The Contribution of Diet Quality to Socioeconomic Inequalities in Obesity: A Population-based Study of Swiss Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Socioeconomic Status
2.2. Diet Quality
2.3. Obesity Markers
2.4. Covariates
2.5. Statistical Analysis
2.6. Ethics
3. Results
3.1. Characteristics of the Sample
3.2. Associations between Education, Dietary Quality and Obesity
3.3. Mediation of Diet Quality in the Education-obesity Association
4. Discussion
4.1. Implications for Public Health
4.2. Study Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Mackenbach, J.P.; Stirbu, I.; Roskam, A.J.; Schaap, M.M.; Menvielle, G.; Leinsalu, M.; Kunst, A.E. Socioeconomic inequalities in health in 22 European countries. N. Engl. J. Med. 2008, 358, 2468–2481. [Google Scholar] [CrossRef] [PubMed]
- McLaren, L. Socioeconomic status and obesity. Epidemiol. Rev. 2007, 29, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Hermann, S.; Rohrmann, S.; Linseisen, J.; May, A.M.; Kunst, A.; Besson, H.; Romaguera, D.; Travier, N.; Tormo, M.J.; Molina, E.; et al. The association of education with body mass index and waist circumference in the EPIC-PANACEA study. BMC Public Health 2011, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Zaninotto, P.; Lassale, C. Socioeconomic trajectories of body mass index and waist circumference: results from the English Longitudinal Study of Ageing. BMJ Open 2019, 9, e025309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Tunstall-Pedoe, H. Socioeconomic deprivation and waist circumference in men and women: The Scottish MONICA surveys 1989–1995. Eur. J. Epidemiol. 2005, 20, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Savitsky, B.; Manor, O.; Friedlander, Y.; Burger, A.; Lawrence, G.; Calderon-Margalit, R.; Siscovick, D.S.; Enquobahrie, D.A.; Williams, M.A.; Hochner, H. Associations of socioeconomic position in childhood and young adulthood with cardiometabolic risk factors: the Jerusalem Perinatal Family Follow-Up Study. J. Epidemiol. Community Health 2017, 71, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.; Mishra, G.; Crawford, D. Which aspects of socioeconomic status are related to obesity among men and women? Int. J. Obes. 2002, 26, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Stringhini, S.; Carmeli, C.; Jokela, M.; Avendano, M.; Muennig, P.; Guida, F.; Ricceri, F.; d’Errico, A.; Barros, H.; Bochud, M.; et al. Socioeconomic status and the 25 x 25 risk factors as determinants of premature mortality: A multicohort study and meta-analysis of 1.7 million men and women. Lancet 2017, 389, 1229–1237. [Google Scholar] [CrossRef]
- Stringhini, S.; de Mestral, C. Socioeconomic Status and Cardiovascular Disease: an Update. Curr. Cardiol. Rep. 2017, 19, 115. [Google Scholar] [CrossRef]
- Stringhini, S.; Spencer, B.; Marques-Vidal, P.; Waeber, G.; Vollenweider, P.; Paccaud, F.; Bovet, P. Age and gender differences in the social patterning of cardiovascular risk factors in Switzerland: The CoLaus study. PLoS ONE 2012, 7, e49443. [Google Scholar] [CrossRef] [PubMed]
- Faeh, D.; Braun, J.; Bopp, M. Prevalence of obesity in Switzerland 1992-2007: the impact of education, income and occupational class. Obes. Rev. 2011, 12, 151–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkes, C.; Smith, T.G.; Jewell, J.; Wardle, J.; Hammond, R.A.; Friel, S.; Thow, A.M.; Kain, J. Smart food policies for obesity prevention. Lancet 2015, 385, 2410–2421. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [PubMed]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.D.; Leung, C.W.; Li, Y.; Ding, E.L.; Chiuve, S.E.; Hu, F.B.; Willett, W.C. Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Intern. Med. 2014, 174, 1587–1595. [Google Scholar] [CrossRef]
- Marques-Vidal, P.; Waeber, G.; Vollenweider, P.; Bochud, M.; Stringhini, S.; Guessous, I. Sociodemographic and Behavioural Determinants of a Healthy Diet in Switzerland. Ann. Nutr. Metab. 2015, 67, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gearon, E.; Peeters, A.; Ng, W.; Hodge, A.; Backholer, K. Diet and physical activity as possible mediators of the association between educational attainment and body mass index gain among Australian adults. Int. J. Public Health 2018, 63, 883–893. [Google Scholar] [CrossRef]
- Compernolle, S.; Oppert, J.-M.; Mackenbach, J.D.; Lakerveld, J.; Charreire, H.; Glonti, K.; Bardos, H.; Rutter, H.; De Cocker, K.; Cardon, G.; et al. Mediating role of energy-balance related behaviors in the association of neighborhood socio-economic status and residential area density with BMI: The SPOTLIGHT study. Prev. Med. 2016, 86, 84–91. [Google Scholar] [CrossRef]
- Kavanagh, A.; Bentley, R.J.; Turrell, G.; Shaw, J.; Dunstan, D.; Subramanian, S.V. Socioeconomic position, gender, health behaviours and biomarkers of cardiovascular disease and diabetes. Soc. Sci. Med. 2010, 71, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Turrell, G. Reported consumption of takeaway food and its contribution to socioeconomic inequalities in body mass index. Appetite 2014, 74, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovic, D.; de Mestral, C.; Bochud, M.; Bartley, M.; Kivimaki, M.; Vineis, P.; Mackenbach, J.; Stringhini, S. The contribution of health behaviors to socioeconomic inequalities in health: A systematic review. Prev. Med. 2018, 113, 15–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, M.C.; Guarnotta, V.; Giordano, C. Body composition assessment for the definition of cardiometabolic risk. J. Endocrinol. Investig. 2013, 36, 537–543. [Google Scholar] [CrossRef]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef] [PubMed]
- Huxley, R.; Mendis, S.; Zheleznyakov, E.; Reddy, S.; Chan, J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk--a review of the literature. Eur. J. Clin. Nutr. 2010, 64, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Sagarra-Romero, L.; Gomez-Cabello, A.; Pedrero-Chamizo, R.; Vila-Maldonado, S.; Gusi-Fuertes, N.; Villa-Vicente, J.G.; Espino-Toron, L.; Gonzalez-Gross, M.; Casajus-Mallen, J.A.; Vicente-Rodriguez, G.; et al. Relation between educational level and body composition in non-institutionalized elderly: The elderly EXERNET multi-center study. Rev. Esp. Salud Publica 2017, 91, e201710041. [Google Scholar]
- Dittmar, M. Comparison of bipolar and tetrapolar impedance techniques for assessing fat mass. Am. J. Hum. Boil. 2004, 16, 593–597. [Google Scholar] [CrossRef]
- Chatelan, A.; Beer-Borst, S.; Randriamiharisoa, A.; Pasquier, J.; Blanco, J.M.; Siegenthaler, S.; Paccaud, F.; Slimani, N.; Nicolas, G.; Camenzind-Frey, E.; et al. Major Differences in Diet across Three Linguistic Regions of Switzerland: Results from the First National Nutrition Survey menuCH. Nutrients 2017, 9, 1163. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2018, 118, 74–100. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 2009, 119, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Pestoni, G.; Krieger, J.P.; Sych, J.M.; Faeh, D.; Rohrmann, S. Cultural Differences in Diet and Determinants of Diet Quality in Switzerland: Results from the National Nutrition Survey menuCH. Nutrients 2019, 11, 126. [Google Scholar] [CrossRef] [PubMed]
- Al-Goblan, A.S.; Al-Alfi, M.A.; Khan, M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes. Targets Ther. 2014, 7, 587–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliodromiti, S.; Celis-Morales, C.A.; Lyall, D.M.; Anderson, J.; Gray, S.R.; Mackay, D.F.; Nelson, S.M.; Welsh, P.; Pell, J.P.; Gill, J.M.R.; et al. The impact of confounding on the associations of different adiposity measures with the incidence of cardiovascular disease: a cohort study of 296 535 adults of white European descent. Eur. Heart J. 2018, 39, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Tchernof, A.; Despres, J.P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef]
- Nishida, C.; Ko, G.T.; Kumanyika, S. Body fat distribution and noncommunicable diseases in populations: overview of the 2008 WHO Expert Consultation on Waist Circumference and Waist-Hip Ratio. Eur. J. Clin. Nutr. 2010, 64, 2–5. [Google Scholar] [CrossRef]
- Hagstromer, M.; Oja, P.; Sjostrom, M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Valeri, L.; VanderWeele, T.J. Mediation analysis allowing for exposure–mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychol. Methods 2013, 18, 137–150. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Mediation Analysis: A Practitioner’s Guide. Annu. Rev. Public Health 2016, 37, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Angell, S.Y.; Lang, T.; Rivera, J.A. Role of government policy in nutrition—barriers to and opportunities for healthier eating. BMJ 2018, 361, k2426. [Google Scholar] [CrossRef] [PubMed]
- Lartey, A.; Meerman, J.; Wijesinha-Bettoni, R. Why Food System Transformation Is Essential and How Nutrition Scientists Can Contribute. Ann. Nutr. Metab. 2018, 72, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Peeters, A. Obesity and the future of food policies that promote healthy diets. Nat. Rev. Endocrinol. 2018, 14, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, K.L.; Potvin, L. Transcending the known in public health practice: the inequality paradox: The population approach and vulnerable populations. Am. J. Public Health 2008, 98, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Artinian, N.T.; Fletcher, G.F.; Mozaffarian, D.; Kris-Etherton, P.; Van Horn, L.; Lichtenstein, A.H.; Kumanyika, S.; Kraus, W.E.; Fleg, J.L.; Redeker, N.S.; et al. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation 2010, 122, 406–441. [Google Scholar] [CrossRef]
- McGill, R.; Anwar, E.; Orton, L.; Bromley, H.; Lloyd-Williams, F.; O’Flaherty, M.; Taylor-Robinson, D.; Guzman-Castillo, M.; Gillespie, D.; Moreira, P.; et al. Are interventions to promote healthy eating equally effective for all? Systematic review of socioeconomic inequalities in impact. BMC public health 2015, 15, 457. [Google Scholar] [CrossRef]
- Adams, J.; Mytton, O.; White, M.; Monsivais, P. Why Are Some Population Interventions for Diet and Obesity More Equitable and Effective Than Others? The Role of Individual Agency. PLoS Med. 2016, 13, e1001990. [Google Scholar] [CrossRef]
- Lorenc, T.; Petticrew, M.; Welch, V.; Tugwell, P. What types of interventions generate inequalities? Evidence from systematic reviews. Epidemiol. Community Health 2013, 67, 190–193. [Google Scholar] [CrossRef]
- Poslusna, K.; Ruprich, J.; de Vries, J.H.; Jakubikova, M.; van’t Veer, P. Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br. J. Nutr. 2009, 101 (Suppl. 2), S73–S85. [Google Scholar] [CrossRef] [Green Version]
- Ogna, A.; Forni Ogna, V.; Bochud, M.; Paccaud, F.; Gabutti, L.; Burnier, M. Prevalence of obesity and overweight and associated nutritional factors in a population-based Swiss sample: an opportunity to analyze the impact of three different European cultural roots. Eur. J. Nutr. 2014, 53, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Office Fédéral de la Statistique. Surpoids et Obésité. Enquête Suisse sur la Santé 2012. Available online: https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/erhebungen/sgb.assetdetail.349687.html (accessed on 30 January 2019).
Total | Educational Level | p-Value | ||
---|---|---|---|---|
Tertiary | Secondary/Primary | |||
N | 1860 | 972 (52.3) | 888 (47.7) | |
Women, n (%) | 1009 (54.2) | 469 (48.3) | 540 (60.8) | <0.001 |
Age, mean (SD) | 49.2 (14.1) | 46.8 (14.0) | 51.9 (13.7) | <0.001 |
Smoking, n (%) | 401 (21.6) | 209 (21.5) | 192 (21.6) | 0.95 |
Physical activity | <0.001 | |||
Low | 110 (5.9) | 60 (6.2) | 50 (5.6) | |
Moderate | 807 (43.4) | 509 (52.4) | 298 (33.6) | |
High | 943 (50.7) | 403 (41.5) | 540 (60.8) | |
AHEI, mean (SD) | 48.8 (14.3) | 49.6 (14.3) | 47.8 (14.3) | 0.01 |
AHEI quintiles, median (range) | ||||
Healthiest | 68.6 (60.6–97.3) | 69.3 (60.6–97.3) | 68.2 (60.7–94.0) | 0.26 |
Healthier | 55.6 (51.2–60.6) | 55.7 (51.3–60.5) | 55.2 (51.2–60.6) | 0.61 |
Middle | 47.3 (43.2–51.2) | 47.5 (43.2–51.1) | 47.3 (43.2–51.2) | 0.97 |
Unhealthier | 39.5 (35.2–43.1) | 39.3 (35.2–43.0) | 39.5 (35.3–43.1) | 0.91 |
Unhealthiest | 29.4 (12.4–35.2) | 29.9 (16.0–35.2) | 29.3 (12.4–35.2) | 0.72 |
Obese, n (%) by marker | ||||
Body mass index | 196 (10.6) | 70 (7.2) | 126 (14.2) | <0.001 |
Waist circumference | 344 (18.8) | 128 (13.4) | 216 (24.6) | <0.001 |
Waist-to-hip ratio | 549 (30.0) | 252 (26.4) | 297 (33.8) | 0.001 |
Waist-to-height ratio | 787 (43.0) | 344 (36.0) | 443 (50.5) | <0.001 |
AHEI Quintiles | Mean (SD) | Primary/Secondary vs. Tertiary |
---|---|---|
OR (95% CI) | ||
Healthiest | 69.5 (7.1) | 1.00 (reference) |
Healthier | 55.6 (2.8) | 1.16 (0.86, 1.56) |
Middle | 47.2 (2.3) | 1.34 (1.00, 1.80) |
Unhealthier | 39.5 (2.3) | 1.60 (1.18, 2.15) |
Unhealthiest | 29.1 (4.6) | 2.29 (1.68, 3.12) |
P-trend a | <0.001 |
Obesity Marker | AHEI Quintiles | P-Trend a | ||||
---|---|---|---|---|---|---|
Healthiest | Healthier | Middle | Unhealthier | Unhealthiest | ||
Reference | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | ||
Body mass index | 1.00 | 1.22 (0.70, 2.12) | 1.91 (1.14, 3.20) | 2.09 (1.25, 3.49) | 3.42 (2.06, 5.67) | <0.0001 |
Waist circumference | 1.00 | 1.58 (1.05, 2.38) | 1.76 (1.18, 2.65) | 2.32 (1.55, 3.47) | 3.42 (2.26, 5.17) | <0.0001 |
Waist-to-hip ratio | 1.00 | 1.72 (1.17, 2.53) | 1.89 (1.29, 2.78) | 2.66 (1.81, 3.90) | 3.30 (2.23, 4.91) | <0.0001 |
Waist-to-height ratio | 1.00 | 1.82 (1.30, 2.54) | 2.16 (1.54, 3.02) | 3.11 (2.20, 4.38) | 3.89 (2.72, 5.56) | <0.0001 |
Obesity Marker | MTE | NDE | NIE | PM |
---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | % (95% CI) | |
Body mass index | 3.36 (2.01, 5.66) | 2.84 (1.68, 4.94) | 1.18 (1.06, 1.36) | 22.1 (8.5, 41.6) |
Waist circumference | 2.44 (1.58, 3.75) | 2.06 (1.34, 3.18) | 1.19 (1.07, 1.34) | 26.6 (11.4, 48.4) |
Waist-to-hip ratio | 2.48 (1.63, 3.78) | 2.01 (1.35, 3.03) | 1.23 (1.10, 1.41) | 31.4 (16.1, 53.3) |
Waist-to-height ratio | 2.04 (1.43, 2.96) | 1.67 (1.18, 2.39) | 1.22 (1.11, 1.39) | 35.8 (19.2, 63.4) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Mestral, C.; Chatelan, A.; Marques-Vidal, P.; Stringhini, S.; Bochud, M. The Contribution of Diet Quality to Socioeconomic Inequalities in Obesity: A Population-based Study of Swiss Adults. Nutrients 2019, 11, 1573. https://doi.org/10.3390/nu11071573
de Mestral C, Chatelan A, Marques-Vidal P, Stringhini S, Bochud M. The Contribution of Diet Quality to Socioeconomic Inequalities in Obesity: A Population-based Study of Swiss Adults. Nutrients. 2019; 11(7):1573. https://doi.org/10.3390/nu11071573
Chicago/Turabian Stylede Mestral, Carlos, Angeline Chatelan, Pedro Marques-Vidal, Silvia Stringhini, and Murielle Bochud. 2019. "The Contribution of Diet Quality to Socioeconomic Inequalities in Obesity: A Population-based Study of Swiss Adults" Nutrients 11, no. 7: 1573. https://doi.org/10.3390/nu11071573
APA Stylede Mestral, C., Chatelan, A., Marques-Vidal, P., Stringhini, S., & Bochud, M. (2019). The Contribution of Diet Quality to Socioeconomic Inequalities in Obesity: A Population-based Study of Swiss Adults. Nutrients, 11(7), 1573. https://doi.org/10.3390/nu11071573