Dietary Silicon and Its Impact on Plasma Silicon Levels in the Polish Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dietary Intake Assessment
2.3. Food Sampling for Silicon Analysis
2.4. Silicon Measurement in Foods
2.5. Silicon Measurement in Plasma
2.6. Statistical Analyses
3. Results
3.1. Study Population Characteristics, Dietary Intake, and Dietary Habit Assessment
3.2. Silicon Content in Cereal Products and Beverages from the Polish Market
3.3. Silicon Intake
Total and Bioavailable Silicon in the Diet and Silicon Intake from Food Groups
3.4. Plasma Silicon and Its Relation to Diet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nielsen, F.H. Update on the possible nutritional importance of silicon. J. Trace Elem. Med. Biol. 2014, 28, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, S.; Jugdaohsingh, R.; Vivancos, J.; Marron, A.; Deshmukh, R.; Ma, J.F.; Mitani-Ueno, N.; Robertson, J.; Wills, J.; Boekschoten, M.V.; et al. Identification of a mammalian silicon transporter. Am. J. Physiol. Cell Physiol. 2017, 312, C550–C561. [Google Scholar] [CrossRef]
- Garneau, A.P.; Carpentier, G.A.; Marcoux, A.A.; Frenette-Cotton, R.; Simard, C.F.; Rémus-Borel, W.; Caron, L.; Jacob-Wagner, M.; Noël, M.; Powell, J.J.; et al. Aquaporins mediate silicon transport in humans. PLoS ONE 2015, 10, e0136149. [Google Scholar] [CrossRef]
- MacDonald, H.M.; Hardcastle, A.C.; Jugdaohsingh, R.; Fraser, W.D.; Reid, D.M.; Powell, J.J. Dietary silicon interacts with oestrogen to influence bone health: Evidence from the Aberdeen prospective osteoporosis screening study. Bone 2012, 50, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Jugdaohsingh, R.; Tucker, K.L.; Qiao, N.; Cupples, L.A.; Kiel, D.P.; Powell, J.J. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J. Bone Min. Res. 2004, 19, 297–307. [Google Scholar] [CrossRef]
- Gillette-Guyonnet, S.; Andrieu, S.; Vellas, B. The potential influence of silica present in drinking water on Alzheimer’s disease and associated disorders. J. Nutr. Health Aging 2007, 11, 119. [Google Scholar]
- Barel, A.; Calomme, M.; Timchenko, A.; Paepe, K.D.; Demeester, N.; Rogiers, V.; Clarys, D.; Berghe, D.V. Effect of oral intake of choline-stabilized orthosilicic acid on skin, nails and hair in women with photodamaged skin. Arch. Dermatol. Res. 2005, 297, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Prescha, A.; Zabłocka-Słowińska, K.; Płaczkowska, S.; Gorczyca, D.; Łuczak, A.; Grajeta, H. Silicon intake and plasma level and their relationship with systemic redox and inflammatory markers in rheumatoid arthritis patients. Adv. Clin. Exp. Med. 2019, 28. ahead of print. [Google Scholar] [CrossRef]
- Jugdaohsingh, R.; Anderson, S.H.; Tucker, K.L.; Elliott, H.; Kiel, D.P.; Thompson, R.P.; Powell, J.J. Dietary silicon intake and absorption. Am. J. Clin. Nutr. 2002, 75, 887–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robberecht, H.; Van Cauwenbergh, R.; Van Vlaslaer, V.; Hermans, N. Dietary silicon intake in Belgium: Sources, availability from foods, and human serum levels. Sci. Total Environ. 2009, 407, 4777–4782. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Kim, M.H.; Choi, M.K. Relationship between dietary intake and urinary excretion of silicon in free-living Korean adult men and women. Biol. Trace. Elem. Res. 2019, 1–8. [Google Scholar] [CrossRef]
- McNaughton, S.A.; Bolton-Smith, C.; Mishra, G.D.; Jugdaohsingh, R.; Powell, J.J. Dietary silicon intake in post-menopausal women. Br. J. Nutr. 2005, 94, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Sripanyakorn, S.; Jugdaohsingh, R.; Dissayabutr, W.; Anderson, S.H.; Thompson, R.P.; Powell, J.J. The comparative absorption of silicon from different foods and food supplements. Br. J. Nutr. 2009, 102, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Bissé, E.; Epting, T.; Beil, A.; Lininger, G.; Lang, H.; Wieland, H. Reference values for serum silicon in adults. Anal. Biochem. 2005, 337, 130–135. [Google Scholar] [CrossRef]
- Jarosz, M. Polish Dietary Reference Intakes; National Food and Nutrition Institute: Warsaw, Poland, 2017; pp. 203–237. [Google Scholar]
- Powell, J.J.; McNaughton, S.A.; Jugdaohsingh, R.; Dear, J.; Khot, F.; Mowatt, L.; Gleason, K.L.; Sykes, M.; Thompson, R.P.H.; Bolton-Smith, C.; et al. A provisional database for the silicon content of foods in the United Kingdom. Br. J. Nutr. 2005, 94, 804–812. [Google Scholar] [CrossRef] [Green Version]
- Pennington, J.A.T. Silicon in foods and diets. Food Addit. Contam. 1991, 8, 97–118. [Google Scholar] [CrossRef]
- Prescha, A.; Zabłocka-Słowińska, K.; Hojka, A.; Grajeta, H. Instant food products as a source of silicon. Food Chem. 2012, 135, 1756–1761. [Google Scholar] [CrossRef]
- Mojsiewicz-Pieńkowska, K.; Łukasiak, J. Analytical fractionation of silicon compounds in foodstuffs. Food Control 2003, 14, 153–162. [Google Scholar] [CrossRef]
- Dejneka, W.; Łukasiak, J. Determination of total and bioavailable silicon in selected foodstuffs. Food Control 2003, 14, 193–196. [Google Scholar] [CrossRef]
- Choi, M.K.; Kim, M.H. Dietary silicon intake of Korean young adult males and its relation to their bone status. Biol. Trace. Elem. Res. 2017, 176, 89–104. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Szcześniewska, D.; Szostak-Węgierek, D.; Stepaniak, U.; Kozakiewicz, K.; Tykarski, A.; Zdrojewski, T.; Zujko, M.E.; Drygas, W. Are dietary habits of the Polish population consistent with the recommendations for prevention of cardiovascular disease?—WOBASZ II project. Kardiol. Pol. 2016, 74, 969–977. [Google Scholar] [CrossRef]
