miyoshi, I. Inactivation of lymphocyte-transforming activity of human T-cell leukemia virus type I by heat. Jpn. J. Cancer Res. Gann 1986, 77, 13–15. [Google Scholar]
- Donalisio, M.; Cagno, V.; Vallino, M.; Moro, G.E.; Arslanoglu, S.; Tonetto, P.; Bertino, E.; Lembo, D. Inactivation of high-risk human papillomaviruses by Holder pasteurization: Implications for donor human milk banking. J. Perinat. Med. 2014, 42, 1–8. [Google Scholar] [CrossRef]
- Hamosh, M. Protective function of proteins and lipids in human milk. Neonatology 1998, 74, 163–176. [Google Scholar] [CrossRef]
- Morrow, A.L.; Ruiz-Palacios, G.M.; Altaye, M.; Jiang, X.; Guerrero, M.L.; Meinzen-Derr, J.K.; Farkas, T.; Chaturvedi, P.; Pickering, L.K.; Newburg, D.S. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatrics 2004, 145, 297–303. [Google Scholar] [CrossRef]
- Newburg, D.S.; Peterson, J.A.; Ruiz-Palacios, G.M.; Matson, D.O.; Morrow, A.L.; Shults, J.; de Lourdes Guerrero, M.; Chaturvedi, P.; Newburg, S.O.; Scallan, C.D. Role of human-milk lactadherin in protectoin against symptomatic rotavirus infection. Lancet 1998, 351, 1160–1164. [Google Scholar] [CrossRef]
- Eglash, A.; Simon, L.; Medicine, A.O.B. ABM clinical protocol# 8: Human milk storage information for home use for full-term infants, Revised 2017. Breastfeed. Med. 2017, 12, 390–395. [Google Scholar]
- Lanari, M.; Sogno Valin, P.; Natale, F.; Capretti, M.; Serra, L. Human milk, a concrete risk for infection? J. Matern.-Fetal Neonatal Med. 2012, 25, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Goldblum, R.M.; Dill, C.W.; Albrecht, T.B.; Alford, E.S.; Garza, C.; Goldman, A.S. Rapid high-temperature treatment of human milk. J. Pediatrics 1984, 104, 380–385. [Google Scholar] [CrossRef]
- Wills, M.; Han, V.; Harris, D.; Baum, J. Short-time low-temperature pasteurisation of human milk. Early Hum. Dev. 1982, 7, 71–80. [Google Scholar] [CrossRef]
- Buffin, R.; Pradat, P.; Trompette, J.; Ndiaye, I.; Basson, E.; Jordan, I.; Picaud, J.-C. Air and water processes do not produce the same high-quality pasteurization of donor human milk. J. Hum. Lact. 2017, 33, 717–724. [Google Scholar] [CrossRef]
- Chantry, C.J.; Wiedeman, J.; Buehring, G.; Peerson, J.M.; Hayfron, K.; K’Aluoch, O.; Lonnerdal, B.; Israel-Ballard, K.; Coutsoudis, A.; Abrams, B. Effect of flash-heat treatment on antimicrobial activity of breastmilk. Breastfeed. Med. 2011, 6, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, F.G.; Rechtman, D.J.; Lee, M.L.; Hoeij, K.V.; Berg, H.; Engelenberg, F.A.V.; Wout, A.B.V.t. Antimicrobial and antiviral effect of high-temperature short-time (HTST) pasteurization applied to human milk. Breastfeed. Med. 2007, 2, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Chaudhri, R.; Vlachos, D.; Kaza, J.; Palludan, J.; Bilbao, N.; Martin, T.; Borriello, G.; Kolko, B.; Israel-Ballard, K. A system for safe flash-heat pasteurization of human breast milk. In Proceedings of the 5th ACM Workshop on Networked Systems for Developing Regions, Bethesda, MD, USA, 28 June 2011; pp. 9–14. [Google Scholar]
- Daniels, B.; Schmidt, S.; King, T.; Israel-Ballard, K.; Amundson Mansen, K.; Coutsoudis, A. The Effect of Simulated Flash-Heat Pasteurization on Immune Components of Human Milk. Nutrients 2017, 9, 178. [Google Scholar] [CrossRef]
