Nutritional Properties and Consumer’s Acceptance of Provitamin A-Biofortified Amahewu Combined with Bambara (Vigna Subterranea) Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Methods
2.2.1. Preparation of Food Products
Preparation of the Bambara Groundnut Flours
Roasted Bambara Groundnut Flour
Germinated Bambara Groundnut Flour
Raw Bambara Groundnut Flour
2.2.2. Preparation of White and Provitamin a Maize Flour
2.2.3. Nutritional Composition
2.2.4. Consumer Acceptability
2.2.5. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Mineral Composition
3.3. Amino Acid Content
3.4. In-Vitro Protein Digestibility
3.5. Consumer Acceptability
4. Discussion
4.1. Proximate Composition
4.2. Mineral Composition
4.3. Amino Acid Profile
4.4. In Vitro Protein Digestibility
4.5. Consumer Acceptability
5. Conclusions
- One of the objectives of this study was to determine the effect that the addition of bambara groundnut flour will have on the nutritional quality of provitamin A-biofortified amahewu. This study showed that there was an improvement in amino profile, especially an increase in the essential amino acid lysine content, and minerals, such as iron and zinc. This indicates that amahewu containing bambara flour is nutritionally superior to amahewu without bambara. The lysine content of combined bambara/maize amahewu is nutritionally adequate for adults and fairly adequate for age groups lower than five years.
- This study also set out to determine the effect that the addition of bambara groundnut flour will have on the consumer acceptability of provitamin A-biofortified amahewu. The results indicate that consumers prefer provitamin A biofortified maize amahewu over white maize amahewu, and further preferred amahewu with the addition of germinated and roasted bambara over those without any bambara. Roasting of bambara improved the taste, aroma and overall acceptability of amahewu. The consumers used in this study have grown up in a cultural environment where white maize is accepted as traditional food. The findings of this study suggest that there is an opportunity to change the cultural mind-set of preference for white maize.
- The study has demonstrated that the addition of bambara flour with provitamin A biofortified maize, in the form of amahewu, has the potential to contribute to the alleviation of protein and micronutrient (vitamin A, Fe, Zn) malnutrition among the targeted communities, especially the poor rural communities who are highly vulnerable to PEM.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO) of the United Nations (UN). Capacity Building for Nutrition Education. FAO. 2009. Available online: http://www.fao.org/ag/humannutrition/nutritioneducation/49739/en/zmb/ (accessed on 25 June 2016).
- Müller, O.; Krawinkel, M. Malnutrition and health in developing countries. Can. Med. Assoc. J. 2005, 173, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestel, P.; Bouis, H.E.; Meenakshi, J.; Pfeiffer, W. Biofortification of staple food crops. J. Nutr. 2006, 136, 1064–1067. [Google Scholar] [CrossRef] [PubMed]
