Adherence to the Mediterranean Diet is Associated with Better Sleep Quality in Italian Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Dietary Assessment
2.4. Adherence to the Mediterranean Diet
2.5. Sleep Quality
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matricciani, L.; Bin, Y.S.; Lallukka, T.; Kronholm, E.; Dumuid, D.; Paquet, C.; Olds, T. Past, present, and future: trends in sleep duration and implications for public health. Sleep Heal. 2017, 3, 317–323. [Google Scholar] [CrossRef]
- Zhao, C.; Noble, J.M.; Marder, K.; Hartman, J.S.; Gu, Y.; Scarmeas, N. Dietary Patterns, Physical Activity, Sleep, and Risk for Dementia and Cognitive Decline. Nutr. Rep. 2018, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef]
- Atkinson, G.; Davenne, D. Relationships between sleep, physical activity and human health. Physiol. Behav. 2007, 90, 229–235. [Google Scholar] [PubMed] [Green Version]
- Irwin, M.R. Why sleep is important for health: A psychoneuroimmunology perspective. Annu. Rev. Psychol. 2015, 66, 143–172. [Google Scholar] [CrossRef]
- Raven, F.; Van Der Zee, E.A.; Meerlo, P.; Havekes, R. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. Sleep Med. Rev. 2018, 39, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Pace-Schott, E.F.; Spencer, R.M. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment. Curr. Top. Behav. Neurosci. 2015, 25, 307–330. [Google Scholar]
- Wu, M.N.; Rosenberg, P.B.; Spira, A.P.; Wennberg, A.M. Sleep Disturbance, Cognitive Decline, and Dementia: A Review. Semin. Neurol. 2017, 37, 395–406. [Google Scholar] [CrossRef]
- Jansen, E.C.; Dunietz, G.L.; Tsimpanouli, M.-E.; Guyer, H.M.; Shannon, C.; Hershner, S.D.; O’Brien, L.M.; Baylin, A. Sleep, Diet, and Cardiometabolic Health Investigations: a Systematic Review of Analytic Strategies. Nutr. Rep. 2018, 7, 235–258. [Google Scholar] [CrossRef]
- Martinez-Lacoba, R.; Pardo-Garcia, I.; Amo-Saus, E.; Escribano-Sotos, F. Mediterranean diet and health outcomes: A systematic meta-review. Eur. J. Public Health 2018, 28, 955–961. [Google Scholar] [CrossRef]
- Villani, A.; Sultana, J.; Doecke, J.; Mantzioris, E. Differences in the interpretation of a modernized Mediterranean diet prescribed in intervention studies for the management of type 2 diabetes: how closely does this align with a traditional Mediterranean diet? Eur. J. Nutr. 2018, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza-Martí, A.; Cabañero-Martínez, M.; Hurtado-Sánchez, J.; Laguna-Pérez, A.; Ferrer-Cascales, R. Evaluation of Mediterranean diet adherence scores: a systematic review. BMJ Open 2018, 8, e019033. [Google Scholar] [CrossRef] [PubMed]
- Huo, R.; Du, T.; Xu, Y.; Xu, W.; Chen, X.; Sun, K.; Yu, X. Effects of mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: A meta-analysis. Eur. J. Clin. Nutr. 2015, 69, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Mocciaro, G.; Ziauddeen, N.; Godos, J.; Marranzano, M.; Chan, M.-Y.; Ray, S. Does a Mediterranean-type dietary pattern exert a cardio-protective effect outside the Mediterranean region? A review of current evidence. Int. J. Food. Sci. Nutr. 2018, 69, 524–535. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Missbach, B.; Konig, J.; Hoffmann, G. Adherence to a mediterranean diet and risk of diabetes: A systematic review and meta-analysis. Public Health Nutr. 2015, 18, 1292–1299. [Google Scholar] [CrossRef]
