Increased Dietary Inflammatory Index Is Associated with Schizophrenia: Results of a Case–Control Study from Bahrain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Sample Size and Sampling Procedure
2.3. Participants
2.4. Ethical Consideration
2.5. Assessments and Data Collection
2.6. DII Score
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Disclaimer
References
- Walker, E.R.; McGee, R.E.; Druss, B.G. Mortality in Mental Disorders and Global Disease Burden Implications. JAMA Psychiatry 2015, 72, 334. [Google Scholar] [CrossRef] [PubMed]
- Crump, C.; Winkleby, M.A.; Sundquist, K.; Sundquist, J. Comorbidities and mortality in persons with schizophrenia: A Swedish national cohort study. Am. J. Psychiatry 2013, 170, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J.; Langan, J.; McLean, G.; Guthrie, B.; Mercer, S.W. Schizophrenia is associated with excess multiple physical-health comorbidities but low levels of recorded cardiovascular disease in primary care: Cross-sectional study. BMJ Open 2013, 3, e002808. [Google Scholar] [CrossRef] [PubMed]
- Oud, M.J.T.; Meyboom-de Jong, B. Somatic diseases in patients with schizophrenia in general practice: Their prevalence and health care. BMC Fam Pract. 2009, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Ringen, P.A.; Engh, J.A.; Birkenaes, A.B.; Dieset, I.; Andreassen, O.A. Increased mortality in schizophrenia due to cardiovascular disease—A non-systematic review of epidemiology, possible causes, and interventions. Front. Psychiatry 2014, 5, 137. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.E.; Schwarz, M.; Myint, A.M. The metabolic syndrome in schizophrenia: Is inflammation a contributing cause? J. Psychopharmacol. 2012, 26, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, S.B.; Ward, P.B.; Samaras, K.; Firth, J.; Stubbs, B.; Tripodi, E.; Burrows, T.L. Dietary intake of people with severe mental illness: Systematic review and meta-analysis. Br. J. Psychiatry 2019, 214, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Veronese, N.; Cotter, J.; Shivappa, N.; Hebert, J.R.; Ee, C.; Smith, L.; Stubbs, B.; Jackson, S.E.; Sarris, J. What Is the Role of Dietary Inflammation in Severe Mental Illness? A Review of Observational and Experimental Findings. Front. Psychiatry 2019, 10. [Google Scholar] [CrossRef]
- Firth, J.; Stubbs, B.; Teasdale, S.B.; Ward, P.B.; Veronese, N.; Shivappa, N.; Hebert, J.R.; Berk, M.; Yung, A.R.; Sarris, J. Diet as a hot topic in psychiatry: A population-scale study of nutritional intake and inflammatory potential in severe mental illness. World Psychiatry 2018, 17, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Kim, B.S.; Im, H.-I. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int. Neurourol. J. 2016, 20, S2. [Google Scholar] [CrossRef]
- Müller, N. The role of anti-inflammatory treatment in psychiatric disorders. Psychiatr. Danub. 2013, 25, 0–298. [Google Scholar]
- Najjar, S.; Pearlman, D.M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and psychiatric illness. J. Neuroinflamm. 2013, 10, 43. [Google Scholar] [CrossRef]
- Tolkien, K.; Bradburn, S.; Murgatroyd, C. An anti-inflammatory diet as a potential intervention for depressive disorders: A systematic review and meta-analysis. Clin. Nutr. 2018. [Google Scholar] [CrossRef]
- Akbaraly, T.N.; Kerleau, C.; Wyart, M.; Chevallier, N.; Ndiaye, L.; Shivappa, N.; Hébert, J.R.; Kivimäki, M. Dietary inflammatory index and recurrence of depressive symptoms: Results from the Whitehall II Study. Clin. Psychol. Sci. 2016, 4, 1125–1134. [Google Scholar] [CrossRef]