- Mugocha, P.T.; Taylor, J.R.N.; Bester, B.H. Fermentation of a composite finger millet dairy beverage. World J. Microbiol. Biotechnol. 2000, 16, 341–344. [Google Scholar] [CrossRef]
- Patil, S.S.; Brennan, M.A.; Mason, S.L.; Brennan, C.S. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack. Foods 2016, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.; Boye, H. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- De Almeida Costa, G.E.; Da Silva Queiroz-Monici, K.; Reis, M.; de Oliveira, S.M. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Simpson, H.C.R.; Lousley, S.; Geekie, M.; Simpson, R.W.; Carter, R.D.; Hockaday, T.D.R.; Mann, J.I. A high carbohydrate leguminous fibre diet improves all aspects of diabetic control. Lancet 1981, 317, 1–5. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Shewry, P.R.; Napler, A.J.; Tatham, A.S. Seed storage proteins: Structure and biosynthesis. Plant Cell 1995, 7, 945–956. [Google Scholar]
- Towo, E.; Matuschek, E.; Svanberg, U. Fermentation and enzyme treatment of tannin sorghum gruels: Effects on phenolic compounds and in vitro accessible iron. Food Chem. 2006, 94, 369–376. [Google Scholar] [CrossRef]
- Awobusuyi, T.D.; Amonsou, E.O.; Siwela, M.; Kolanisi, U. Provitamin A retention and sensory acceptability of amahewu, a non-alcoholic cereal based beverage made with provitamin A-biofortified maize. J. Sci. Food Agric. 2016, 96, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Analytical Chemists International, 17th ed.; Association of Official Chemists, AOAC International: Gaithersburg, ML, USA, 2003. [Google Scholar]
- Association of Official Analytical Chemists (AOAC) International. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, ML, USA, 2002; Volumes I and II. [Google Scholar]
- Association of Official Analytical Chemists (AOAC) International. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Association of Official Analytical Chemists (AOAC) International. Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1984. [Google Scholar]
- Hamaker, B.R.; Kirleis, A.W.; Butler, L.G.; Axtell, J.D.; Mertz, E.T. Improving the invitro protein digestibility of sorghum with reducing agents. Proc. Natl. Acad. Sci. USA 1987, 84, 626–628. [Google Scholar] [CrossRef] [PubMed]
- Sanni, A.I.; Onilude, A.A.; Ibidapo, O.T. Biochemical composition of infant weaning food fabricated from fermented blends of cereal and soybean. Food Chem. 1999, 65, 35–39. [Google Scholar] [CrossRef]
- Thompson, J.L.; Manore, M.M.; Vaughan, A.V. The Science of Nutrition; Pearson Education Publishing: San Francisco, CA, USA, 2008; pp. 220–259. [Google Scholar]