- Kastorini, C.M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The effect of mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011, 57, 1299–1313. [Google Scholar] [CrossRef]
- Godos, J.; Zappala, G.; Bernardini, S.; Giambini, I.; Bes-Rastrollo, M.; Martinez-Gonzalez, M. Adherence to the mediterranean diet is inversely associated with metabolic syndrome occurrence: A meta-analysis of observational studies. Int. J. Food Sci. Nutr. 2017, 68, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Casini, A. Mediterranean diet and non-alcoholic fatty liver disease: New therapeutic option around the corner? World J. Gastroenterol. 2014, 20, 7339–7346. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Federico, A.; Dallio, M.; Scazzina, F. Mediterranean diet and nonalcoholic fatty liver disease: Molecular mechanisms of protection. Int. J. Food Sci. Nutr. 2017, 68, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Mistretta, A.; Marventano, S.; Purrello, A.; Vitaglione, P.; Calabrese, G.; Drago, F.; Galvano, F. Beneficial effects of the Mediterranean diet on metabolic syndrome. Curr. Pharm. Des. 2014, 20, 5039–5044. [Google Scholar] [CrossRef] [PubMed]
- Lakkur, S.; Judd, S.E. Diet and stroke: Recent evidence supporting a Mediterranean style diet and food in the primary prevention of stroke. Stroke 2015, 46, 2007–2011. [Google Scholar] [CrossRef]
- Petersson, S.D.; Philippou, E. Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review of the Evidence123. Adv. Nutr. Int. J. 2016, 7, 889–904. [Google Scholar] [CrossRef] [Green Version]
- Psaltopoulou, T.; Sergentanis, T.N.; Panagiotakos, D.B.; Sergentanis, I.N.; Kosti, R.; Scarmeas, N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann. Neurol. 2013, 74, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Safouris, A.; Tsivgoulis, G.; Sergentanis, T.; Psaltopoulou, T. Mediterranean Diet and Risk of Dementia. Curr. Res. 2015, 12, 736–744. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martinez-Gonzalez, M.A.; Martinez-Lapiscina, E.H.; Fito, M.; Perez-Heras, A.; Salas-Salvado, J.; et al. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef]
- Aridi, Y.S.; Walker, J.L.; Wright, O.R.L. The Association between the Mediterranean Dietary Pattern and Cognitive Health: A Systematic Review. Nutrients 2017, 9, 674. [Google Scholar] [CrossRef]
- Campanini, M.Z.; Guallar-Castillon, P.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. Mediterranean diet and changes in sleep duration and indicators of sleep quality in older adults. Sleep 2017, 40. [Google Scholar] [CrossRef] [PubMed]
- Jaussent, I.; Dauvilliers, Y.; Ancelin, M.-L.; Dartigues, J.-F.; Tavernier, B.; Touchon, J.; Ritchie, K.; Besset, A. Insomnia symptoms in older adults: associated factors and gender differences. Am. J. Geriatr. Psychiatry 2011, 19, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Castro-Diehl, C.; Wood, A.C.; Redline, S.; Reid, M.; A Johnson, D.; E Maras, J.; Jacobs, D.R.; Shea, S.; Crawford, A.; St-Onge, M.-P.; et al. Mediterranean diet pattern and sleep duration and insomnia symptoms in the Multi-Ethnic Study of Atherosclerosis. Sleep 2018, 41, 41. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; D’Urso, M.; Mistretta, A.; Galvano, F. The mediterranean healthy eating, ageing, and lifestyle (meal) study: Rationale and study design. Int. J. Food Sci. Nutr. 2017, 68, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Mistretta, A.; Marventano, S.; Platania, A.; Godos, J.; Grosso, G.; Galvano, F. Metabolic profile of the Mediterranean healthy Eating, Lifestyle and Aging (MEAL) study cohort. Mediterr. J. Nutr. Metab. 2017, 10, 131–140. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and managing the global epidemic. Report of a who consultation presented at the world health organization; World Health Organization: Geneva, Switzerland, 1997; Volume Publication WHO/NUT/NCD/98.1. [Google Scholar]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in Italian adults living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Stern, J.H.; Grant, A.S.; Thomson, C.A.; Tinker, L.; Hale, L.; Brennan, K.M.; Woods, N.F.; Chen, Z. Short sleep duration is associated with decreased serum leptin, increased energy intake, and decreased diet quality in postmenopausal women. Obesity 2014, 22, E55–E61. [Google Scholar] [CrossRef] [Green Version]
- Haghighatdoost, F.; Karimi, G.; Esmaillzadeh, A.; Azadbakht, L. Sleep deprivation is associated with lower diet quality indices and higher rate of general and central obesity among young female students in Iran. Nutrition 2012, 28, 1146–1150. [Google Scholar] [CrossRef]
- Kant, A.K.; Graubard, B.I. Association of self-reported sleep duration with eating behaviors of american adults: Nhanes 2005-2010. Am. J. Clin. Nutr. 2014, 100, 938–947. [Google Scholar] [CrossRef]
- Kim, S.; DeRoo, L.A.; Sandler, D.P. Eating patterns and nutritional characteristics associated with sleep duration. Public Health Nutr. 2011, 14, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Crispim, C.A.; Zimberg, I.Z.; Dos Reis, B.G.; Diniz, R.M.; Tufik, S.; De Mello, M.T. Relationship between Food Intake and Sleep Pattern in Healthy Individuals. J. Clin. Sleep Med. 2011, 7, 659–664. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.P.; Mikic, A.; Pietrolungo, C.E. Effects of diet on sleep quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; De Pergola, G. The Mediterranean Diet: its definition and evaluation of a priori dietary indexes in primary cardiovascular prevention. Int. J. Food Sci. Nutr. 2018, 69, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Zappala, G.; Buscemi, S.; Mule, S.; La Verde, M.; D’Urso, M.; Corleo, D.; Marranzano, M. High adherence to mediterranean diet, but not individual foods or nutrients, is associated with lower likelihood of being obese in a mediterranean cohort. Eat. Weight Disord. 2017, 23, 605–614. [Google Scholar] [CrossRef] [PubMed]
- La Verde, M.; Mule, S.; Zappala, G.; Privitera, G.; Maugeri, G.; Pecora, F.; Marranzano, M. Higher adherence to the mediterranean diet is inversely associated with having hypertension: Is low salt intake a mediating factor? Int. J. Food Sci. Nutr. 2018, 69, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Platania, A.; Zappala, G.; Mirabella, M.U.; Gullo, C.; Mellini, G.; Beneventano, G.; Maugeri, G.; Marranzano, M. Association between Mediterranean diet adherence and dyslipidaemia in a cohort of adults living in the Mediterranean area. Int. J. Food Sci. Nutr. 2017, 69, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Sinatra, D.; Blanco, I.; Mulè, S.; La Verde, M.; Marranzano, M. Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort. Nutrients 2017, 9, 1069. [Google Scholar] [CrossRef]
