May Young Elite Cyclists Have Less Efficient Bone Metabolism?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics Statement
2.3. Participants
2.4. Anthropometric Measurements
2.5. Blood Collection and Biochemical Analysis
2.6. Bone Turnover Markers
2.7. Vitamin D Status
2.8. Statistics
3. Results
3.1. Bone Metabolism Markers and Vitamin D
3.2. Changes within Group
3.3. Group-by-Time Interactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bailey, D.A.; Faulkner, R.A.; McKay, H.A. Growth, physical activity, and bone mineral acquisition. Exerc. Sport Sci. Rev. 1996, 24, 233–266. [Google Scholar] [CrossRef]
- Adachi, J.D.; Adami, S.; Gehlbach, S.; Anderson, F.A., Jr.; Boonen, S.; Chapurlat, R.D.; Compston, J.E.; Cooper, C.; Delmas, P.; Diez-Perez, A.; et al. Impact of prevalent fractures on quality of life: Baseline results from the global longitudinal study of osteoporosis in women. Mayo Clin. Proc. 2010, 85, 806–813. [Google Scholar] [CrossRef]
- Haentjens, P.; Magaziner, J.; Colon-Emeric, C.S.; Vanderschueren, D.; Milisen, K.; Velkeniers, B.; Boonen, S. Meta-analysis: Excess mortality after hip fracture among older women and men. Ann. Intern. Med. 2010, 152, 380–390. [Google Scholar] [CrossRef]
- Vlachopoulos, D.; Barker, A.R.; Williams, C.A.; Knapp, K.M.; Metcalf, B.S.; Gracia-Marco, L. Effect of a program of short bouts of exercise on bone health in adolescents involved in different sports: The PRO-BONE study protocol. BMC Public Health 2015, 15, 361. [Google Scholar] [CrossRef] [PubMed]
- Dyson, K.; Blimkie, C.J.; Davison, K.S.; Webber, C.E.; Adachi, J.D. Gymnastic training and bone density in pre-adolescent females. Med. Sci. Sports Exerc. 1997, 29, 443–450. [Google Scholar] [PubMed]
- Morris, F.L.; Naughton, G.A.; Gibbs, J.L.; Carlson, J.S.; Wark, J.D. Prospective ten-month exercise intervention in premenarcheal girls: Positive effects on bone and lean mass. J. Bone Miner. Res. 1997, 12, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Marco, L.; Vicente-Rodriguez, G.; Valtuena, J.; Rey-Lopez, J.P.; Diaz Martinez, A.E.; Mesana, M.I.; Widhalm, K.; Ruiz, J.R.; Gonzalez-Gross, M.; Castillo, M.J.; et al. Bone mass and bone metabolism markers during adolescence: The HELENA Study. Horm. Res. Paediatr. 2010, 74, 339–350. [Google Scholar] [CrossRef]
- Rizzoli, R.; Bonjour, J.P. Determinants of peak bone mass and mechanisms of bone loss. Osteoporosis Int. 1999, 9 (Suppl. S2), S17–S23. [Google Scholar] [CrossRef]
- Grimston, S.K.; Willows, N.D.; Hanley, D.A. Mechanical loading regime and its relationship to bone mineral density in children. Med. Sci. Sports Exerc. 1993, 25, 1203–1210. [Google Scholar] [CrossRef]
- Olmedillas, H.; Gonzalez-Aguero, A.; Moreno, L.A.; Casajus, J.A.; Vicente-Rodriguez, G. Bone related health status in adolescent cyclists. PLoS ONE 2011, 6, e24841. [Google Scholar] [CrossRef]
- Medelli, J.; Lounana, J.; Menuet, J.J.; Shabani, M.; Cordero-MacIntyre, Z. Is osteopenia a health risk in professional cyclists? J. Clin. Densitom. 2009, 12, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.F.; Palmer, J.E.; Levy, S.S. Low bone mineral density in highly trained male master cyclists. Osteoporosis Int. 2003, 14, 644–649. [Google Scholar]
- Rector, R.S.; Rogers, R.; Ruebel, M.; Hinton, P.S. Participation in road cycling vs running is associated with lower bone mineral density in men. Metabolism 2008, 57, 226–232. [Google Scholar] [CrossRef]
- Seibel, M.J. Biochemical markers of bone turnover: Part I: Biochemistry and variability. Clin. Biochem. Rev. 2005, 26, 97–122. [Google Scholar] [PubMed]
- Brahm, H.; Strom, H.; Piehl-Aulin, K.; Mallmin, H.; Ljunghall, S. Bone metabolism in endurance trained athletes: A comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. Calcif. Tissue Int. 1997, 61, 448–454. [Google Scholar] [CrossRef]