- Naicker, M.; Coutsoudis, A.; Israel-Ballard, K.; Chaudhri, R.; Perin, N.; Mlisana, K. Demonstrating the efficacy of the FoneAstra pasteurization monitor for human milk pasteurization in resource-limited settings. Breastfeed. Med. 2015, 10, 107–112. [Google Scholar] [CrossRef]
- Christen, L.; Lai, C.T.; Hartmann, B.; Hartmann, P.E.; Geddes, D.T. The effect of UV-C pasteurization on bacteriostatic properties and immunological proteins of donor human milk. PLoS ONE 2013, 8, e85867. [Google Scholar] [CrossRef] [PubMed]
- Christen, L.; Lai, C.T.; Hartmann, B.; Hartmann, P.E.; Geddes, D.T. Ultraviolet-C irradiation: A novel pasteurization method for donor human milk. PLoS ONE 2013, 8, e68120. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.S.; Amato Neto, V.; Gakiyai, E.; Bezerra, R.C.; Rodríguez Alarcón, R.S. Microwave treatment of human milk to prevent transmission of Chagas disease. Rev. Inst. Med. Trop. São Paulo 2003, 45, 41–42. [Google Scholar] [CrossRef]
- Ovesen, L.; Jakobsen, J.; Leth, T.; Reinholdt, J. The effect of microwave heating on vitamins B1 and E, and linoleic and linolenic acids, and immunoglobulins in human milk. Int. J. Food Sci. Nutr. 1996, 47, 427–436. [Google Scholar] [CrossRef]
- Quan, R.; Yang, C.; Rubinstein, S.; Lewiston, N.J.; Sunshine, P.; Stevenson, D.K.; Kerner, J.A. Effects of microwave radiation on anti-infective factors in human milk. Pediatrics 1992, 89, 667–669. [Google Scholar]
- Martysiak-Żurowska, D.; Puta, M.; Kotarska, J.; Cybula, K.; Malinowska-Pańczyk, E.; Kołodziejska, I. The effect of UV-C irradiation on lipids and selected biologically active compounds in human milk. Int. Dairy J. 2017, 66, 42–48. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Puta, M.; Barczak, N.; Dąbrowska, J.; Malinowska-Pańczyk, E.; Kiełbratowska, B.; Kołodziejska, I. Effect of high pressure and sub-zero temperature on total antioxidant capacity and the content of vitamin C, fatty acids and secondary products of lipid oxidation in human milk. Pol. J. Food Nutr. Sci. 2017, 67, 117–122. [Google Scholar] [CrossRef]
- Sousa, S.G.; Delgadillo, I.; Saraiva, J.A. Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chem. 2014, 151, 79–85. [Google Scholar] [CrossRef]
- Viazis, S.; Farkas, B.E.; Allen, J.C. Effects of high-pressure processing on immunoglobulin A and lysozyme activity in human milk. J. Hum. Lact. 2007, 23, 253–261. [Google Scholar] [CrossRef]
- Johnston, M.; Landers, S.; Noble, L.; Szucs, K.; Viehmann, L. American Academy of Pediatrics, Section on Breastfeeding, Policy Statement: Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef]
- Landers, S.; Updegrove, K. Bacteriological screening of donor human milk before and after Holder pasteurization. Breastfeed. Med. 2010, 5, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Orloff, S.L.; Wallingford, J.; McDougal, J. Inactivation of human immunodeficiency virus type I in human milk: Effects of intrinsic factors in human milk and of pasteurization. J. Hum. Lact. 1993, 9, 13–17. [Google Scholar] [CrossRef]
- Goldsmith, S.J.; Dickson, J.S.; Barnhart, H.M.; Toledo, R.T.; Eiten-Miller, R.R. IgA, IgG, IgM and lactoferrin contents of human milk during early lactation and the effect of processing and storage. J. Food Prot. 1983, 46, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Allen, J.C. Human Milk Antibacterial Factors. In Bioactive Components of Human Milk; Springer: Boston, MA, USA, 2001; pp. 341–348. [Google Scholar]