- Godos, J.; Bergante, S.; Satriano, A.; Pluchinotta, F.R.; Marranzano, M. Dietary Phytoestrogen Intake is Inversely Associated with Hypertension in a Cohort of Adults Living in the Mediterranean Area. Molecules 2018, 23, 368. [Google Scholar] [CrossRef]
- Huhn, S.; Masouleh, S.K.; Stumvoll, M.; Villringer, A.; Witte, A.V. Components of a Mediterranean diet and their impact on cognitive functions in aging. Front. Aging Neurosci. 2015, 7, 132. [Google Scholar] [CrossRef]
- Knight, A.; Bryan, J.; Murphy, K. Is the Mediterranean diet a feasible approach to preserving cognitive function and reducing risk of dementia for older adults in Western countries? New insights and future directions. Ageing Res. Rev. 2016, 25, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, M.I.; Gonzalo-Gobernado, R.; Montaner, J. Neuroprotective diets for stroke. Neurochem. Int. 2017, 107, 4–10. [Google Scholar] [CrossRef]
- A Clark, I.; Vissel, B. Inflammation-sleep interface in brain disease: TNF, insulin, orexin. J. Neuroinflammation 2014, 11, 51. [Google Scholar] [CrossRef]
- Everson, C.A.; Laatsch, C.D.; Hogg, N. Antioxidant defense responses to sleep loss and sleep recovery. Am. J. Physiol. Integr. Comp. Physiol. 2005, 288, R374–R383. [Google Scholar] [CrossRef] [Green Version]
- Kanagasabai, T.; Ardern, C.I. Inflammation, Oxidative Stress, and Antioxidants Contribute to Selected Sleep Quality and Cardiometabolic Health Relationships: A Cross-Sectional Study. Mediat. Inflamm. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kanagasabai, T.; Ardern, C.I. Contribution of Inflammation, Oxidative Stress, and Antioxidants to the Relationship between Sleep Duration and Cardiometabolic Health. Sleep 2015, 38, 1905–1912. [Google Scholar] [CrossRef] [Green Version]
- Ricker, M.A.; Haas, W.C. Anti-Inflammatory Diet in Clinical Practice: A Review. Nutr. Clin. Pr. 2017, 32, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Marventano, S.; Castellano, S.; Mistretta, A.; Pajak, A.; Galvano, F. Dietary n-3 PUFA, fish consumption and depression: A systematic review and meta-analysis of observational studies. J. Affect. Disord. 2016, 205, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, J.; Qiu, J.; Li, Y.; Wang, J.; Jiao, J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: A dose-response meta-analysis of 21 cohort studies. Am. J. Clin. Nutr. 2016, 103, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Castellano, S.; Ray, S.; Grosso, G.; Galvano, F. Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study. Molecules 2018, 23, 999. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-C.; Cassidy, A.; Willett, W.C.; Rimm, E.B.; O’Reilly, E.J.; I Okereke, O. Dietary flavonoid intake and risk of incident depression in midlife and older women123. Am. J. Clin. Nutr. 2016, 104, 704–714. [Google Scholar] [CrossRef] [Green Version]
- Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 351. [Google Scholar] [CrossRef]
- Hornedo-Ortega, R.; Cerezo, A.B.; De Pablos, R.M.; Krisa, S.; Richard, T.; García-Parrilla, M.C.; Troncoso, A.M. Phenolic Compounds Characteristic of the Mediterranean Diet in Mitigating Microglia-Mediated Neuroinflammation. Front. Cell. Neurosci. 2018, 12, 373. [Google Scholar] [CrossRef]