- Shivappa, N.; Schoenaker, D.A.; Hebert, J.R.; Mishra, G.D. Association between inflammatory potential of diet and risk of depression in middle-aged women: The Australian Longitudinal Study on Women’s Health. Br. J. Nutr. 2016, 116, 1077–1086. [Google Scholar] [CrossRef]
- Adjibade, M.; Andreeva, V.A.; Lemogne, C.; Touvier, M.; Shivappa, N.; Hébert, J.R.; Wirth, M.D.; Hercberg, S.; Galan, P.; Julia, C. The inflammatory potential of the diet is associated with depressive symptoms in different subgroups of the general population. J. Nutr. 2017, 147, 879–887. [Google Scholar] [CrossRef]
- Bergmans, R.S.; Malecki, K.M. The association of dietary inflammatory potential with depression and mental well-being among U.S. adults. Prev. Med. 2017, 99, 313–319. [Google Scholar] [CrossRef]
- Wirth, M.D.; Shivappa, N.; Burch, J.B.; Hurley, T.G.; Hébert, J.R. The Dietary Inflammatory Index, shift work, and depression: Results from NHANES. Health Psychol. 2017, 36, 760. [Google Scholar] [CrossRef]
- Shivappa, N.; Hebert, J.R.; Neshatbini Tehrani, A.; Bayzai, B.; Naja, F.; Rashidkhani, B. A Pro-Inflammatory Diet Is Associated With an Increased Odds of Depression Symptoms Among Iranian Female Adolescents: A Cross-Sectional Study. Front. Psychiatry 2018, 9, 400. [Google Scholar] [CrossRef]
- Shivappa, N.; Hebert, J.R.; Veronese, N.; Caruso, M.G.; Notarnicola, M.; Maggi, S.; Stubbs, B.; Firth, J.; Fornaro, M.; Solmi, M. The relationship between the dietary inflammatory index (DII®) and incident depressive symptoms: A longitudinal cohort study. J. Affect. Disord. 2018, 235, 39–44. [Google Scholar] [CrossRef]
- Vermeulen, E.; Brouwer, I.A.; Stronks, K.; Bandinelli, S.; Ferrucci, L.; Visser, M.; Nicolaou, M. Inflammatory dietary patterns and depressive symptoms in Italian older adults. BrainBehav. Immun. 2018, 67, 290–298. [Google Scholar] [CrossRef]
- Harvey, S.B.; Modini, M.; Joyce, S.; Milligan-Saville, J.S.; Tan, L.; Mykletun, A.; Bryant, R.A.; Christensen, H.; Mitchell, P.B. Can work make you mentally ill? A systematic meta-review of work-related risk factors for common mental health problems. Occup Env. Med 2017, 74, 301–310. [Google Scholar] [CrossRef]
- Lund, C.; Brooke-Sumner, C.; Baingana, F.; Baron, E.C.; Breuer, E.; Chandra, P.; Haushofer, J.; Herrman, H.; Jordans, M.; Kieling, C. Social determinants of mental disorders and the Sustainable Development Goals: A systematic review of reviews. Lancet Psychiatry 2018, 5, 357–369. [Google Scholar] [CrossRef]
- Joyce, S.; Modini, M.; Christensen, H.; Mykletun, A.; Bryant, R.; Mitchell, P.B.; Harvey, S.B. Workplace interventions for common mental disorders: A systematic meta-review. Psychol. Med. 2016, 46, 683–697. [Google Scholar] [CrossRef]
- Theorell, T.; Hammarström, A.; Aronsson, G.; Träskman Bendz, L.; Grape, T.; Hogstedt, C.; Marteinsdottir, I.; Skoog, I.; Hall, C. A systematic review including meta-analysis of work environment and depressive symptoms. Bmc Public Health 2015, 15, 738. [Google Scholar] [CrossRef]
- Oddy, W.H.; Allen, K.L.; Trapp, G.S.A.; Ambrosini, G.L.; Black, L.J.; Huang, R.-C.; Rzehak, P.; Runions, K.C.; Pan, F.; Beilin, L.J.; et al. Dietary patterns, body mass index and inflammation: Pathways to depression and mental health problems in adolescents. BrainBehav. Immun. 2018, 69, 428–439. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.M.; Shivappa, N.; Hébert, J.R.; Perry, I.J. Dietary inflammatory index and mental health: A cross-sectional analysis of the relationship with depressive symptoms, anxiety and well-being in adults. Clin. Nutr. 2018, 37, 1485–1491. [Google Scholar] [CrossRef]