- Akinbi, H.; Meinzen-Derr, J.; Auer, C.; Ma, Y.; Pullum, D.; Kusano, R.; Reszka, K.J.; Zimmerly, K. Alterations in the host defense properties of human milk following prolonged storage or pasteurization. J. Pediatric Gastroenterol. Nutr. 2010, 51, 347–352. [Google Scholar] [CrossRef]
- Baro, C.; Giribaldi, M.; Arslanoglu, S.; Giuffrida, M.G.; Dellavalle, G.; Conti, A.; Tonetto, P.; Biasini, A.; Coscia, A.; Fabris, C. Effect of two pasteurization methods on the protein content of human milk. Front. Biosci. 2011, 3, 818–829. [Google Scholar] [CrossRef]
- Mayayo, C.; Montserrat, M.; Ramos, S.; Martínez-Lorenzo, M.; Calvo, M.; Sánchez, L.; Pérez, M. Kinetic parameters for high-pressure-induced denaturation of lactoferrin in human milk. Int. Dairy J. 2014, 39, 246–252. [Google Scholar] [CrossRef]
- Parrón, J.A.; Ripollés, D.; Ramos, S.J.; Pérez, M.D.; Semen, Z.; Rubio, P.; Calvo, M.; Sánchez, L. Antirotaviral potential of lactoferrin from different origin: Effect of thermal and high pressure treatments. BioMetals 2018, 31, 343–355. [Google Scholar] [CrossRef]
- Guerra, A.F.; Mellinger-Silva, C.; Rosenthal, A.; Luchese, R.H. Hot topic: Holder pasteurization of human milk affects some bioactive proteins. J. Dairy Sci. 2018, 101, 2814–2818. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, D.; Miranda, M.; Muriach, M.; Almansa, I.; Jareno, E.; Romero, F.J. Antioxidant capacity of human milk: Effect of thermal conditions for the pasteurization. Acta Paediatr. 2008, 97, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Martysiak-Żurowska, D.; Puta, M.; Kiełbratowska, B. The effect of convective heating and microwave heating on antioxidant enzymes in pooled mature human milk. Int. Dairy J. 2019, 91, 41–47. [Google Scholar] [CrossRef]
- Bertino, E.; Coppa, G.; Giuliani, F.; Coscia, A.; Gabrielli, O.; Sabatino, G.; Sgarrella, M.; Testa, T.; Zampini, L.; Fabris, C. Effects of Holder pasteurization on human milk oligosaccharides. Int. J. Immunopathol. Pharmacol. 2008, 21, 381–385. [Google Scholar] [CrossRef]
- Hahn, W.-h.; Kim, J.; Song, S.; Park, S.; Kang, N.M. The human milk oligosaccharides are not affected by pasteurization and freeze-drying. J. Matern.-Fetal Neonatal Med. 2019, 32, 985–991. [Google Scholar] [CrossRef]
- Silva, F.F.; Gloria, B.A. Effect of pasteurization on bioactive amines in human milk. In Proceedings of the 11th International Congress on Engineering and Food, Athens, Greece, 22–26 May 2011; Volume 3, pp. 1781–1783. [Google Scholar]
- Van Der Voorn, B.; De Waard, M.; Dijkstra, L.R.; Heijboer, A.C.; Rotteveel, J.; Van Goudoever, J.B.; Finken, M.J. Stability of cortisol and cortisone in human breast milk during holder pasteurization. J. Pediatric Gastroenterol. Nutr. 2017, 65, 658–660. [Google Scholar] [CrossRef] [PubMed]
- Ley, S.H.; Hanley, A.J.; Stone, D.; O’connor, D.L. Effects of pasteurization on adiponectin and insulin concentrations in donor human milk. Pediatric Res. 2011, 70, 278. [Google Scholar] [CrossRef]