- Adebowale, Y.; Schwarzenbolz, U.; Henle, T. Protein Isolates from Bambara Groundnut (Voandzeia Subterranean, L.) Chemical Characterization and Functional Properties. Int. J. Food Prop. 2011, 14, 758–775. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Ayedun, H.; Sanni, L.O. Chemical composition and functional properties of raw and roasted Nigerian benniseed (Sesamum indicum) and bambara groundnut (Vigna subterranean). Food Chem. 2008, 111, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Onyango, C.; Noetzold, H.; Bley, T.; Henle, T. Proximate composition and digestibility of fermented and extruded uji from maize-finger millet blend. LWT Food Sci. Technol. 2004, 37, 827–832. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Mbata, T.I.; Ikenebomeh, M.J.; Ezeibe, S. Evaluation of mineral content and functional properties of fermented maize (Generic and specific) flour blended with bambara groundnut (Vigna subterranean L.). Afr. J. Food Sci. 2009, 3, 107–112. [Google Scholar]
- Anyango, J.O.; De Kock, H.L.; Taylor, J. Impact of cowpea addition on the Protein Digestibility Corrected Amino Acid Score and other protein quality parameters of traditional African foods made from non-tannin and tannin sorghum. Food Chem. 2011, 124, 775–780. [Google Scholar] [CrossRef]
- Thorpe, J.; Beal, J.D. Vegetable protein meals and the effects of enzymes. In Enzymes in Farm Animal Nutrition; Bedford, M.R., Partridge, G.G., Eds.; CAB International: Wallingford, UK, 2001; pp. 125–143. [Google Scholar]
- Huisman, J.; Tolman, G.; Garnsworthy, P.; Wiseman, J. Antinutritional factors in the plant proteins of diets for non-ruminants. Recent Dev. Pig Nutr. 2001, 3, 261–322. [Google Scholar]
- Tsai, C.Y.; Dalby, A.; Jones, R.A. Lysine and tryptophan increases during germination of maize seed. Cereal Chem. 1975, 52, 356–360. [Google Scholar]
- Wu, Y.V.; Wall, J.S. Lysine and tryptophan increased during germination of cereal grains. Cereal Chem. 1980, 53, 222–226. [Google Scholar]
- FAO/WHO/UNU. Expert Consultation Energy and Protein Requirements; No 721; WHO Technical Report Series; WHO: Geneva, Switzerland, 1985. [Google Scholar]
- Asiedu, M.; Lied, E.; Nilsen, R.; Sandnes, K. Effect of Processing (sprouting and/or fermentation on sorghum and maize II: Vitamins and amino acid composition. Biological evaluation of maize protein. Food Chem. 1993, 48, 201–204. [Google Scholar] [CrossRef]
- Chelule, P.; Mokoena, M.; Gqaleni, N. Advantages of traditional lactic acid bacteria fermentation of food in Africa. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 1160–1167. [Google Scholar]
- Mohiedeen, I.E.; El Tinay, A.H.; Elkhalifa, A.E.O.; Babiker, E.E.; Mallasy, L.O. Effect of fermentation and cooking on protein quality of maize (Zea mays.) cultivars. Int. J. Food Sci. Technol. 2010, 45, 1284–1290. [Google Scholar] [CrossRef]
- Mardia, E.; Hag, E.I.; Abdullahi, H.; El Tinay, A.H.; Nabila, E.Y. Effect of fermentation and dehulling on starch, total polyphenols, phytic acid content and invitro protein digestibility of pearl millet. Food Chem. 2002, 77, 193–196. [Google Scholar]
- Monawar, L.Y. Food Value of Sudanese Indigenous Cereal Grains. Ph.D. Thesis, University of Khartoum, Khartoum, Sudan, 1983. [Google Scholar]
- Hesseltine, C. The future of fermented foods. Nutr. Rev. 1983, 41, 293–301. [Google Scholar] [CrossRef]
- Egounlety, M.; Aworh, O.C. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Food Eng. 2003, 56, 249–254. [Google Scholar]