- Grosso, G.; Galvano, F.; Marventano, S.; Malaguarnera, M.; Bucolo, C.; Drago, F.; Caraci, F. Omega-3 Fatty Acids and Depression: Scientific Evidence and Biological Mechanisms. Oxidative Med. Cell. Longev. 2014, 2014, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.P.; Cavegn, N.; Nix, A.; do Nascimento Bevilaqua, M.C.; Stangl, D.; Zainuddin, M.S.; Nardi, A.E.; Gardino, P.F.; Thuret, S. The role of dietary polyphenols on adult hippocampal neurogenesis: Molecular mechanisms and behavioural effects on depression and anxiety. Oxid. Med. Cell. Longev. 2012, 541971. [Google Scholar] [CrossRef]
- Maruszak, A.; Pilarski, A.; Murphy, T.; Branch, N.; Thuret, S. Hippocampal neurogenesis in alzheimer’s disease: Is there a role for dietary modulation? J. Alzheimers Dis. 2014, 38, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.; Dias, G.P.; Thuret, S. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap. Neural Plast. 2014, 2014, 1–32. [Google Scholar] [CrossRef]
- Wu, Y.; Zhai, L.; Zhang, D. Sleep duration and obesity among adults: a meta-analysis of prospective studies. Sleep Med. 2014, 15, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Fatima, Y.; Doi, S.A.R.; Mamun, A.A. Longitudinal impact of sleep on overweight and obesity in children and adolescents: A systematic review and bias-adjusted meta-analysis. Obes. Rev. 2015, 16, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Bodosi, B.; Gardi, J.; Hajdu, I.; Szentirmai, E.; Obal, F., Jr.; Krueger, J.M. Rhythms of ghrelin, leptin, and sleep in rats: Effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R1071–R1079. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Lin, L.; Austin, D.; Young, T.; Mignot, E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004, 1, e62. [Google Scholar] [CrossRef] [PubMed]
- Littman, A.J.; Vitiello, M.V.; Foster-Schubert, K.; Ulrich, C.M.; Tworoger, S.S.; Potter, J.D.; Weigle, D.S.; McTiernan, A. Sleep, ghrelin, leptin and changes in body weight during a 1-year moderate-intensity physical activity intervention. Int. J. Obes. (Lond). 2007, 31, 466–475. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.-P.; O’Keeffe, M.; Roberts, A.L.; Roychoudhury, A.; Laferrere, B. Short Sleep Duration, Glucose Dysregulation and Hormonal Regulation of Appetite in Men and Women. Sleep 2012, 35, 1503–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanfranco, F.; Motta, G.; Minetto, M.A.; Ghigo, E.; Maccario, M. Growth hormone/insulin-like growth factor-I axis in obstructive sleep apnea syndrome: An update. J. Endocrinol. Investig. 2010, 33, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, F.; Juárez-Aguilar, E.; Santiago-García, J.; Cardinali, D.P. Ghrelin and its interactions with growth hormone, leptin and orexins: Implications for the sleep–wake cycle and metabolism. Sleep Med. Rev. 2014, 18, 89–97. [Google Scholar] [CrossRef]
- Fatima, Y.; Doi, S.A.; Mamun, A.A. Sleep quality and obesity in young subjects: a meta-analysis. Obes. Rev. 2016, 17, 1154–1166. [Google Scholar] [CrossRef] [Green Version]
- Stranks, E.K.; Crowe, S.F. The Cognitive Effects of Obstructive Sleep Apnea: An Updated Meta-analysis. Arch. Clin. Neuropsychol. 2016, 31, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Daulatzai, M.A. Evidence of neurodegeneration in obstructive sleep apnea: Relationship between obstructive sleep apnea and cognitive dysfunction in the elderly. J. Neurosci. 2015, 93, 1778–1794. [Google Scholar] [CrossRef] [Green Version]
- Mancini, J.G.; Filion, K.B.; Atallah, R.; Eisenberg, M.J. Systematic Review of the Mediterranean Diet for Long-Term Weight Loss. Am. J. Med. 2016, 129, 407–415.e4. [Google Scholar] [CrossRef]
- Ros, E.; Martinez-Gonzalez, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean Diet and Cardiovascular Health: Teachings of the PREDIMED Study123. Adv. Nutr. Int. J. 2014, 5, 330S–336S. [Google Scholar] [CrossRef] [Green Version]
- Castro-Barquero, S.; Lamuela-Raventós, R.M.; Doménech, M.; Estruch, R. Relationship between Mediterranean Dietary Polyphenol Intake and Obesity. Nutrients 2018, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Marranzano, M.; Ray, S.; Godos, J.; Galvano, F. Association between dietary flavonoids intake and obesity in a cohort of adults living in the Mediterranean area. Int. J. Food Sci. Nutr. 2018, 69, 1020–1029. [Google Scholar] [CrossRef] [PubMed]
Sleep Quality | |||
---|---|---|---|
Inadequate (n = 622) | Adequate (n = 1314) | p-Value | |
Sex, n (%) | 0.052 | ||
Men | 278 (44.7) | 526 (40.0) | |
Women | 344 (55.3) | 788 (60.0) | |
Age groups, n (%) | 0.161 | ||
<30 | 124 (19.9) | 226 (17.2) | |
30–49 | 218 (35.0) | 485 (36.9) | |
50–69 | 209 (33.6) | 416 (31.7) | |
≥70 | 71 (11.4) | 187 (14.2) | |
Educational status, n (%) | 0.119 | ||
Low | 224 (36.0) | 473 (36.0) | |
Medium | 248 (39.9) | 472 (35.9) | |
High | 150 (24.1) | 369 (28.1) | |
Occupational status, n (%) | 0.011 | ||
Unemployed | 131 (24.8) | 330 (29.2) | |
Low | 84 (15.9) | 181 (16.1) | |
Medium | 167 (31.6) | 273 (24.2) | |
High | 146 (27.7) | 345 (30.5) | |
Smoking status, n (%) | 0.595 | ||
Never smoker | 375 (60.3) | 820 (62.4) | |
Former smoker | 89 (14.3) | 187 (14.2) | |
Current smoker | 158 (25.4) | 307 (23.4) | |
Physical activity level, n (%) | 0.169 | ||
Low | 93 (16.6) | 236 (20.2) | |
Moderate | 291 (52.0) | 565 (48.4) | |
High | 176 (31.4) | 367 (31.4) | |
Health status, n (%) | |||
Hypertension | 292 (46.9) | 684 (52.1) | 0.036 |
Type-2 diabetes | 45 (7.2) | 101 (7.7) | 0.725 |
Dyslipidemias | 118 (19.0) | 238 (18.1) | 0.649 |
Cardiovascular disease | 57 (9.3) | 97 (7.6) | 0.198 |
Cancer | 19 (3.1) | 59 (4.5) | 0.134 |
Weight status, n (%) | 0.372 | ||
Normal | 267 (47.6) | 584 (47.2) | |
Overweight | 205 (36.5) | 425 (34.4) | |
Obese | 89 (15.9) | 228 (18.4) |
Mediterranean Diet Adherence Score * | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p-Value | |
Overall sleep quality, n (%) | <0.001 | ||||
Adequate | 272 (58.9) | 403 (68.0) | 440 (72.6) | 199 (72.4) | |
Inadequate | 190 (41.1) | 190 (32.0) | 166 (27.4) | 76 (27.6) | |
Sleep duration, n (%) | <0.001 | ||||
>7 h | 246 (53.2) | 371 (62.6) | 376 (62.0) | 171 (62.2) | |
6–7 h | 111 (24.0) | 130 (21.9) | 137 (22.6) | 57 (20.7) | |
5–6 h | 65 (14.1) | 58 (9.8) | 74 (12.2) | 33 (12.0) | |
<5 h | 40 (8.7) | 34 (5.7) | 19 (3.1) | 14 (5.1) | |
Sleep disturbance, n (%) | 0.311 | ||||
None | 53 (11.5) | 54 (9.1) | 74 (12.2) | 35 (12.7) | |
Low | 335 (72.5) | 444 (74.9) | 451 (74.4) | 207 (75.3) | |
Medium | 74 (16.0) | 95 (16.0) | 81 (13.4) | 33 (12.0) | |
High | 0 | 0 | 0 | 0 | |
Sleep latency, n (%) | 0.003 | ||||
Very short | 172 (37.2) | 253 (42.7) | 298 (49.2) | 135 (49.1) | |
Short | 153 (33.1) | 210 (35.4) | 181 (29.9) | 85 (30.9) | |
Medium | 101 (21.9) | 94 (15.9) | 97 (16.0) | 41 (14.9) | |
Long | 36 (7.8) | 36 (6.1) | 30 (5.0) | 14 (5.1) | |
Day dysfunction, n (%) | <0.001 | ||||