- Maimoun, L.; Mariano-Goulart, D.; Couret, I.; Manetta, J.; Peruchon, E.; Micallef, J.P.; Verdier, R.; Rossi, M.; Leroux, J.L. Effects of physical activities that induce moderate external loading on bone metabolism in male athletes. J. Sports Sci. 2004, 22, 875–883. [Google Scholar] [CrossRef]
- Maimoun, L.; Galy, O.; Manetta, J.; Coste, O.; Peruchon, E.; Micallef, J.P.; Mariano-Goulart, D.; Couret, I.; Sultan, C.; Rossi, M. Competitive Season of Triathlon Does not Alter Bone Metabolism and Bone Mineral Status in Male Triathletes. Int. J. Sports Med. 2004, 25, 230–234. [Google Scholar]
- Slemenda, C.W.; Peacock, M.; Hui, S.; Zhou, L.; Johnston, C.C. Reduced rates of skeletal remodeling are associated with increased bone mineral density during the development of peak skeletal mass. J. Bone Miner. Res. 1997, 12, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Chaari, H.; Zouch, M.; Denguezli, M.; Bouajina, E.; Zaouali, M.; Tabka, Z. A high level of volleyball practice enhances bone formation markers and hormones in prepubescent boys. Biol. Sport 2012, 29, 303–309. [Google Scholar] [CrossRef]
- Lehtonen-Veromaa, M.; Mottonen, T.; Irjala, K.; Nuotio, I.; Leino, A.; Viikari, J. A 1-year prospective study on the relationship between physical activity, markers of bone metabolism, and bone acquisition in peripubertal girls. J. Clin. Endocrinol. Metab. 2000, 85, 3726–3732. [Google Scholar] [PubMed]
- Cashman, K.D. Calcium intake, calcium bioavailability and bone health. Br. J. Nutr. 2002, 87 (Suppl. S2), S169–S177. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr. 2004, 80 (Suppl. S6), 1678S–1688S. [Google Scholar] [CrossRef] [Green Version]
- Cranney, A.; Weiler, H.A.; O’Donnell, S.; Puil, L. Summary of evidence-based review on vitamin D efficacy and safety in relation to bone health. Am. J. Clin. Nutr. 2008, 88, 513S–519S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valtuena, J.; Gracia-Marco, L.; Vicente-Rodriguez, G.; Gonzalez-Gross, M.; Huybrechts, I.; Rey-Lopez, J.P.; Mouratidou, T.; Sioen, I.; Mesana, M.I.; Martinez, A.E.; et al. Vitamin D status and physical activity interact to improve bone mass in adolescents. The HELENA Study. Osteoporosis Int. 2012, 23, 2227–2237. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Aguero, A.; Olmedillas, H.; Gomez-Cabello, A.; Casajus, J.A.; Vicente-Rodriguez, G. Bone Structure and Geometric Properties at the Radius and Tibia in Adolescent Endurance-Trained Cyclists. Clin. J. Sport Med. 2017, 27, 69–77. [Google Scholar] [CrossRef]
- Olmedillas, H.; Gonzalez-Aguero, A.; Moreno, L.A.; Casajus, J.A.; Vicente-Rodriguez, G. Cycling and bone health: A systematic review. BMC Med. 2012, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Rejnmark, L.; Lauridsen, A.L.; Vestergaard, P.; Heickendorff, L.; Andreasen, F.; Mosekilde, L. Diurnal rhythm of plasma 1,25-dihydroxyvitamin D and vitamin D-binding protein in postmenopausal women: Relationship to plasma parathyroid hormone and calcium and phosphate metabolism. Eur. J. Endocrinol. 2002, 146, 635–642. [Google Scholar] [CrossRef]
- Nickols-Richardson, S.M.; O’Connor, P.J.; Shapses, S.A.; Lewis, R.D. Longitudinal bone mineral density changes in female child artistic gymnasts. J. Bone Miner. Res. 1999, 14, 994–1002. [Google Scholar] [CrossRef]
- Maimoun, L.; Coste, O.; Mura, T.; Philibert, P.; Galtier, F.; Mariano-Goulart, D.; Paris, F.; Sultan, C. Specific bone mass acquisition in elite female athletes. J. Clin. Endocrinol. Metab. 2013, 98, 2844–2853. [Google Scholar] [CrossRef]