- Montesano, F.F.; D’Imperio, M.; Parente, A.; Cardinali, A.; Renna, M.; Serio, F. Green bean biofortification for Si through soilless cultivation: Plant response and Si bioaccessibility in pods. Sci. Rep. 2016, 6, 31662. [Google Scholar] [CrossRef] [PubMed]
- Giammarioli, S.; Mosca, M.; Sanzini, E. Silicon content of Italian mineral waters and its contribution to daily intake. J. Food Sci. 2005, 70, s509–s512. [Google Scholar] [CrossRef]
- Hussain, S.A.; Jaccob, A.A. Effects of single oral doses of flavonoids on absorption and tissue distribution of orally administered doses of trace elements in rats. Am. J. Pharmacol. Sci. 2013, 1, 84–89. [Google Scholar]
- Finley, J.W.; Davis, C.D. Manganese absorption and retention in rats is affected by the type of dietary fat. Biol. Trace Elem. Res. 2001, 82, 143–158. [Google Scholar] [CrossRef]
All Subjects (n = 185) | Female (n = 94) | Male (n = 91) | |
---|---|---|---|
Characteristics | |||
Age (years), median (range) | 45.1 (20.2–70.2) | 45.2 (23.6–68.2) a | 45.1 (20.2–70.2) a |
≤30 years, n (%) | 49 (26.5) | 23 (24.5) A | 26 (28.6) A |
31–50 years, n (%) | 74 (40.0) | 38 (40.4) | 36 (39.7) |
≥51 years, n (%) | 62 (33.5) | 33 (35.1) | 29 (31.9) |
BMI (kg/m2), median (range) | 25.6 (18.3–32.0) | 24.4 (18.3–32.0) a | 25.9 (18.8–31.8) b |
Body weight (kg), median (range) | 73.0 (46.5–130.0) | 63.0 (46.5–86.0) a | 78.0 (60.0–130.0) b |
Dietary intake, median (Q1–Q3) | |||
Energy (MJ/day) | 8.07 (7.19−9.42) | 7.57 (6.97−8.12) a | 9.35 (8.12−10.70) b |
Nutrients (g/day) | |||
Protein | 76.5 (63.1–92.7) | 66.8 (57.9–78.2) a | 91.3 (74.0–108.2) b |
Carbohydrates | 281.4 (246.1−319.6) | 269.3 (236.6−300.5) a | 304.1 (254.6−350.1) b |
Fat | 58.2 (42.8−77.7) | 46.1 (36.6−59.7) a | 72.7 (54.8−90.7) b |
Ash | 17.7 (14.8−21.3) | 16.3 (15.9−13.4−18.6) a | 20.3 (17.5−23.8) b |
Fiber | 21.9 (17.6−27.7) | 21.6 (16.3−25.6) a | 22.9 (18.3−30.4) b |
Water | 2158 (1715−2634) | 2053 (1626−2589) a | 2269 (1886−2686) b |
Alcohol | 3.0 (0.0–6.4) | 0.0 (0.0–5.0) a | 6.0 (0.0–10.7) a |
Product | n | Mean ± SD |
---|---|---|
Breads | ||
Bread, white | 15 | 1.88 ± 0.83 |
Rolls, white | 10 | 1.59 ± 0.64 |
Breads, wholemeal & wholegrain | 13 | 2.00 ± 0.63 |
Rolls, wholemeal & wholegrain | 6 | 1.82 ± 0.48 |
Crispbread | 15 | 3.97 ± 3.62 |
Matzo, classic | 2 | 1.50 ± 0.12 |
Matzo, wholemeal | 2 | 2.45 ± 0.13 |
Groats | ||
Couscous | 4 | 2.35 ± 0.78 |
Buckwheat & Roasted buckwheat | 9 | 1.17 ± 0.59 |
Millet | 5 | 7.96 ± 0.71 |
Barley | 6 | 6.64 ± 3.73 |
Corn | 3 | 1.67 ± 1.71 |
Flakes | ||
Corn | 5 | 2.12 ± 0.46 |
Oat | 5 | 13.89 ± 2.62 |
Wheat | 3 | 2.49 ± 0.59 |
Spelt | 4 | 2.42 ± 0.87 |
Rye | 3 | 2.29 ± 0.40 |
Muesli (various types) | 6 | 4.58 ± 2.31 |
Bran | ||
Oat | 3 | 14.03 ± 7.69 |
Wheat | 4 | 6.80 ± 2.19 |
Rice | ||
Long grain, white | 4 | 3.41 ± 2.62 |
Jasmine, white | 4 | 1.47 ± 0.28 |
Basmati, white | 4 | 0.94 ± 0.30 |
Whole grain, brown | 10 | 9.72 ± 2.57 |
Chinese, black | 3 | 10.63 ± 7.46 |
Wild rice (Zizania aquatica) | 4 | 2.99 ± 0.44 |
Pasta | ||
Wheat, white | 4 | 1.22 ± 0.31 |
Wheat, wholemeal | 5 | 5.20 ± 2.82 |
Spelt | 2 | 2.86 ± 0.64 |
Rye | 2 | 5.28 ± 1.24 |
Mixed grain | 2 | 5.63 ± 1.41 |
Product | n | Mean ± SD | Range of CV Values for Products from a Single Brand (%) * |
---|---|---|---|
Juice | |||
Orange | 8 | 0.87 ± 0.35 | 32–99 |
Apple | 8 | 0.90 ± 0.58 | 7–33 |
Grapefruit | 8 | 0.63 ± 0.39 | 11–54 |
Blackcurrant | 3 | 0.66 ± 0.05 | 13–32 |
Multi-fruit | 4 | 1.22 ± 0.29 | 14–28 |
Carrot–Fruit | 6 | 1.17 ± 0.48 | 16–57 |
Tomato | 6 | 0.75 ± 0.22 | 11–38 |
Multi-vegetable | 7 | 0.76 ± 0.26 | 6–34 |
Bottled water | |||
Spring | 5 | 0.77 ± 0.40 | 3–42 |
Mineral | 17 | 0.96 ± 0.63 | 3–50 |
All Subjects | Female | Male | Age Groups (Years) | |||
---|---|---|---|---|---|---|
≤30 | 31–50 | ≥51 | ||||
Silicon Intake (mg/day) | 26.1 (22.0−30.3) | 24.0 (21.2−29.7) a | 27.7 (23.4−31.6) b | 25.2 (22.7−29.0) α | 26.0 (21.5−30.2) α | 26.4 (22.7−31.9) α |
Silicon Intake from Food Groups (% Of Total Si intake) | ||||||
Refined grain foods | 17.9 (12.2−23.9) | 19.3 (12.4−24.7) a | 17.2 (11.9−21.5) a | 18.3 (13.6−24.6) α | 18.0 (11.5−24.4) α | 17.5 (12.2−20.2) α |
Whole grain foods | 7.9 (1.3−13.0) | 10.0 (4.0−14.2) a | 4.6 (0.0−11.2) b | 5.5 (1.0−10.8) α | 5.8 (1.5−13.0) α | 10.5 (2.6−14.1) α |
Potatoes and Starches | 2.5 (1.3−4.0) | 2.3 (1.1−3.3) a | 3.0 (1.8−5.2) b | 2.4 (1.2−3.4) α | 2.5 (1.5−4.0) α | 2.6 (1.4−4.5) α |
Vegetables | 8.5 (5.9−11.7) | 8.3 (5.6−11.6) a | 8.7 (6.4−11.9) a | 7.4 (5.2−10.7) α | 8.9 (7.0−12.9) β | 8.7 (5.9−12.0) αβ |
Fruits | 10.4 (5.5−15.0) | 11.1 (5.6−15.1) a | 9.6 (5.5−14.4) a | 6.4 (2.5−12.8) α | 11.0 (6.0−15.2) αβ | 11.8 (7.8−15.0) β |
Cold, n/a beverages | 15.1 (7.1−24.1) | 14.8 (7.3−25.7) a | 15.2 (6.9−23.6) a | 21.9 (13.6−30.5) α | 11.1 (6.8−19.9) β | 16.7 (5.4−22.2) αβ |
Tea & Coffee | 15.0 (9.9−21.2) | 17.4 (11.5−22.5) a | 14.0 (9.1−19.8) b | 14.3 (9.3−20.6) α | 15.2 (10.3−21.0) α | 14.4 (8.7−21.0) α |
Dairy products | 1.7 (0.9−2.9) | 1.7 (1.0−2.8) a | 1.8 (0.9−2.9) a | 1.9 (1.1−3.0) α | 1.9 (1.2−3.2) α | 1.1 (0.8−2.3) α |
Meats & Meat products | 4.8 (2.3−9.2) | 3.9 (1.8−7.8) a | 6.5 (2.7−11.2) b | 4.8 (1.8−8.1) α | 5.1 (2.9−10.3) α | 4.5 (2.1−9.2) α |
Fish & Fish products | 0.2 (0.0−1.0) | 0.2 (0.0−0.8) a | 0.4 (0.0−1.3) a | 0.2 (0.0–1.7) α | 0.0 (0.0–0.5) α | 0.4 (0.0–1.5) α |