None | 296 (64.1) | 433 (73.0) | 440 (72.6) | 201 (73.1) | |
Low | 75 (16.2) | 91 (15.3) | 93 (15.3) | 30 (10.9) | |
Medium | 35 (7.6) | 28 (4.7) | 27 (4.5) | 23 (8.4) | |
High | 56 (12.1) | 41 (6.9) | 46 (7.6) | 21 (7.6) | |
Sleep efficiency, n (%) | <0.001 | ||||
High | 296 (64.1) | 433 (73.0) | 440 (72.6) | 201 (73.1) | |
Medium | 75 (16.2) | 91 (15.3) | 93 (15.3) | 30 (10.9) | |
Low | 35 (7.6) | 28 (4.7) | 27 (4.5) | 23 (8.4) | |
Very low | 56 (12.1) | 41 (6.9) | 46 (7.6) | 21 (7.6) | |
Self-rated sleep quality, n (%) | 0.043 | ||||
Very low | 14 (3.0) | 29 (4.9) | 15 (2.5) | 13 (4.7) | |
Low | 17 (3.7) | 15 (2.5) | 15 (2.5) | 0 (0) | |
Medium | 17 (3.7) | 26 (4.4) | 20 (3.3) | 11 (4.0) | |
High | 414 (89.6) | 523 (88.2) | 556 (91.7) | 251 (91.3) | |
Need medication to sleep, n (%) | 48 (10.4) | 70 (11.8) | 50 (8.3) | 24 (8.7) | 0.187 |
Mediterranean Diet Adherence Score | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | 1-Point Increment | |
OR (95% CI) * | |||||
Adequate sleep quality | 1 | 1.48 (1.15, 1.90) § | 1.85 (1.43, 2.39) § | 1.82 (1.32, 2.52) § | 1.10 (1.05, 1.16) § |
Sleep duration | 1 | 1.39 (1.04, 1.86) § | 1.29 (0.97, 1.71) | 1.35 (0.94, 1.92) | 1.07 (1.02, 1.12) § |
Sleep disturbance | 1 | 0.81 (0.51, 1.30) | 1.26 (0.82, 1.95) | 1.31 (0.77, 2.21) | 1.04 (0.97, 1.12) |
Sleep latency | 1 | 1.12 (0.84, 1.50) | 1.64 (1.23, 2.17) § | 1.52 (1.07, 2.16) | 1.07 (1.02, 1.12) § |
Day dysfunction | 1 | 1.12 (0.85, 1.49) | 1.42 (1.07, 1.88) # | 1.25 (0.88, 1.77) | 1.04 (1.00, 1.09) # |
Sleep efficiency | 1 | 1.36 (1.00, 1.84) # | 1.33 (0.98, 1.80) | 1.40 (0.95, 2.05) | 1.06 (1.01, 1.12) # |
Need medication to sleep | 1 | 0.67 (0.42, 1.07) | 1.34 (0.80, 2.25) | 1.05 (0.57, 1.93) | 1.03 (0.95, 1.11) |
Self-rated sleep quality | 1 | 1.04 (0.73, 1.48) | 1.16 (0.83, 1.64) | 1.30 (0.86, 1.98) | 1.04 (0.98, 1.09) |
Mediterranean Diet Adherence Score, 1-Point Increment Recalculated Excluding: | |||||||||
---|---|---|---|---|---|---|---|---|---|
Fruit | Vegetable | Legume | Dairy | Whole-grain | Fish | Meat | Olive oil | Alcohol | |
OR (95% CI) * | |||||||||
Overall sleep quality | 1.12 (1.06, 1.18) § | 1.11 (1.06, 1.17) § | 1.10 (1.05, 1.17) § | 1.13 (1.07, 1.19) § | 1.09 (1.04, 1.15) # | 1.11 (1.06, 1.17) § | 1.10 (1.05, 1.15) § | 1.09 (1.03, 1.14) # | 1.10 (1.05, 1.15) § |
Sleep duration | 1.08 (1.02, 1.14) # | 1.07 (1.02, 1.12) # | 1.08 (1.03, 1.14) # | 1.08 (1.03, 1.14) # | 1.06 (1.01, 1.11) # | 1.07 (1.02, 1.13) # | 1.07 (1.02, 1.13) # | 1.04 (0.99, 1.09) | 1.06 (1.01, 1.11) # |
Sleep disturbance | 1.03 (0.95, 1.11) | 1.03 (0.95, 1.11) | 1.06 (0.98, 1.15) | 1.07 (0.99, 1.16) | 1.05 (0.97, 1.13) | 1.06 (0.98, 1.14) | 1.03 (0.96, 1.11) | 1.03 (0.96, 1.11) | 1.04 (0.97, 1.12) |
Sleep latency | 1.08 (1.03, 1.14) # | 1.09 (1.03, 1.14) # | 1.07 (1.02, 1.13) # | 1.07 (1.02, 1.12) # | 1.06 (1.01, 1.11) # | 1.08 (1.03, 1.14) # | 1.08 (1.03, 1.13) # | 1.06 (1.01, 1.11) # | 1.07 (1.02, 1.12) # |
Day dysfunction | 1.04 (0.99, 1.09) | 1.04 (0.99, 1.10) | 1.04 (0.99, 1.10) | 1.06 (1.01, 1.11) # | 1.05 (1.00, 1.10) # | 1.05 (1.00, 1.10) # | 1.05 (1.00, 1.10)# | 1.04 (0.99, 1.09) | 1.04 (0.99, 1.09) |
Sleep efficiency | 1.06 (1.00, 1.12) # | 1.07 (1.01, 1.12) # | 1.06 (1.01, 1.12) # | 1.09 (1.03, 1.15) # | 1.06 (1.01, 1.11) # | 1.06 (1.01, 1.12) # | 1.06 (1.01, 1.12) # | 1.05 (1.00, 1.11) # | 1.07 (1.02, 1.12) # |
Need medication to sleep | 1.04 (0.96, 1.14) | 1.03 (0.95, 1.12) | 1.03 (0.94, 1.12) | 1.02 (0.94, 1.10) | 1.03 (0.96, 1.12) | 1.04 (0.96, 1.13) | 1.04 (0.96, 1.12) | 1.02 (0.94, 1.10) | 1.02 (0.95, 1.10) |
Self-rated sleep quality | 1.03 (0.96, 1.09) | 1.04 (0.98, 1.10) | 1.04 (0.98, 1.11) | 1.04 (0.98, 1.11) | 1.05 (0.99, 1.11) | 1.04 (0.98, 1.10) | 1.04 (0.98, 1.10) | 1.03 (0.97, 1.10) | 1.04 (0.98, 1.10) |
Mediterranean Diet Adherence Score | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | 1-Point Increment | |
OR (95% CI) * | |||||
Normal/overweight | |||||
Overall sleep quality | 1 | 1.22 (0.87, 1.71) | 1.79 (1.27, 2.54) § | 2.30 (1.49, 3.54) § | 1.10 (1.04, 1.16) § |
Sleep duration | 1 | 1.32 (0.94, 1.83) | 1.29 (0.92, 1.79) | 1.32 (0.89, 1.97) | 1.06 (1.01, 1.12) # |
Sleep disturbance | 1 | 0.82 (0.47, 1.40) | 1.28 (0.77, 2.13) | 1.22 (0.67, 2.22) | 1.03 (0.95, 1.12) |
Sleep latency | 1 | 1.08 (0.77, 1.51) | 1.96 (1.40, 2.74) § | 1.62 (1.09, 2.41) § | 1.09 (1.03, 1.15) # |
Day dysfunction | 1 | 1.26 (0.91, 1.74) | 1.51 (1.09, 2.10) § | 1.27 (0.86, 1.88) | 1.03 (0.97, 1.08) |
Sleep efficiency | 1 | 1.32 (0.92, 1.88) | 1.29 (0.90, 1.84) | 1.48 (0.96, 2.28) | 1.04 (0.99, 1.10) |
Need medication to sleep | 1 | 0.62 (0.37, 1.04) | 1.24 (0.69, 2.23) | 0.97 (0.50, 1.89) | 1.01 (0.92, 1.10) |
Self-rated sleep quality | 1 | 0.97 (0.65, 1.46) | 1.27 (0.85, 1.89) | 1.31 (0.82, 2.08) | 1.04 (0.98, 1.11) |
Obese | |||||
Overall sleep quality | 1 | 0.91 (0.39, 2.15) | 1.11 (0.49, 2.50) | 1.12 (0.33, 3.79) | 1.12 (0.95, 1.32) |
Sleep duration | 1 | 1.67 (0.75, 3.73) | 1.58 (0.75, 3.36) | 2.68 (0.80, 8.96) | 1.09 (0.94, 1.26) |
Sleep disturbance | 1 | 1.38 (0.42, 4.54) | 1.71 (0.59, 4.92) | 3.41 (0.81, 14.36) | 1.20 (0.98, 1.49) |
Sleep latency | 1 | 1.08 (0.49, 2.36) | 0.69 (0.33, 1.43) | 0.65 (0.21, 2.01) | 0.89 (0.77, 1.03) |
Day dysfunction | 1 | 0.69 (0.32, 1.49) | 1.06 (0.52, 2.19) | 1.22 (0.39, 3.79) | 1.07 (0.93, 1.23) |
Sleep efficiency | 1 | 1.91 (0.81, 4.50) | 1.32 (0.61, 2.87) | 1.46 (0.44, 4.81) | 1.13 (0.97, 1.33) |
Need medication to sleep | 1 | 0.48 (0.09, 2.40) | 1.36 (0.24, 7.59) | 1.57 (0.40, 5.92) | 1.21 (0.87, 1.69) |
Self-rated sleep quality | 1 | 1.28 (0.54, 3.00) | 0.87 (0.38, 1.97) | 0.92 (0.25, 3.30) | 0.95 (0.81, 1.11) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godos, J.; Ferri, R.; Caraci, F.; Cosentino, F.I.I.; Castellano, S.; Galvano, F.; Grosso, G. Adherence to the Mediterranean Diet is Associated with Better Sleep Quality in Italian Adults. Nutrients 2019, 11, 976. https://doi.org/10.3390/nu11050976
Godos J, Ferri R, Caraci F, Cosentino FII, Castellano S, Galvano F, Grosso G. Adherence to the Mediterranean Diet is Associated with Better Sleep Quality in Italian Adults. Nutrients. 2019; 11(5):976. https://doi.org/10.3390/nu11050976
Chicago/Turabian StyleGodos, Justyna, Raffaele Ferri, Filippo Caraci, Filomena Irene Ilaria Cosentino, Sabrina Castellano, Fabio Galvano, and Giuseppe Grosso. 2019. "Adherence to the Mediterranean Diet is Associated with Better Sleep Quality in Italian Adults" Nutrients 11, no. 5: 976. https://doi.org/10.3390/nu11050976
APA StyleGodos, J., Ferri, R., Caraci, F., Cosentino, F. I. I., Castellano, S., Galvano, F., & Grosso, G. (2019). Adherence to the Mediterranean Diet is Associated with Better Sleep Quality in Italian Adults. Nutrients, 11(5), 976. https://doi.org/10.3390/nu11050976