- Resto, M.; O’Connor, D.; Leef, K.; Funanage, V.; Spear, M.; Locke, R. Leptin levels in preterm human breast milk and infant formula. Pediatrics 2001, 108, e15. [Google Scholar] [CrossRef]
- Ewaschuk, J.B.; Unger, S.; Harvey, S.; O’Connor, D.L.; Field, C.J. Effect of pasteurization on immune components of milk: Implications for feeding preterm infants. Appl. Physiol. Nutr. MeTable 2011, 36, 175–182. [Google Scholar] [CrossRef]
- Moltó-Puigmartí, C.; Permanyer, M.; Castellote, A.I.; López-Sabater, M.C. Effects of pasteurisation and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chem. 2011, 124, 697–702. [Google Scholar] [CrossRef]
- Fidler, N.; Sauerwald, T.U.; Demmelmair, H.; Koletzko, B. Fat content and fatty acid composition of fresh, pasteurized, or sterilized human milk. In Bioactive Components of Human Milk; Springer: Boston, MA, USA, 2001; pp. 485–495. [Google Scholar]
- Henderson, T.R.; Fay, T.N.; Hamosh, M. Effect of pasteurization on long chain polyunsaturated fatty acid levels and enzyme activities of human milk. J. Pediatrics 1998, 132, 876–878. [Google Scholar] [CrossRef]
- Israel-Ballard, K.; Coutsoudis, A.; Chantry, C.; Sturm, A.; Karim, F.; Sibeko, L.; Abrams, B. Bacterial safety of flash-heated and unheated expressed breastmilk during storage. J. Trop. Pediatrics 2006, 52, 399–405. [Google Scholar] [CrossRef]
- Van Zoeren-Grobben, D.; Schrijver, J.; Van den Berg, H.; Berger, H. Human milk vitamin content after pasteurisation, storage, or tube feeding. Arch. Dis. Child. 1987, 62, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, K.D.; Melo, I.L.; Pristo, A.Z.; Dimenstein, R. The effect of processing on the vitamin A content of human milk. J. Pediatr. 2005, 81, 61–64. [Google Scholar] [CrossRef]
- Ford, J.; Law, B.; Marshall, V.M.; Reiter, B. Influence of the heat treatment of human milk on some of its protective constituents. J. Pediatrics 1977, 90, 29–35. [Google Scholar] [CrossRef]
- Rodríguez-Camejo, C.; Puyol, A.; Fazio, L.; Rodríguez, A.; Villamil, E.; Andina, E.; Cordobez, V.; Díaz, H.; Lemos, M.; Siré, G. Antibody profile of colostrum and the effect of processing in human milk banks: Implications in immunoregulatory properties. J. Hum. Lact. 2018, 34, 137–147. [Google Scholar] [CrossRef]
- Cossey, V.; Jeurissen, A.; Bossuyt, X.; Schuermans, A. Effect of pasteurisation on the mannose-binding lectin activity and the concentration of soluble CD14 in human milk. J. Hosp. Infect. 2009, 73, 96–97. [Google Scholar] [CrossRef] [PubMed]
- McPherson, R.J.; Wagner, C.L. The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk. In Bioactive Components of Human Milk; Springer: Boston, MA, USA, 2001; pp. 559–566. [Google Scholar]
- Untalan, P.B.; Keeney, S.E.; Palkowetz, K.H.; Rivera, A.; Goldman, A.S. Heat susceptibility of interleukin-10 and other cytokines in donor human milk. Breastfeed. Med. 2009, 4, 137–144. [Google Scholar] [CrossRef]
- Franch, A.; Audí, C.; Ramírez-Santana, C.; Permanyer, M.; Pérez-Cano, F.; Moltó-Puigmartí, C.; López-Sabater, M.; Castellote, C. Banked human milk treatment and immunoactive factors content. Comparison with high pressure processing. Proc. Nutr. Soc. 2010, 69, E288. [Google Scholar] [CrossRef]
- Mateos-Vivas, M.; Rodríguez-Gonzalo, E.; Domínguez-Álvarez, J.; García-Gómez, D.; Ramírez-Bernabé, R.; Carabias-Martínez, R. Analysis of free nucleotide monophosphates in human milk and effect of pasteurisation or high-pressure processing on their contents by capillary electrophoresis coupled to mass spectrometry. Food Chem. 2015, 174, 348–355. [Google Scholar] [CrossRef]
- Contador, R.; Delgado, F.; García-Parra, J.; Garrido, M.; Ramírez, R. Volatile profile of breast milk subjected to high-pressure processing or thermal treatment. Food Chem. 2015, 180, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Delgado, F.J.; Contador, R.; Álvarez-Barrientos, A.; Cava, R.; Delgado-Adámez, J.; Ramírez, R. Effect of high pressure thermal processing on some essential nutrients and immunological components present in breast milk. Innov. Food Sci. Emerg. Technol. 2013, 19, 50–56. [Google Scholar] [CrossRef]
- Delgado, F.J.; Cava, R.; Delgado, J.; Ramírez, R. Tocopherols, fatty acids and cytokines content of holder pasteurised and high-pressure processed human milk. Dairy Sci. Technol. 2014, 94, 145–156. [Google Scholar] [CrossRef]
- Peila, C.; Moro, G.E.; Bertino, E.; Cavallarin, L.; Giribaldi, M.; Giuliani, F.; Cresi, F.; Coscia, A. The effect of holder pasteurization on nutrients and biologically-active components in donor human milk: A review. Nutrients 2016, 8, 477. [Google Scholar] [CrossRef]
- Vieira, A.A.; Soares, F.V.M.; Pimenta, H.P.; Abranches, A.D.; Moreira, M.E.L. Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk’s macronutrient concentrations. Early Hum. Dev. 2011, 87, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Parra-Llorca, A.; Gormaz, M.; Alcántara, C.; Cernada, M.; Nuñez-Ramiro, A.; Vento, M.; Collado, M.C. Preterm Gut Microbiome Depending on Feeding Type: Significance of Donor Human Milk. Front. Microbiol. 2018, 9, 1376. [Google Scholar] [CrossRef] [PubMed]
- Schlotterer, H.R.; Perrin, M.T. Effects of Refrigerated and Frozen Storage on Holder-Pasteurized Donor Human Milk: A Systematic Review. Breastfeed. Med. 2018, 13, 465–472. [Google Scholar] [CrossRef]
- Villamor-Martínez, E.; Pierro, M.; Cavallaro, G.; Mosca, F.; Kramer, B.; Villamor, E. Donor human milk protects against bronchopulmonary dysplasia: A systematic review and meta-analysis. Nutrients 2018, 10, 238. [Google Scholar] [CrossRef]
- Corpeleijn, W.E.; De Waard, M.; Christmann, V.; van Goudoever, J.B.; Jansen-van der Weide, M.C.; Kooi, E.M.; Koper, J.F.; Kouwenhoven, S.M.; Lafeber, H.N.; Mank, E. Effect of donor milk on severe infections and mortality in very low-birth-weight infants: The early nutrition study randomized clinical trial. JAMA Pediatrics 2016, 170, 654–661. [Google Scholar] [CrossRef]
- O’Connor, D.L.; Gibbins, S.; Kiss, A.; Bando, N.; Brennan-Donnan, J.; Ng, E.; Campbell, D.M.; Vaz, S.; Fusch, C.; Asztalos, E. Effect of supplemental donor human milk compared with preterm formula on neurodevelopment of very low-birth-weight infants at 18 months: A randomized clinical trial. JAMA 2016, 316, 1897–1905. [Google Scholar] [CrossRef]
- Quigley, M.; McGuire, W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef]
- Silano, M.; Milani, G.P.; Fattore, G.; Agostoni, C. Donor human milk and risk of surgical necrotizing enterocolitis: A meta-analysis. Clin. Nutr. 2019, 38, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Moro, G.E.; Billeaud, C.; Rachel, B.; Calvo, J.; Cavallarin, L.; Christen, L.; Escuder-Vieco, D.; Gaya, A.; Lembo, D.; Wesolowska, A. Processing of Donor Human Milk: Update and Recommendations from the European Milk Bank Association (EMBA). Front. Pediatrics 2019, 7, 49. [Google Scholar] [CrossRef] [PubMed]