- Teasdale, S.B.; Ward, P.B.; Jarman, R.; Wade, T.; Rossimel, E.; Curtis, J.; Lappin, J.; Watkins, A.; Samaras, K. Is Obesity in Young People With Psychosis a Foregone Conclusion? Markedly Excessive Energy Intake Is Evident Soon After Antipsychotic Initiation. Front. Psychiatry 2018, 9, 725. [Google Scholar] [CrossRef] [Green Version]
- Jahrami, H.A.; Faris, M.E.A.-I.E.; Saif, Z.Q.; Hammad, L.H. Assessing dietary and lifestyle risk factors and their associations with disease comorbidities among patients with schizophrenia: A case–control study from Bahrain. Asian J. Psychiatry 2017, 28, 115–123. [Google Scholar] [CrossRef]
- Ratliff, J.C.; Palmese, L.B.; Reutenauer, E.L.; Liskov, E.; Grilo, C.M.; Tek, C. The effect of dietary and physical activity pattern on metabolic profile in individuals with schizophrenia: A cross-sectional study. Compr. Psychiatry 2012, 53, 1028–1033. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Wirth, M.D.; Shivappa, N.; Davis, L.; Hurley, T.G.; Ortaglia, A.; Drayton, R.; Blair, S.N.; Hébert, J.R. Construct validation of the Dietary Inflammatory Index among African Americans. J. Nutr. Health Aging 2017, 21, 487–491. [Google Scholar] [CrossRef]
- Vahid, F.; Shivappa, N.; Faghfoori, Z.; Khodabakhshi, A.; Zayeri, F.; Hebert, J.R.; Davoodi, S.H. Validation of a dietary inflammatory index (DII) and association with risk of gastric cancer: A case-control study. Asian Pac. J. Cancer Prev. 2018, 19, 1471. [Google Scholar]
- Vahid, F.; Shivappa, N.; Hekmatdoost, A.; Hebert, J.R.; Davoodi, S.H.; Sadeghi, M. Association between Maternal Dietary Inflammatory Index (DII) and abortion in Iranian women and validation of DII with serum concentration of inflammatory factors: Case-control study. Appl. Physiol. Nutr. Metab. 2017, 42, 511–516. [Google Scholar] [CrossRef]
- Hebert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Shin, D.; Kwon, S.C.; Kim, M.H.; Lee, K.W.; Choi, S.Y.; Shivappa, N.; Hebert, J.R.; Chung, H.K. Inflammatory potential of diet is associated with cognitive function in an older adult Korean population. Nutrition 2018, 55–56, 56–62. [Google Scholar] [CrossRef]
- Hayden, K.M.; Beavers, D.P.; Steck, S.E.; Hebert, J.R.; Tabung, F.K.; Shivappa, N.; Casanova, R.; Manson, J.E.; Padula, C.B.; Salmoirago-Blotcher, E.; et al. The association between an inflammatory diet and global cognitive function and incident dementia in older women: The Women’s Health Initiative Memory Study. Alzheimer’s Dement. 2017, 13, 1187–1196. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hebert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef]
- Bauer, M.E.; Teixeira, A.L. Inflammation in psychiatric disorders: What comes first? Ann. N. Y. Acad. Sci. 2019, 1437, 57–67. [Google Scholar] [CrossRef]
- Manu, P.; Correll, C.U.; Wampers, M.; Mitchell, A.J.; Probst, M.; Vancampfort, D.; De Hert, M. Markers of inflammation in schizophrenia: Association vs. causation. World Psychiatry 2014, 13, 189–192. [Google Scholar] [CrossRef]
- Vancampfort, D.; Correll, C.U.; Galling, B.; Probst, M.; De Hert, M.; Ward, P.B.; Rosenbaum, S.; Gaughran, F.; Lally, J.; Stubbs, B. Diabetes mellitus in people with schizophrenia, bipolar disorder and major depressive disorder: A systematic review and large scale meta-analysis. World Psychiatry 2016, 15, 166–174. [Google Scholar] [CrossRef]
- Hayes, J.F.; Marston, L.; Walters, K.; King, M.B.; Osborn, D.P.J. Mortality gap for people with bipolar disorder and schizophrenia: UK-based cohort study 2000–2014. Br. J. Psychiatry 2017, 211, 175–181. [Google Scholar] [CrossRef]
- Paul-Samojedny, M.; Kowalczyk, M.; Suchanek, R.; Owczarek, A.; Fila-Danilow, A.; Szczygiel, A.; Kowalski, J. Functional polymorphism in the interleukin-6 and interleukin-10 genes in patients with paranoid schizophrenia—A case-control study. J. Mol. Neurosci. 2010, 42, 112–119. [Google Scholar] [CrossRef]
- García-Bueno, B.; Bioque, M.; Mac-Dowell, K.S.; Barcones, M.F.; Martínez-Cengotitabengoa, M.; Pina-Camacho, L.; Rodríguez-Jiménez, R.; Sáiz, P.A.; Castro, C.; Lafuente, A.; et al. Pro-/Anti-inflammatory Dysregulation in Patients With First Episode of Psychosis: Toward an Integrative Inflammatory Hypothesis of Schizophrenia. Schizophr. Bull. 2014, 40, 376–387. [Google Scholar] [CrossRef]
- Leza, J.C.; García-Bueno, B.; Bioque, M.; Arango, C.; Parellada, M.; Do, K.; O’Donnell, P.; Bernardo, M. Inflammation in schizophrenia: A question of balance. Neurosci. Biobehav. Rev. 2015, 55, 612–626. [Google Scholar] [CrossRef]
- Potvin, S.; Stip, E.; Sepehry, A.A.; Gendron, A.; Bah, R.; Kouassi, E. Inflammatory Cytokine Alterations in Schizophrenia: A Systematic Quantitative Review. Biol. Psychiatry 2008, 63, 801–808. [Google Scholar] [CrossRef]
- Kunz, M.; Ceresér, K.M.; Goi, P.D.; Fries, G.R.; Teixeira, A.L.; Fernandes, B.S.; Belmonte-De-Abreu, P.S.; Kauer-Sant’Anna, M.; Kapczinski, F.; Gama, C.S. Serum levels of IL-6, IL-10 and TNF-α in patients with bipolar disorder and schizophrenia: Differences in pro- and anti-inflammatory balance. Rev. Bras. Psiquiatr. 2011, 33, 268–274. [Google Scholar] [CrossRef]
- Khandaker, G.M.; Cousins, L.; Deakin, J.; Lennox, B.R.; Yolken, R.; Jones, P.B. Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment. Lancet Psychiatry 2015, 2, 258–270. [Google Scholar] [CrossRef]
- Feigenson, K.A.; Kusnecov, A.W.; Silverstein, S.M. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci. Biobehav. Rev. 2014, 38, 72–93. [Google Scholar] [CrossRef]
- Mitra, S.; Natarajan, R.; Ziedonis, D.; Fan, X. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017. [Google Scholar] [CrossRef]
- Müller, N.; Weidinger, E.; Leitner, B.; Schwarz, M.J. The role of inflammation in schizophrenia. Front. Neurosci. 2015, 9. [Google Scholar] [CrossRef]
- Soontornniyomkij, V.; Lee, E.E.; Jin, H.; Martin, A.S.; Daly, R.E.; Liu, J.; Tu, X.M.; Eyler, L.T.; Jeste, D.V. Clinical Correlates of Insulin Resistance in Chronic Schizophrenia: Relationship to Negative Symptoms. Front. Psychiatry 2019, 10. [Google Scholar] [CrossRef]
- Steiner, J.; Berger, M.; Guest, P.C.; Dobrowolny, H.; Westphal, S.; Schiltz, K.; Sarnyai, Z. Assessment of Insulin Resistance Among Drug-Naive Patients With First-Episode Schizophrenia in the Context of Hormonal Stress Axis Activation. JAMA Psychiatry 2017, 74, 968. [Google Scholar] [CrossRef]
- Appiah-Kusi, E.; Leyden, E.; Parmar, S.; Mondelli, V.; McGuire, P.; Bhattacharyya, S. Abnormalities in neuroendocrine stress response in psychosis: The role of endocannabinoids. Psychol. Med. 2016, 46, 27–45. [Google Scholar] [CrossRef]
- Guest, P.C. Insulin Resistance in Schizophrenia. In Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders; