Dietary Patterns in New Zealand Women: Evaluating Differences in Body Composition and Metabolic Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Procedure
2.3. Assessment of Body Composition
2.4. Assessment of Metabolic and Endocrine Biomarkers
2.5. Dietary Assessment
2.6. Dietary Pattern Extraction
2.7. Data Handling and Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Dietary Patterns
3.3. Participant Characteristics of Dietary Pattern Tertiles
3.4. Energy and Macronutrient Intakes of Dietary Pattern Tertiles
3.5. Metabolic and Endocrine Biomarkers of Dietary Pattern Tertiles
4. Discussion
4.1. The Link between the ‘Refined and Processed’ Dietary Pattern and Obesity
4.2. Ethnic Group-Specific Differences within Dietary Patterns
4.3. The Link between Other Dietary Patterns and Metabolic Health
4.4. Strengths, Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jacobs, D.R.; Tapsell, L.C. Food synergy: The key to a healthy diet. Proc. Nutr. Soc. 2013, 72, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Subar, A.F.; Reedy, J. Examining dietary patterns in relation to chronic disease: Matching measures and methods to questions of interest. Circulation 2015, 132, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Liese, A.D.; Krebs-Smith, S.M.; Subar, A.F.; George, S.M.; Harmon, B.E.; Neuhouser, M.L.; Boushey, C.J.; Schap, T.E.; Reedy, J. The Dietary Patterns Methods Project: Synthesis of findings across cohorts and relevance to dietary guidance. J. Nutr. 2015, 145, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S.M.; Reedy, J.; Millen, A.E.; Dixon, L.B.; Newby, P.K.; Tucker, K.L.; Krebs-Smith, S.M.; Guenther, P.M. Dietary patterns: Challenges and opportunities in dietary patterns research. J. Am. Diet. Assoc. 2007, 107, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Paradis, A.M.; Godin, G.; Perusse, L.; Vohl, M.C. Associations between dietary patterns and obesity phenotypes. Int. J. Obes. 2009, 33, 1419–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suliga, E.; Kozieł, D.; Cieśla, E.; Głuszek, S. Association between dietary patterns and metabolic syndrome in individuals with normal weight: A cross-sectional study. Nutr. J. 2015, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.; Muller, D.; Hallfrisch, J.; Qiao, N.; Andres, R.; Tucker, K.L. Dietary patterns and changes in body mass index and waist circumference in adults. Am. J. Clin. Nutr. 2003, 77, 1417–1425. [Google Scholar] [CrossRef] [Green Version]
- Beck, K.L.; Jones, B.; Ullah, I.; McNaughton, S.A.; Haslett, S.J.; Stonehouse, W. Associations between dietary patterns, socio-demographic factors and anthropometric measurements in adult New Zealanders: An analysis of data from the 2008/09 New Zealand Adult Nutrition Survey. Eur. J. Nutr. 2017, 57, 1421–1433. [Google Scholar] [CrossRef]
- Wall, C.R.; Gammon, C.S.; Bandara, D.K.; Grant, C.C.; Atatoa Carr, P.E.; Morton, S.M.B. Dietary patterns in pregnancy in New Zealand—Influence of maternal socio-demographic, health and lifestyle factors. Nutrients 2016, 8, 300. [Google Scholar] [CrossRef]
- Thompson, J.M.D.; Wall, C.; Becroft, D.M.O.; Robinson, E.; Wild, C.J.; Mitchell, E.A. Maternal dietary patterns in pregnancy and the association with small-for-gestational-age infants. Br. J. Nutr. 2010, 103, 1665–1673. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health. Annual Update of Key Results 2017/18: New Zealand Health Survey; Ministry of Health: Wellington, New Zealand, 2018.
- Ministry of Health. A Focus on Māori nutrition: Findings from the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2012.
- Ministry of Health. A Focus on Pacific Nutrition: Findings from the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2012.
- Schrijvers, J.; McNaughton, S.; Beck, K.; Kruger, R. Exploring the dietary patterns of young New Zealand women and associations with BMI and body Fat. Nutrients 2016, 8, 450. [Google Scholar] [CrossRef]
- Kruger, R.; Shultz, S.P.; McNaughton, S.A.; Russell, A.P.; Firestone, R.T.; George, L.; Beck, K.L.; Conlon, C.A.; von Hurst, P.R.; Breier, B.; et al. Predictors and risks of body fat profiles in young New Zealand European, Māori and Pacific women: Study protocol for the women’s EXPLORE study. SpringerPlus 2015, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Davidsen, L.; Vistisen, B.; Astrup, A. Impact of the menstrual cycle on determinants of energy balance: A putative role in weight loss attempts. Int. J. Obes. 2007, 31, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Gavrila, A.; Peng, C.K.; Chan, J.L.; Mietus, J.E.; Goldberger, A.L.; Mantzoros, C.S. Diurnal and ultradian dynamics of serum adiponectin in healthy men: Comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J. Clin. Endocrinol. Metab. 2003, 88, 2838–2843. [Google Scholar] [CrossRef] [PubMed]
- Marfell-Jones, M.J.; Olds, T.; Stewart, A.; Carter. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2006. [Google Scholar]
- Wingfield, H.L.; Smith-Ryan, A.E.; Woessner, M.N.; Melvin, M.N.; Fultz, S.N.; Graff, R.M. Body composition assessment in overweight women: Validation of air displacement plethysmography. Clin. Physiol. Funct. Imaging 2014, 34, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Schiaffini, R.; Brufani, C.; Russo, B.; Fintini, D.; Migliaccio, A.; Pecorelli, L.; Bizzarri, C.; Lucidi, V.; Cappa, M. Abnormal glucose tolerance in children with cystic fibrosis: The predictive role of continuous glucose monitoring system. Eur. J. Endocrinol. 2010, 162, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Dirinck, E.; Dirtu, A.C.; Jorens, P.G.; Malarvannan, G.; Covaci, A.; Van Gaal, L.F. Pivotal role for the visceral fat compartment in the release of persistent organic pollutants during weight loss. J. Clin. Endocrinol. Metab. 2015, 100, 4463–4471. [Google Scholar] [CrossRef]
- Tosi, F.; Fiers, T.; Kaufman, J.-M.; Dall’Alda, M.; Moretta, R.; Giagulli, V.A.; Bonora, E.; Moghetti, P. Implications of androgen assay accuracy in the phenotyping of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2016, 101, 610–618. [Google Scholar] [CrossRef]
- Olson, M.L.; Maalouf, N.M.; Oden, J.D.; White, P.C.; Hutchison, M.R. Vitamin D deficiency in obese children and its relationship to glucose homeostasis. J. Clin. Endocrinol. Metab. 2012, 97, 279–285. [Google Scholar] [CrossRef]
- Kopprasch, S.; Pietzsch, J.; Ansurudeen, I.; Graessler, J.; Krug, A.W.; Ehrhart-Bornstein, M.; Bornstein, S.R. Prediabetic and diabetic in vivo modification of circulating low-density lipoprotein attenuates its stimulatory effect on adrenal aldosterone and cortisol secretion. J. Endocrinol. 2009, 200, 45–52. [Google Scholar] [CrossRef]
- Gabel, L.; Ridgers, N.D.; Della Gatta, P.A.; Arundell, L.; Cerin, E.; Robinson, S.; Daly, R.M.; Dunstan, D.W.; Salmon, J. Associations of sedentary time patterns and TV viewing time with inflammatory and endothelial function biomarkers in children. Pediatr. Obes. 2016, 11, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Beck, K.L.; Houston, Z.L.; McNaughton, S.A.; Kruger, R. Development and evaluation of a food frequency questionnaire to assess nutrient intakes of adult women in New Zealand. Nutr. Diet. 2018, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Food Comes First: Methodologies for the National Nutrition Survey of New Zealand; Ministry of Health: Wellington, New Zealand, 1997.
- Daly, A.M.; Parsons, J.E.; Wood, N.A.; Gill, T.K.; Taylor, A.W. Food consumption habits in two states of Australia, as measured by a food frequency questionnaire. BMC Res. Notes 2011, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; SAGE Publications Ltd.: London, UK, 2009. [Google Scholar]
- University of Otago and Ministry of Health. Methodology Report for the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2011.
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- New Zealand Guidelines Group. New Zealand Primary Care Handbook 2012; New Zealand Guidelines Group: Wellington, New Zealand, 2012. [Google Scholar]
- Hill, J.O. Understanding and addressing the epidemic of obesity: An energy balance perspective. Endocr. Rev. 2006, 27, 750–761. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. WHO Technical Report Series. Obesity: Preventing and Managing the Global Epidemic; World Health Organisation: Geneva, Switzerland, 2000. [Google Scholar]
- Grundy, S.M. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab. 2004, 89, 2595–2600. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; Department of Health and Ageing: Canberra, Australia; Australia & Ministry of Health: Wellington, New Zealand, 2006.
- Schwerin, H.S.; Stanton, J.L.; Riley, A.M.; Schaefer, A.E.; Leveille, G.A.; Elliott, J.G.; Warwick, K.M.; Brett, B.E. Food eating patterns and health: A reexamination of the Ten-State and HANES I surveys. Am. J. Clin. Nutr. 1981, 34, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Mueller, C. Factor Analysis: Statistical Methods and Practical Issues; Sage Publications: Newbury Park, CA, USA, 1978. [Google Scholar]
- Naja, F.; Nasreddine, L.; Itani, L.; Adra, N.; Sibai, A.M.; Hwalla, N. Association between dietary patterns and the risk of metabolic syndrome among Lebanese adults. Eur. J. Nutr. 2013, 52, 97–105. [Google Scholar] [CrossRef]
- Naja, F.; Hwalla, N.; Itani, L.; Salem, M.; Azar, S.T.; Zeidan, M.N.; Nasreddine, L. Dietary patterns and odds of type 2 diabetes in Beirut, Lebanon: A case–control study. Nutr. Metab. 2012, 9, 1–11. [Google Scholar] [CrossRef]
- Heidemann, C.; Scheidt-Nave, C.; Richter, A.; Mensink, G.B.M. Dietary patterns are associated with cardiometabolic risk factors in a representative study population of German adults. Br. J. Nutr. 2011, 106, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- Thompson, N.M.; Norman, A.M.; Donkin, S.S.; Shankar, R.R.; Vickers, M.H.; Miles, J.L.; Breier, B.H. Prenatal and postnatal pathways to obesity: Different underlying mechanisms, different metabolic outcomes. Endocrinology 2007, 148, 2345–2354. [Google Scholar] [CrossRef]
- Saltiel, A.R. Insulin resistance in the defense against obesity. Cell. Metab. 2012, 15, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.W.; Seeley, R.J.; Zeltser, L.M.; Drewnowski, A.; Ravussin, E.; Redman, L.M.; Leibel, R.L. Obesity pathogenesis: An Endocrine Society scientific statement. Endocr. Rev. 2017, 38, 267–296. [Google Scholar] [CrossRef] [PubMed]
- Krechowec, S.O.; Vickers, M.; Gertler, A.; Breier, B.H. Prenatal influences on leptin sensitivity and susceptibility to diet-induced obesity. J. Endocrinol. 2006, 189, 355–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barter, P. The role of HDL-cholesterol in preventing atherosclerotic disease. Eur. Heart J. Suppl. 2005, 7, F4–F8. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health. A Focus on Nutrition: Key Findings of the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2011.
- Ministry of Health. Tupu Ola Moui Pacific Health Chart Book; Ministry of Health: Wellington, New Zealand, 2012.
- Ministry of Health. Tatau Kahukura Māori Health Chart Book; Ministry of Health: Wellington, New Zealand, 2015.
- Luiten, C.M.; Steenhuis, I.H.M.; Eyles, H.; Ni Mhurchu, C.; Waterlander, W.E. Ultra-processed foods have the worst nutrient profile, yet they are the most available packaged products in a sample of New Zealand supermarkets. Public Health Nutr. 2015, 19, 530–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, M.; Afshin, A.; Singh, G.; Mozaffarian, D. Do healthier foods and diet patterns cost more than less healthy options? A systematic review and meta-analysis. BMJ Open 2013, 3, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zizza, C.A. Healthy snacking recommendations: One size does not fit all. Physiol. Behav. 2014, 134, 32–37. [Google Scholar] [CrossRef]
- Randall, E.; Marshall, J.R.; Graham, S.; Brasure, J. Patterns in food use and their associations with nutrient intakes. Am. J. Clin. Nutr. 1990, 52, 739–745. [Google Scholar] [CrossRef]
- McNaughton, S.A.; Mishra, G.D.; Stephen, A.M.; Wadsworth, M.E.J. Dietary patterns throughout adult life are associated with body mass index, waist circumference, blood pressure, and red cell folate. J. Nutr. 2007, 137, 99–105. [Google Scholar] [CrossRef]
- Fung, T.T.; Rimm, E.B.; Spiegelman, D.; Rifai, N.; Tofler, G.H.; Willett, W.C.; Hu, F.B. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am. J. Clin. Nutr. 2001, 73, 61–67. [Google Scholar] [CrossRef]
- Calder, P.C.; Ahluwalia, N.; Albers, R.; Bosco, N.; Bourdet-Sicard, R.; Haller, D.; Holgate, S.T.; Jönsson, L.S.; Latulippe, M.E.; Marcos, A.; et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br. J. Nutr. 2013, 109, S1–S34. [Google Scholar] [CrossRef] [PubMed]
Characteristic | |
---|---|
Age (years) | 31.0 ± 0.4 |
Ethnic groups n (%) | |
NZE | 225 (59%) |
Māori | 78 (21%) |
Pacific | 75 (20%) |
Body weight (kg) | 75.6 ± 0.9 |
BMI (kg/m2) | 27.1 ± 0.3 |
Normal-weight BMI group (18.5–24.9 kg/m2) n (%) | |
NZE | 134 (59%) |
Māori | 27 (35%) |
Pacific | 11 (14%) |
Overweight BMI group (25–29.9 kg/m2) n (%) | |
NZE | 60 (27%) |
Māori | 28 (36%) |
Pacific | 23 (31%) |
Obese BMI group (≥30 kg/m2) n (%) | |
NZE | 31 (14%) |
Māori | 23 (29%) |
Pacific | 41 (55%) |
Total body fat (%) | 34.0 ± 0.4 |
<35% body fat group n (%) | |
NZE | 151 (67%) |
Māori | 38 (49%) |
Pacific | 28 (37%) |
>35% body fat group n (%) | |
NZE | 74 (33%) |
Māori | 40 (51%) |
Pacific | 47 (63%) |
Food Groups | Factor Loading |
---|---|
Pattern 1—Refined and processed (9%, α = 0.7) | |
Crumbed and deep-fried food | 0.57 |
Fast-food | 0.57 |
Puddings | 0.54 |
Fruit drinks, soft drinks and other beverages | 0.53 |
Sweetened milk products | 0.52 |
Refined grains | 0.50 |
Starchy vegetables | 0.44 |
White breads | 0.42 |
Sweetened cereals | 0.34 |
Savoury snack foods | 0.32 |
Water | −0.47 |
Nuts and seeds | −0.44 |
Pattern 2—Sweet and savoury snacking (7%, α = 0.7) | |
Cakes and biscuits | 0.61 |
Sweet spreads | 0.56 |
Sweet snack foods | 0.55 |
Savoury snack foods | 0.52 |
Margarine | 0.49 |
Peanut butter and peanuts | 0.46 |
Sauces | 0.46 |
Creamy dressings | 0.46 |
Savoury spreads | 0.45 |
Whole grain breads | 0.44 |
Crackers | 0.42 |
Low-fat cheese | 0.37 |
High-fat cheese | 0.33 |
Pattern 3—Fruit and vegetable (5%, α = 0.7) | |
Dark yellow vegetables | 0.65 |
Green vegetables | 0.63 |
Other non-starchy vegetables | 0.62 |
Other fruit | 0.59 |
Starchy vegetables | 0.56 |
Apple, banana, orange | 0.53 |
Soy products | 0.47 |
Legumes | 0.41 |
Wholegrains | 0.34 |
Yoghurt | 0.32 |
Tomatoes | 0.31 |
Pattern 4—Fats and meat (4%, α = 0.5) | |
Fats | 0.54 |
Red meats | 0.54 |
Creamy dressings | 0.54 |
Processed meats | 0.51 |
White meats | 0.46 |
Egg and egg dishes | 0.38 |
Coconut fats | 0.37 |
Sauces | 0.35 |
Green vegetables | 0.35 |
Other alcoholic beverages | 0.32 |
High-fat cheese | 0.32 |
Full-fat milk | 0.30 |
Low-fat milk | −0.42 |
Refined and Processed Pattern | Sweet and Savoury Snacking Pattern | Fruit and Vegetable Pattern | Fats and Meat Pattern | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | |
Age (years) | 34.4 ± 1.3 | 32.4 ± 1.0 | 27.6 ± 0.7 bbb,ccc | 29.6 ± 0.8 | 29.6 ± 0.9 | 32.2 ± 1.1 | 31.2 ± 0.8 | 31.0 ± 0.9 | 28.8 ± 0.9 | 29.7 ± 1.0 | 30.5 ± 0.9 | 30.4 ± 0.8 |
Ethnic group n (%) | ||||||||||||
NZE | 101 (45%) | 89 (39%) | 35 (16%) bbb,c | 54 (24%) | 82 (36%) | 89 (40%) bb | 62 (28%) | 83 (37%) | 80 (36%) | 88 (39%) | 76 (34%) | 61 (27%) bb,c |
Māori | 18 (23%) | 20 (26%) | 40 (51%) b | 42 (54%) | 24 (31%) | 12 (15%) bbb | 33 (42%) | 26 (33%) | 19 (24%) | 16 (21%) | 25 (32%) | 37 (47%) bb |
Pacific | 7 (9%) | 17 (23%) | 51 (68%) bbb,c | 30 (40%) | 20 (27%) | 25 (33%) | 31 (41%) | 17 (23%) | 27 (36%) | 22 (29%) | 25 (33%) | 28 (37%) |
BMI (kg/m2) | 25.9 ± 0.8 | 28.3 ± 0.6 | 29.9 ± 0.5 bbb | 28.1 ± 0.5 | 28.1 ± 0.6 | 30.1 ± 0.7 | 28.2 ± 0.5 | 28.2 ± 0.6 | 28.5 ± 0.6 | 27.1 ± 0.6 | 28.4 ± 0.6 | 29.6 ± 0.5 bb |
Total body fat (%) | 31.9 ± 1.2 | 35.3 ± 0.9 | 37.3 ± 0.7 bbb | 34.0 ± 0.7 | 34.8 ± 0.8 | 37.3 ± 1.0 b | 34.8 ± 0.8 | 35.5 ± 0.9 | 34.5 ± 0.9 | 33.9 ± 0.9 | 34.4 ± 0.8 | 36.6 ± 0.7 |
Android fat (%) | 32.0 ± 1.1 | 35.3 ± 0.9 | 36.4 ± 0.7 bb | 34.4 ± 0.7 | 34.5 ± 0.8 | 36.0 ± 0.9 | 34.6 ± 0.7 | 35.2 ± 0.8 | 34.6 ± 0.8 | 33.1 ± 0.9 | 34.9 ± 0.8 | 35.9 ± 0.7 b |
Gynoid fat (%) | 36.1 ± 0.7 | 38.1 ± 0.6 | 38.2 ± 0.5 | 36.9 ± 0.5 | 37.4 ± 0.5 | 38.6 ± 0.6 | 37.8 ± 0.5 | 37.5 ± 0.6 | 37.1 ± 0.5 | 36.8 ± 0.6 | 37.5 ± 0.5 | 37.9 ± 0.5 |
WC (cm) | 79.0 ± 1.7 | 84.7 ± 1.3 a | 87.6 ± 1.0 bbb | 83.3 ± 1.1 | 84.3 ± 1.2 | 87.8 ± 1.4 b | 84.1 ± 1.1 | 84.5 ± 1.3 | 84.4 ± 1.3 | 82.1 ± 1.3 | 84.1 ± 1.2 | 87.2 ± 1.1 bb |
HC (cm) | 104.6 ± 1.6 | 109.5 ± 1.2 a | 111.3 ± 1.0 bb | 108.1 ± 1.0 | 107.7 ± 1.1 | 112.8 ± 1.3 b,c | 108.9 ± 1.0 | 108.8 ± 1.2 | 108.7 ± 1.1 | 106.8 ± 1.2 | 108.3 ± 1.1 | 111.3 ± 1.0 b |
WHR | 0.75 ± 0.01 | 0.77 ± 0.01 a | 0.79 ± 0.01 b,c | 0.77 ± 0.01 | 0.78 ± 0.01 | 0.78 ± 0.01 | 0.77 ± 0.01 | 0.77 ± 0.01 | 0.77 ± 0.01 | 0.77 ± 0.01 | 0.77 ± 0.01 | 0.78 ± 0.01 |
Refined and Processed Pattern | Sweet and Savoury Snacking Pattern | Fruit and Vegetable Pattern | Fats and Meat Pattern | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | |
Total energy (MJ) | 8.5 ± 0.5 | 8.5 ± 0.4 | 11.8 ± 0.3 bbb,ccc | 7.7 ± 0.3 | 10.6 ± 0.3 aaa | 12.7 ± 0.4 bbb,ccc | 8.8 ± 0.3 | 10.2 ± 0.4 a | 11.6 ± 0.4 bbb,c | 8.9 ± 0.4 | 8.7 ± 0.3 | 12.1 ± 0.3 bbb,ccc |
Protein (g) | 96.5 ± 5.8 | 93.5 ± 4.4 | 121.2 ± 3.5 bbb,ccc | 90.7 ± 3.4 | 113.1 ± 4.0 aaa | 123.7 ± 4.5 bbb | 90.9 ± 3.5 | 108.7 ± 4.1 aa | 127.1 ± 4.0 bbb,cc | 87.7 ± 4.0 | 94.0 ± 3.5 | 133.5 ± 3.3 bbb,ccc |
Protein (%) (15–25%) * | 19.5 ± 0.5 | 19.0 ± 0.4 | 17.5 ± 0.3 bbc | 20.0 ± 0.3 | 18.0 ± 0.4 aaa | 16.6 ± 0.4 bbb,cc | 17.8 ± 0.3 | 18.4 ± 0.4 | 19.0 ± 0.4 b | 16.7 ± 0.4 | 18.7 ± 0.3 aaa | 19.3 ± 0.3 bbb |
Fat (g) | 90.1 ± 5.8 | 82.2 ± 4.4 | 108.7 ± 3.5 b,ccc | 72.7 ± 3.1 | 102.3 ± 3.6 aaa | 124.8 ± 4.1 bbb,ccc | 89.3 ± 3.6 | 100.3 ± 4.2 | 105.7 ± 4.1 bb | 80.0 ± 3.9 | 81.0 ± 3.4 | 124.4 ± 3.2 bbb,ccc |
Fat (%) (20–35%) * | 38.7 ± 1.0 | 35.2 ± 0.7 a | 34.3 ± 0.6 bbb | 34.9 ± 0.6 | 35.7 ± 0.7 | 36.8 ± 0.8 | 37.3 ± 0.6 | 36.1 ± 0.7 | 33.3 ± 0.7 bbb,cc | 33.0 ± 0.7 | 34.8 ± 0.6 | 38.6 ± 0.6 bbb,ccc |
Carbohydrate (g) | 181.9 ± 14.9 | 210.1 ± 11.2 | 316.1 ± 9.0 bbb,ccc | 190.5 ± 8.7 | 266.4 ± 10.2 aaa | 322.2 ± 11.6 bbb,ccc | 217.1 ± 9.6 | 253.3 ± 11.3 | 300.2 ± 11.1 bbb,cc | 245.8 ± 12.2 | 226.7 ± 10.8 | 283.2 ± 10.0 bbb |
Carbohydrate (%) (45–65%) * | 36.7 ± 1.0 | 42.1 ± 0.8 aaa | 45.5 ± 0.6 bbb,cc | 41.5 ± 0.7 | 42.4 ± 0.8 | 43.0 ± 0.9 | 41.4 ± 0.7 | 41.7 ± 0.8 | 44.0 ± 0.8 b | 46.8 ± 0.8 | 42.9 ± 0.7 aaa | 38.3 ± 0.6 bbb,ccc |
Starch (%) | 16.5 ± 0.9 | 20.2 ± 0.7 aa | 22.4 ± 0.5 bbb,c | 19.4 ± 0.5 | 20.6 ± 0.6 | 22.8 ± 0.7 bbb | 21.7 ± 0.6 | 20.0 ± 0.7 | 20.1 ± 0.6 | 23.1 ± 0.7 | 21.1 ± 0.6 | 18.6 ± 0.5 bbb cc |
Total sugar (%) | 20.2 ± 0.9 | 22.0 ± 0.7 | 23.1 ± 0.6 b | 22.1 ± 0.6 | 21.8 ± 0.7 | 20.1 ± 0.8 | 19.7 ± 0.6 | 21.7 ± 0.7 | 23.9 ± 0.6 bbb | 23.7 ± 0.7 | 21.8 ± 0.6 | 19.7 ± 0.6 bbb,c |
Glucose (%) | 4.4 ± 0.3 | 4.6 ± 0.2 | 4.6 ± 0.2 | 4.7 ± 0.2 | 4.6 ± 0.2 | 3.8 ± 0.2 bbb,c | 3.7 ± 0.2 | 4.5 ± 0.1 aa | 5.2 ± 0.2 bbb,c | 4.7 ± 0.2 | 4.4 ± 0.1 | 4.2 ± 0.2 |
Fructose (%) | 4.4 ± 0.3 | 4.8 ± 0.2 | 5.1 ± 0.2 | 5.1 ± 0.2 | 4.6 ± 0.2 | 4.1 ± 0.3 b | 3.7 ± 0.2 | 4.7 ± 0.2 aa | 5.7 ± 0.2 bbb,cc | 5.3 ± 0.2 | 4.6 ± 0.2 | 4.2 ± 0.2 bb |
Sucrose (%) | 7.6 ± 0.5 | 8.4 ± 0.4 | 9.6 ± 0.3 bb,c | 8.2 ± 0.3 | 8.7 ± 0.4 | 8.7 ± 0.4 | 8.4 ± 0.3 | 8.6 ± 0.4 | 8.6 ± 0.4 | 9.0 ± 0.4 | 8.7 ± 0.3 | 8.0 ± 0.3 |
Lactose (%) | 3.3 ± 0.4 | 3.8 ± 0.3 | 3.4 ± 0.3 | 3.8 ± 0.3 | 3.5 ± 0.3 | 3.0 ± 0.3 | 3.3 ± 0.3 | 3.5 ± 0.3 | 4.0 ± 0.3 | 4.1 ± 0.3 | 3.6 ± 0.3 | 2.8 ± 0.3 bb |
Maltose (%) | 0.43 ± 0.03 | 0.41 ± 0.03 | 0.53 ± 0.02 cc | 0.40 ± 0.02 | 0.48 ± 0.02 | 0.57 ± 0.03 bbb,c | 0.54 ± 0.02 | 0.46 ± 0.02 | 0.43 ± 0.02 bb | 0.55 ± 0.03 | 0.48 ± 0.02 | 0.41 ± 0.02 bbb,c |
Refined and Processed Pattern | Sweet and Savoury Snacking Pattern | Fruit and Vegetable Pattern | Fats and Meat Pattern | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | |
Leptin (ng/mL) | 5.50 ± 0.001 | 8.51 ± 0.001 aa | 10.96 ± 0.001 bbb | 7.24 ± 0.001 | 9.33 ± 0.001 | 10.00 ± 0.001 b | 9.12 ± 0.001 | 8.91 ± 0.001 | 7.41 ± 0.001 | 7.94 ± 0.001 | 8.51 ± 0.001 | 8.91 ± 0.001 |
Ghrelin (pg/mL) | 59.83 ± 5.93 | 42.56 ± 4.44 | 40.96 ± 3.69 b | 46.14 ± 3.61 | 49.15 ± 4.24 | 41.20 ± 4.82 | 44.21 ± 3.73 | 45.79 ± 4.36 | 47.26 ± 4.25 | 44.24 ± 4.54 | 49.49 ± 4.09 | 42.39 ± 3.74 |
Insulin (3–25 mU/mL) * | 9.52 ± 1.12 | 12.94 ± 0.84 a | 16.50 ± 0.70 bbb,cc | 13.43 ± 0.71 | 14.52 ± 0.84 | 13.85 ± 0.95 | 14.78 ± 0.72 | 13.52 ± 0.85 | 13.17 ± 0.83 | 13.37 ± 0.88 | 13.88 ± 0.79 | 14.06 ± 0.73 |
Glucose (3.5–5.4 mmol/L) * | 4.66 ± 0.06 | 4.76 ± 0.05 | 4.76 ± 0.04 | 4.74 ± 0.04 | 4.77 ± 0.04 | 4.64 ± 0.05 | 4.76 ± 0.04 | 4.72 ± 0.04 | 4.66 ± 0.04 | 4.66 ± 0.05 | 4.73 ± 0.04 | 4.80 ± 0.04 |
HbA1c (<40 mmol/mol) * | 28.81 ± 0.52 | 29.05± 0.39 | 29.89 ± 0.32 | 29.44 ± 0.32 | 29.27 ± 0.37 | 29.46 ± 0.42 | 29.62 ± 0.32 | 28.91 ± 0.38 | 29.51 ± 0.37 | 29.48 ± 0.39 | 29.64 ± 0.35 | 29.22 ± 0.32 |
Total cholesterol (<5 mmol/L) * | 4.59 ± 0.13 | 4.51 ± 0.10 | 4.45 ± 0.08 | 4.51 ± 0.08 | 4.45 ± 0.10 | 4.39 ± 0.11 | 4.40 ± 0.08 | 4.52 ± 0.10 | 4.44 ± 0.10 | 4.31 ± 0.10 | 4.54 ± 0.09 | 4.54 ± 0.08 |
HDL-C (>1 mmol/L) * | 1.73 ± 0.06 | 1.46 ± 0.04 aaa | 1.41 ± 0.04 bbb | 1.49 ± 0.04 | 1.54 ± 0.04 | 1.46 ± 0.05 | 1.50 ± 0.04 | 1.48 ± 0.04 | 1.52 ± 0.04 | 1.51 ± 0.05 | 1.50 ± 0.04 | 1.52 ± 0.04 |
LDL-C (0–3.4 mmol/L) * | 2.49 ± 0.13 | 2.57 ± 0.09 | 2.59 ± 0.08 | 2.59 ± 0.08 | 2.46 ± 0.09 | 2.48 ± 0.10 | 2.53 ± 0.08 | 2.55 ± 0.09 | 2.48 ± 0.09 | 2.38 ± 0.10 | 2.61 ± 0.09 | 2.56 ± 0.08 |
Triglyceride (<2 mmol/L) * | 0.82 ± 0.03 | 1.07 ± 0.08 a | 1.00 ± 0.05 | 0.95 ± 0.05 | 0.98 ± 0.08 | 0.95 ± 0.04 | 0.90 ± 0.04 | 1.05 ± 0.08 | 0.94 ± 0.05 | 0.92 ± 0.04 | 0.97 ± 0.08 | 1.00 ± 0.05 |
CRP (0–5 mg/L) * | 3.31 ± 1.07 | 3.72 ± 1.05 | 3.47 ± 1.05 | 3.39 ± 1.05 | 3.39 ± 1.05 | 3.80 ± 1.05 | 3.47 ± 1.05 | 3.63 ± 1.05 | 3.47 ± 1.05 | 3.47 ± 1.05 | 3.39 ± 1.05 | 3.55 ± 1.05 |
IL-6 (pg/mL) | 1.95 ± 1.10 | 2.09 ± 1.07 | 2.14 ± 1.05 | 2.00 ± 1.05 | 1.95 ± 1.07 | 2.34 ± 1.07 | 2.34 ± 1.05 | 2.00 ± 1.07 | 1.86 ± 1.07 | 2.14 ± 1.07 | 1.95 ± 1.07 | 2.04 ± 1.07 |
IL-10 (pg/mL) | 12.59 ± 1.17 | 9.55 ± 1.12 | 12.02 ± 1.10 | 10.47 ± 1.10 | 10.72 ± 1.12 | 13.49 ± 1.12 | 11.22 ± 1.10 | 12.59 ± 1.12 | 10.72 ± 1.12 | 13.49 ± 1.12 | 9.33 ± 1.10 | 10.96 ± 1.10 |
TNF-α (pg/mL) | 6.81 ± 0.37 | 7.35 ± 0.28 | 7.36 ± 0.23 | 7.18 ± 0.23 | 7.36 ± 0.27 | 7.07 ± 0.31 | 7.41 ± 0.23 | 7.42 ± 0.27 | 6.61 ± 0.26 | 7.14 ± 0.29 | 7.11 ± 0.26 | 7.12 ± 0.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayasinghe, S.N.; Breier, B.H.; McNaughton, S.A.; Russell, A.P.; Della Gatta, P.A.; Mason, S.; Stonehouse, W.; Walsh, D.C.I.; Kruger, R. Dietary Patterns in New Zealand Women: Evaluating Differences in Body Composition and Metabolic Biomarkers. Nutrients 2019, 11, 1643. https://doi.org/10.3390/nu11071643
Jayasinghe SN, Breier BH, McNaughton SA, Russell AP, Della Gatta PA, Mason S, Stonehouse W, Walsh DCI, Kruger R. Dietary Patterns in New Zealand Women: Evaluating Differences in Body Composition and Metabolic Biomarkers. Nutrients. 2019; 11(7):1643. https://doi.org/10.3390/nu11071643
Chicago/Turabian StyleJayasinghe, Shakeela N., Bernhard H. Breier, Sarah A. McNaughton, Aaron P. Russell, Paul A. Della Gatta, Shaun Mason, Welma Stonehouse, Daniel C.I. Walsh, and Rozanne Kruger. 2019. "Dietary Patterns in New Zealand Women: Evaluating Differences in Body Composition and Metabolic Biomarkers" Nutrients 11, no. 7: 1643. https://doi.org/10.3390/nu11071643
APA StyleJayasinghe, S. N., Breier, B. H., McNaughton, S. A., Russell, A. P., Della Gatta, P. A., Mason, S., Stonehouse, W., Walsh, D. C. I., & Kruger, R. (2019). Dietary Patterns in New Zealand Women: Evaluating Differences in Body Composition and Metabolic Biomarkers. Nutrients, 11(7), 1643. https://doi.org/10.3390/nu11071643