Tested Component | HoP | HTST | HPP | MI | References |
---|---|---|---|---|---|
Bacteriostatic effect on E.coli and L. innocua | 48% reduction 28% reduction | 64% reduction 39% reduction | not studied | not studied | [5,6] |
Inactivation of selected microorganisms (L. monocytogenes S. agalactiae, E. coli, S. aureus) | inactivation | not studied | inactivation | not studied | [7] |
Inactivation of selected microorganisms (Enterobacteriaceae) | inactivation | not studied | inactivation | not studied | [8] |
Inactivation of selected microorganisms (S. aureus ATCC 6538, Enterobacteriaceae) | not studied | not studied | inactivation | not studied | [9] |
Antibacterial efficacy (Coagulase-negative staphylococci, Gram- negative bacteria, Enterococcus species) | reduced bacterial counts | reduced bacterial counts | not studied | not studied | [10] |
Microbiological quality (vegetative forms of microorganisms present in raw milk samples) | destroyed commensal and contaminant vegetative microorganisms except Bacillus sp. | destroyed all vegetative forms of microorganisms except Bacillus sp. and E. faecalis | not studied | not studied | [11] |
Inactivation of selected microorganisms (S.aureus) | inactivation | not studied | inactivation | not studied | [12] |
Inactivation of selected microorganisms (S.aureus, B. cerues) | partial inactivation | not studied | inactivation | not studied | [13] |
Inactivation of selected microorganisms (E.coli, P. aeruginosa, S. aureus, S. epidermidis) | inactivation | not studied | not studied | inactivation | [14] |
Ebola Virus | inactivation | not studied | not studied | not studied | [15] |
Marburg Virus | inactivation | not studied | not studied | not studied | [15] |
Zika virus | inactivation | not studied | not studied | not studied | [16] |
CMV | Inactivation destroy viral infectivity | destroy viral infectivity | not studied | inactivation | [17,18,19] |
HTLV HIV | inactivation | inactivation | not studied | not studied | [20] |
HPV high-risk (types 16 and 18), low-risk (type 6) | inactivation | not studied | not studied | not studied | [21] |
Factor | HoP | HTST | HPP 400–600 MPa 5–30 min, 12 °C 37 °C | MI | References |
---|---|---|---|---|---|
Activity Loss/Reduce of Concentration | Activity Loss/Reduce of Concentration | Activity Loss/Reduce of Concentration | Activity Loss/Reduce of CONCENTRATION | ||
Lactoferrin | 63–100% 44–80% 64–83% 80% 60% 39% 61% 80% (65 °C) | 11% 68% 0–14% 71% | * decrease (600 MPa, 15 min) 21–44% (200 + 400–600 MPa, 10 min) 300 MPa–650 MPa 15 min, 20 °C 300, 400, 500, 600 MPa, 15 min, 20 °C 9–48% 3–7% | ns | [5,6,10,12,13,27,30,31,33,47,48,49,50,51,52] |
Lysozyme | * decrease 21–67% (reduction concentration) 33–76% 35% * increase stable 48% | 55% 28% * increase | 107% 400 MPa 30 min 14–25% 0–5% <5% | * decrease | [5,6,7,10,13,28,30,33,39,53] |