- Pillay, K.; Siwela, M.; Derera, J.; Veldman, F.J. Provitamin A carotenoids in biofortified maize and their retention during processing and preparation of South African maize foods. J. Food Sci. Technol. 2014, 51, 634–644. [Google Scholar] [CrossRef]
- De Groote, H.; Kimenju, S.C.; Morawetz, U.B. Estimating consumer willingness to pay for food quality with experimental auctions: The case of yellow versus fortified maize meal in Kenya. Agric. Econ. 2010, 42, 1–16. [Google Scholar] [CrossRef]
- De Groote, H.; Kimenju, S.C. Comparing consumer preferences for color and nutritional quality in maize: Application of a semi-double bound logistic model on urban consumers in Kenya. Food Policy 2008, 33, 362–370. [Google Scholar] [CrossRef]
- Tschirley, D.L.; Santos, A.P. Who Eats Yellow Maize? Preliminary Results of a Survey of Consumer Maize Preferences in Maputo, Mozambique; Department of Economics Working Paper No 53; MSU International Department of Agricultural Economics Development, Michigan State University: East Lansing, MI, USA, 1995. [Google Scholar]
- Stevens, R.; Winter-Nelson, A. Consumer acceptance of provitamin A biofortified maize in Maputo, Mozambique. Food Policy 2008, 33, 341–351. [Google Scholar] [CrossRef]
- Holzapfel, W. Use of starter cultures in fermentation on a household scale. Food Control 1997, 8, 241–258. [Google Scholar] [CrossRef]
- Larry Beuchat, R. Media for detecting and enumerating yeasts and moulds. Int. J. Food Microbiol. 1992, 17, 145–158. [Google Scholar] [CrossRef]
- Aman, R.; Schieber, A.; Carle, R. Effects of Heating and illumination on Trans-Cis Isomerization and Degradation of β-Carotene and Lutein in Isolated Spinach Chloroplasts. J. Agric. Food Chem. 2003, 53, 9512–9518. [Google Scholar] [CrossRef] [PubMed]
Provitamin A Maize | White Maize |
---|---|
OBF 30% | OBF 30% |
RBF 30% | RBF 30% |
GBF 30% | GBF 30% |
R0BF 30% | R0BF 30% |
Provitamin-A Products | *CHO | Protein | Fat | Ash | Moisture |
---|---|---|---|---|---|
AROBF-Y | 73 c ± 0.79 | 29.7 b ± 0.25 | 0.06 c ± 0.01 | 0.03 a ± 0.01 | 3.16 b ± 0.03 |
AGBF-Y | 63 a ± 1.12 | 34.3 d ± 0.23 | 0.08 a ± 0.01 | 0.04 a ± 0.1 | 3.14 a ± 0.03 |
ARBF-Y | 69.6 b ± 0.85 | 31 c ± 0.31 | 0.06 b ± 0.03 | 0.03 b ± 0.05 | 3.17 b ± 0.01 |
AWB-Y | 83.3 d ± 0.32 | 13.6 a ± 0.4 | 0.05 b ± 0.04 | 0.02 a ± 0.01 | 3.2 c ± 0.02 |
White Maize Products | |||||
AROBF-W | 68 b ± 0.69 | 24 b ± 0.14 | 0.05 c ±0.01 | 0.02 a ± 0.01 | 3.16 b ± 0.03 |
AGBF-W | 63.5 a ± 1.12 | 32.3 c ± 0.23 | 0.06 a ± 0.01 | 0.03 a ±0.1 | 3.21 c ± 0.02 |
ARBF-W | 68.6 b ± 1.09 | 28.6 b ± 0.31 | 0.06 bc ± 0.01 | 0.03 b ±0.01 | 3.15 a ± 0.01 |
AWB-W | 82.8 c ± 1.45 | 14 a ± 0.14 | 0.05 b ± 0.04 | 0.02 a ±0.01 | 3.18 b ± 0.02 |
Provitamin A Products | White Maize Products | |||||||
---|---|---|---|---|---|---|---|---|
Selected Minerals | AROBF-Y | ARBF-Y | AGBF-Y | AWB-Y | AROBF-W | ARBF-W | AGBF-W | AWB-W |
Fe | 34 a | 32 a | 38 a | 20 b | 27 b | 24 b | 31 a | 20 b |
Zn | 32 a | 33 a | 36 a | 20 b | 29 a | 23 b | 28 a | 18 b |
K | 6960 c | 6060 c | 8710 a | 4055 d | 7660 b | 6100 c | 7720 b | 4950 d |
Mg | 5520 b | 4310 c | 6640 a | 4630 c | 4590 c | 4300 c | 5250 b | 4960 c |