Eggs | 1.0 (0.3−2.1) | 0.8 (0.3−1.6) a | 1.3 (0.3−2.4) b | 0.6 (0.1–1.5) α | 1.3 (0.6–2.2) α | 0.9 (0.3–2.0) α |
Fats | 1.3 (0.7−2.1) | 1.1 (0.6−2.0) a | 1.5 (0.9−2.3) b | 1.3 (0.8−2.1) α | 1.3 (0.8−2.3) α | 1.4 (0.7−2.0) α |
Legumes | 0.2 (0.0−1.1) | 0.3 (0.0−0.5) a | 1.0 (0.0−1.3) a | 0.2 (0.0–0.7) α | 0.5 (0.0–1.5) α | 0.2 (0.0–0.9) α |
Nuts & Seeds | 0.4 (0.0−0.3) | 0.3 (0.0−0.4) a | 0.5 (0.0−0.2) a | 0.6 (0.0–1.0) α | 0.4 (0.0–0.6) α | 0.4 (0.0–0.9) α |
Sugar & Sweets | 0.3 (0.1−0.7) | 0.3 (0.1−0.5) a | 0.4 (0.1−0.9) a | 0.4 (0.2–0.9) α | 0.3 (0.1−0.6) α | 0.3 (0.1−0.6) α |
Alcoholic beverages | 1.8 (0.0−3.7) | 0.0 (0.0–2.9) a | 4.1 (0.0–6.3) a | 2.2 (0.0–6.6) α | 2.0 (0.0–4.2) α | 0.0 (0.0–4.4) α |
Others | 0.9 (0.6−1.2) | 0.9 (0.6−1.1) a | 1.0 (0.7−1.3) a | 0.8 (0.6−1.1) α | 0.9 (0.7−1.2) α | 0.9 (0.6−1.3) α |
Bioavailable Dietary Silicon | ||||||
(mg/day) | 9.4 (7.7−11.5) | 8.6 (7.1−11.0) a | 9.9 (5.5–29.6) b | 9.7 (8.0−11.0) α | 9.0 (7.4−11.5) α | 9.7 (8.0−11.9) α |
% total silicon in diet | 36.5 (33.6−38.9) | 36.2 (33.4−38.5) a | 37.2 (28.5–47.9) b | 37.5 (35.9−39.5) α | 36.2 (33.2−38.7) β | 36.4 (33.4−38.8) β |
Plasma Silicon | ||||||
(μg/L) | 152.3 (116.3−195.6) | 168.5 (121.2−208.2) a | 144.8 (114.7−175.0) a | 197.8 (140.5−224.1) α | 147.9 (120.8−171.6) β | 123.6 (94.2−180.1) β |
(n) | −126 | −64 | −63 | −32 | −46 | −48 |
Variable | r † | p-Value |
---|---|---|
Nutrient (intake/day) | ||
Silicon | 0.18 | 0.044 |
Bioavailable silicon | 0.23 | 0.011 |
Water | 0.28 | 0.002 |
Fat | −0.19 | 0.036 |
Animal protein | −0.18 | 0.045 |
Silicon from food groups and subgroups (intake/day) | ||
Cold, non-alcoholic beverages | 0.21 | 0.022 |
Mineral & Spring water | 0.22 | 0.013 |
Fruit & Vegetable juices | 0.22 | 0.011 |
Groats | 0.19 | 0.037 * |
White rice | 0.2 | 0.034 |
Cereal flakes | 0.32 | 0.009 ** |
Carotene-rich vegetables | 0.28 | 0.002 |
Animal protein-rich foods | −0.18 | 0.045 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prescha, A.; Zabłocka-Słowińska, K.; Grajeta, H. Dietary Silicon and Its Impact on Plasma Silicon Levels in the Polish Population. Nutrients 2019, 11, 980. https://doi.org/10.3390/nu11050980
Prescha A, Zabłocka-Słowińska K, Grajeta H. Dietary Silicon and Its Impact on Plasma Silicon Levels in the Polish Population. Nutrients. 2019; 11(5):980. https://doi.org/10.3390/nu11050980
Chicago/Turabian StylePrescha, Anna, Katarzyna Zabłocka-Słowińska, and Halina Grajeta. 2019. "Dietary Silicon and Its Impact on Plasma Silicon Levels in the Polish Population" Nutrients 11, no. 5: 980. https://doi.org/10.3390/nu11050980
APA StylePrescha, A., Zabłocka-Słowińska, K., & Grajeta, H. (2019). Dietary Silicon and Its Impact on Plasma Silicon Levels in the Polish Population. Nutrients, 11(5), 980. https://doi.org/10.3390/nu11050980