Antioxidant activity (glutathione, glutathione peroxidase, malonedialdehyde, superoxide dismutase, TAC) | * decrease in glutathione concentration (about 50%), GPx activity (near 67%) and TAC (about 58%) reduced GPx | Decrease | no significant changes in TAC, reduction of AsA >11% (200 MPa, −20°C) | SOD and GPx activity temporary increased during microwave heating | [41,53,54,55] |
Oligosaccharides | stable | Stable | ns | ns | [33,56,57] |
Biogenic amines | stable | Ns | ns | ns | [58]; |
Glucocorticoids (cortisol, cortisone) | not significantly affected | [59] | |||
Adiponectin HMV Adiponectin | 34% 33% | Ns | 62–98% | ns | [12,60] |
Insulin | 46% 33% | Ns | 5–18% | ns | [12,60] |
Leptin | 40% (57 °C, 30 min) 78% | Ns | 48–90% (* increase in leptin concentration) | ns | [12,61] |
Medium-chain saturated fatty acids | no change in content | Ns | no change in content | ns | [62,63] |
Long-chain unsaturated fatty acids | no change in content, slight decrease of oleic acid content | Ns | no change in content | ns | [62,63] |
Polyunsaturated fatty acids n = 3, n = 6 Linolenic acid | no change in content | Ns | no change in content | ns | [62,63,64,65] |
Folic acid | 36% | * increase | ns | ns | [66]; |
Vitamin A | Stable decrease from 55.5 mg/100 mL to 36.6 mg/100 mL, about 34% | Stable | ns | ns | [66,67,68] |
Vitamin B1(thiamine) | ns | Stable | ns | ns | [27] |
Vitamin B2 | stable | stable 41% 59% | ns | ns | [27,66,67] |
Vitamin B6 | 15% | stable 18% 59% | ns | ns | [27,66] |
Vitamin B12 | 48% | increase | ns | ns | [66,69] |
Vitamin C | 36% 16% 20–36% 35% | stable * increase | no change <5% (200 MPa, −20 °C) | ns | [27,41,63,66] |
Vitamin D | stable | Ns | ns | ns | [67] |
Vitamin E (tocopherol) | stable | Ns | ns | ns | [63,67] |
Lysine | higher content of available lysine | Stable | ns | ns | [50] |
IgM | complete deactivation decrease in content | Ns | ns | ns | [47,70] |
IgA | 20–100% 27% 21.1% decrease in content 57% (65 °C) 98% 49% 56% | 20% 5% 74,8% 57% | 0% (400 mPa) 13% (500 MPa) 32% (600 mPa) 5 min 12°C 40% 400, 500, 600 MPa 5 min, 12 °C 0–31% 17% | no significant effect | [8,10,13,33,39,43,50,51,52,70] |
IgG | 34–100% decrease in content 49% | 33% | 18–70% | ns | [12,47,70] |
Alkaline phosphatase | complete loss | 94% | ns | ns | [10] |
Lipoprotein Lipase | complete loss 99% | stable 99% | 15–20% stable | [10,13,50,65] | |
Lactoperoxidase | 50–88% | stable | ns | ns | [49] |
Amylase | 15% | ns | ns | ns | [65] |
Mannose-binding lectin | stable | ns | ns | ns | [71] |
CD 14 (soluble) | 88% | ns | ns | ns | [71] |
TGF β1TGF β1 | decrease <1% | ns | stable | ns | [72,73,74] |
TGF α | decrease <6% stable | ns | ns | ns | [70,72,73] |
IL-10 | * decrease in content | substantial decrease | decrease (400 MPa, 5 min, 12 °C) * decrease (500 MPa) no presence at 600 MPa | ns | [33,62,73,74] |
Erythropoietin | decrease | ns | ns | ns | [73] |
IFN- | decrease in content | ns | ns | ns | [62] |
TNF-α | * decrease in content | ns | decrease (400 MPa), * decrease (500 MPa, 600 MPa) | ns | [62,74] |
TNF-RI | increase in content | ns | increase (400 MPa), increase (500 MPa), * increase (600 MPa) | ns | [74] |
IL-1 α | * decrease in content substantial decrease | ns | ns | ns | [62] |
IL-2 | decrease in content | ns | ns | ns | [62] |
IL-4 | decrease in content | ns | ns | ns | [62] |
IL-5 | decrease in content | ns | ns | ns | [62] |
IL-12p70 | decrease in content | ns | ns | ns | [62] |
IL-13 | *decrease in content | ns | increase (400 MPa), * decrease (500 MPa) * decline (600 MPa) | ns | [62,74] |
IL-8 | 25% increased content * increase of activity * increase | not studied * increase | increase (400 MPa), * increase (500 MPa) * increase (600 MPa) | ns | [33,62,74] |
IL-6 | * decrease of activity | ns | increase (400 MPa, 500 MPa, 600 MPa) | ns | [74] |
HGF | 33% 89% | ns | 3–66% | ns | [12,62] |
EGF | stable | stable | stable | ns | [18] |
IGF-1 | 39%, | stable | ns | ns | [18] |
IGF-2 | 9.9% | stable | ns | ns | [18] |
IGF-BP2 | 19.1% | stable | ns | ns | [18] |
IGF-BP3 | 7% | stable | ns | ns | [18] |
Free nucleotide monophosphates (AMP, GMP, CMP, TMP) | stable | ns | 400, 500, 600 MPa 5 min (without temp. control) stable or increased content | ns | [75] |
Volatile profile | modified the volatile profile (lipid oxidation, Maillard reaction) | ns | HPP at 400 or 600 MPa for 3 min preserved the original volatile compounds of human milk | ns | [76] |
High Pressure Thermal Processing | |||||
Fatty acids, cytokines, leukocytes and immunoglobulins (IgM, IgA and IgG) | ns | ns | 300–900 MPa, temp. 50–80 °C, for 1 min minimal effect on the levels of IL-12, IL-17 and IFN-γ. loss of leukocytes cells, only the treatments at 300 MPa and 50 °C maintained certain levels of Igs (IgM 25% loss, IgA 52% and IgG 0%) | ns | [77] |
Factor | HoP | HTST | HPP 400–600 MPa 5–30 min, 12 °C 37 °C, | MI | References |
activity loss/reduce of concentration | activity loss/reduce of concentration | activity loss/reduce of concentration | activity loss/reduce of concentration | ||
Tocopherols, fatty acids, cytokines (IL-6, IL-8, IL-10, IL-12 (p70), IL-17, IFN-γ, TNF-α and MCAF/MCP-1) | * decreased the levels of α-, γ-and δ-tocopherol | ns | 600 MPa * decreased the levels of α-, γ- and δ-tocopherol, reduction proportions of some key fatty acids, not affect on the levels of IL-6, IL-8 and TNF-α. | ns | [78] |
IgA, IgM, IgG, | IgA 20% IgM 51% IgG 23% | ns | no/small effect on Igs, stable | ns | [42] |
volatile profile | ns | ns | 300–900 MPa, 50–80 °C * modified volatile profile | ns | [76] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wesolowska, A.; Sinkiewicz-Darol, E.; Barbarska, O.; Bernatowicz-Lojko, U.; Borszewska-Kornacka, M.K.; van Goudoever, J.B. Innovative Techniques of Processing Human Milk to Preserve Key Components. Nutrients 2019, 11, 1169. https://doi.org/10.3390/nu11051169
Wesolowska A, Sinkiewicz-Darol E, Barbarska O, Bernatowicz-Lojko U, Borszewska-Kornacka MK, van Goudoever JB. Innovative Techniques of Processing Human Milk to Preserve Key Components. Nutrients. 2019; 11(5):1169. https://doi.org/10.3390/nu11051169
Chicago/Turabian StyleWesolowska, Aleksandra, Elena Sinkiewicz-Darol, Olga Barbarska, Urszula Bernatowicz-Lojko, Maria Katarzyna Borszewska-Kornacka, and Johannes B. van Goudoever. 2019. "Innovative Techniques of Processing Human Milk to Preserve Key Components" Nutrients 11, no. 5: 1169. https://doi.org/10.3390/nu11051169
APA StyleWesolowska, A., Sinkiewicz-Darol, E., Barbarska, O., Bernatowicz-Lojko, U., Borszewska-Kornacka, M. K., & van Goudoever, J. B. (2019). Innovative Techniques of Processing Human Milk to Preserve Key Components. Nutrients, 11(5), 1169. https://doi.org/10.3390/nu11051169