- Gracia-Marco, L.; Ortega, F.B.; Jimenez-Pavon, D.; Rodriguez, G.; Valtuena, J.; Diaz-Martinez, A.E.; Gonzalez-Gross, M.; Castillo, M.J.; Vicente-Rodriguez, G.; Moreno, L.A. Contribution of bone turnover markers to bone mass in pubertal boys and girls. J. Pediatr. Endocrinol. Metab. 2011, 24, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, G.; Chappard, D.; Audran, M. Evaluation of the bone status in high-level cyclists. J. Clin. Densitom. 2012, 15, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Eliakim, A.; Raisz, L.G.; Brasel, J.A.; Cooper, D.M. Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J. Bone Miner. Res. 1997, 12, 1708–1713. [Google Scholar] [CrossRef]
- Vicente-Rodriguez, G. How does exercise affect bone development during growth? Sports Med. 2006, 36, 561–569. [Google Scholar] [CrossRef]
- Julian-Almarcegui, C.; Gomez-Cabello, A.; Huybrechts, I.; Gonzalez-Aguero, A.; Kaufman, J.M.; Casajus, J.A.; Vicente-Rodriguez, G. Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: A systematic review. Nutr. Rev. 2015, 73, 127–139. [Google Scholar] [CrossRef]
- Vicente-Rodriguez, G.; Ezquerra, J.; Mesana, M.I.; Fernandez-Alvira, J.M.; Rey-Lopez, J.P.; Casajus, J.A.; Moreno, L.A. Independent and combined effect of nutrition and exercise on bone mass development. J. Bone Miner. Metab. 2008, 26, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bruton, A.; Gonzalez-Aguero, A.; Olmedillas, H.; Gomez-Cabello, A.; Matute-Llorente, A.; Julian-Almarcegui, C.; Casajus, J.A.; Vicente-Rodriguez, G. Do calcium and vitamin D intake influence the effect of cycling on bone mass through adolescence? Nutr. Hosp. 2013, 28, 1136–1139. [Google Scholar] [PubMed]
- Vlachopoulos, D.; Barker, A.R.; Ubago-Guisado, E.; Fatouros, I.G.; Knapp, K.M.; Williams, C.A.; Gracia-Marco, L. Longitudinal Adaptations of Bone Mass, Geometry, and Metabolism in Adolescent Male Athletes: The PRO-BONE Study. J. Bone Miner. Res. 2017, 32, 2269–2277. [Google Scholar] [CrossRef]
- Daly, R.M.; Rich, P.A.; Klein, R.; Bass, S. Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: A prospective study in young male gymnasts. J. Bone Miner. Res. 1999, 14, 1222–1230. [Google Scholar] [CrossRef]
PRE | POST | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cyclists n = 7 | Controls n = 8 | Cyclists n = 7 | Controls n = 8 | |||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||
Age (years) | 16.3 | ± | 0.9 | 15.8 | ± | 1.5 | 17.6 | ± | 1.2 | 16.9 | ± | 1.5 |
Height (cm) | 171.1 | ± | 7.5 | 173.3 | ± | 8 | 173.6 | ± | 8 | 174.5 | ± | 6.6 |
Weight (kg) | 57 | ± | 5.8 | 66.1 | ± | 15.1 | 62.8 | ± | 6.6 | 67.1 | ± | 15.1 |
BMI (kg/m2) | 19.5 | ± | 1.7 | 22 | ± | 4.1 | 20.9 | ± | 1.8 | 22 | ± | 4.8 |
Years of cycling training (years) | 2.6 | ± | 2.8 | 3.6 | ± | 2.8 | ||||||
Hours of cycling training (h/week) | 10.5 | ± | 7 | 13.5 | ± | 5.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapún-López, M.; Olmedillas, H.; Gonzalez-Agüero, A.; Gomez-Cabello, A.; Pradas de la Fuente, F.; Moreno, L.A.; Casajús, J.A.; Vicente-Rodríguez, G. May Young Elite Cyclists Have Less Efficient Bone Metabolism? Nutrients 2019, 11, 1178. https://doi.org/10.3390/nu11051178
Rapún-López M, Olmedillas H, Gonzalez-Agüero A, Gomez-Cabello A, Pradas de la Fuente F, Moreno LA, Casajús JA, Vicente-Rodríguez G. May Young Elite Cyclists Have Less Efficient Bone Metabolism? Nutrients. 2019; 11(5):1178. https://doi.org/10.3390/nu11051178
Chicago/Turabian StyleRapún-López, Marta, Hugo Olmedillas, Alejandro Gonzalez-Agüero, Alba Gomez-Cabello, Francisco Pradas de la Fuente, Luis A. Moreno, José A. Casajús, and Germán Vicente-Rodríguez. 2019. "May Young Elite Cyclists Have Less Efficient Bone Metabolism?" Nutrients 11, no. 5: 1178. https://doi.org/10.3390/nu11051178
APA StyleRapún-López, M., Olmedillas, H., Gonzalez-Agüero, A., Gomez-Cabello, A., Pradas de la Fuente, F., Moreno, L. A., Casajús, J. A., & Vicente-Rodríguez, G. (2019). May Young Elite Cyclists Have Less Efficient Bone Metabolism? Nutrients, 11(5), 1178. https://doi.org/10.3390/nu11051178