Na | 55 d | 80 a | 77 a | 72 b | 59 d | 46 e | 67 c | 74 b |
P | 210 b | 187 c | 254 a | 182 c | 205 b | 180 c | 212 b | 212 b |
Amino Acid | AWB-Y | ARBF-Y | AROBF-Y | AGBF-Y | AWB-W | ARBF-W | AROBF-W | AGBF-W | Preschool Children | Adults |
---|---|---|---|---|---|---|---|---|---|---|
Histidine | 1.5 | 2.1 | 1.7 | 2.9 | 0.8 | 1.3 | 1.5 | 2.2 | 1.9 | 1.6 |
Serine | 2.7 | 3.9 | 3.0 | 5.5 | 1.6 | 2.3 | 2.9 | 3.7 | ||
Arginine | 2.5 | 4.1 | 2.8 | 5.0 | 1.3 | 2.2 | 2.7 | 3.2 | ||
Glycine | 1.9 | 2.8 | 2.2 | 3.8 | 1.2 | 1.7 | 2.1 | 2.8 | ||
Aspartic Acid | 3.9 | 4.9 | 4.1 | 7.7 | 1.9 | 3.3 | 4.5 | 4.5 | ||
Glutamic A | 8.9 | 11 | 9.9 | 19 | 5.8 | 7.8 | 10.6 | 14 | ||
Threonine | 1.8 | 2.6 | 2.0 | 3.7 | 1.1 | 1.6 | 1.9 | 2.7 | 3.4 | 0.9 |
Alanine | 3.2 | 4.4 | 3.6 | 6.9 | 2.4 | 2.8 | 3.8 | 5.7 | ||
Proline | 3.6 | 5.2 | 4.2 | 8.4 | 2.7 | 3.3 | 4.2 | 6.8 | ||
Lysine | 2.0 | 2.6 | 2.8 | 3.2 | 0.8 | 1.7 | 1.9 | 1.9 | 5.8 | 1.6 |
Tyrosine | 1.5 | 2.9 | 1.8 | 3.3 | 1.0 | 1.4 | 1.7 | 2.2 | ||
Valine | 2.4 | 3.3 | 2.7 | 4.7 | 1.4 | 2.0 | 2.5 | 3.4 | 3.5 | 1.3 |
Isoleucine | 1.9 | 2.7 | 2.1 | 3.8 | 1.0 | 1.5 | 2.0 | 2.5 | 2.8 | 1.3 |
Leucine | 5.5 | 8.1 | 6.3 | 12 | 3.9 | 4.8 | 6.4 | 9.2 | 6.6 | 1.9 |
Phenylalanine | 2.7 | 4.2 | 3.1 | 5.7 | 1.5 | 2.3 | 3.0 | 3.6 | 6.3 | 1.9 |
Samples | Colour | Taste | Aroma | Mouthfeel | Overall Acceptability |
---|---|---|---|---|---|
AROBF-Y | 7.7 b ± 0.6 | 8.1 b ± 0.4 | 8.2 b ± 0.5 | 6.8 a ± 0.5 | 8.6 a,b ± 0.6 |
AGBF-Y | 8.1 a ± 0.7 | 7.7 a ± 0.7 | 8.0 a ± 0.6 | 6.9 a ± 0.6 | 8.4 a ± 0.6 |
ARBF-Y | 7.7 b ± 0.6 | 7.2 b ± 0.7 | 7.5 c ± 0.5 | 6.9 a ± 0.4 | 8.3 b ± 0.4 |
AWB-Y | 7.3 c ± 0.6 | 7.5 c ± 0.7 | 7.0 d ± 0.5 | 6.4 b ± 0.4 | 8.0 c ± 0.4 |
White Maize Products | |||||
AROBF-W | 6.3 d ± 0.4 | 6.3 d ± 0.4 | 6.0 g ± 0.4 | 6.2 d ± 0.8 | 6.9 e ± 0.5 |
AGBF-W | 6.2 d ± 0.6 | 6.1 d ± 0.5 | 6.5 e ± 0.5 | 6.1 d ± 0.6 | 6.7 d ± 0.4 |
ARBF-W | 6.3 d ± 0.5 | 5.8 e ± 0.6 | 6.3 f ± 0.6 | 6.6 c ± 0.4 | 6.6 d,e ± 0.5 |
AWB-W | 6.2 d ± 0.4 | 6.3 d ± 0.5 | 5.9 g ± 0.6 | 6.4 c ± 0.5 | 6.5 d,e ± 0.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awobusuyi, T.D.; Siwela, M. Nutritional Properties and Consumer’s Acceptance of Provitamin A-Biofortified Amahewu Combined with Bambara (Vigna Subterranea) Flour. Nutrients 2019, 11, 1476. https://doi.org/10.3390/nu11071476
Awobusuyi TD, Siwela M. Nutritional Properties and Consumer’s Acceptance of Provitamin A-Biofortified Amahewu Combined with Bambara (Vigna Subterranea) Flour. Nutrients. 2019; 11(7):1476. https://doi.org/10.3390/nu11071476
Chicago/Turabian StyleAwobusuyi, Temitope D., and Muthulisi Siwela. 2019. "Nutritional Properties and Consumer’s Acceptance of Provitamin A-Biofortified Amahewu Combined with Bambara (Vigna Subterranea) Flour" Nutrients 11, no. 7: 1476. https://doi.org/10.3390/nu11071476
APA StyleAwobusuyi, T. D., & Siwela, M. (2019). Nutritional Properties and Consumer’s Acceptance of Provitamin A-Biofortified Amahewu Combined with Bambara (Vigna Subterranea) Flour. Nutrients, 11(7), 1476. https://doi.org/10.3390/nu11071476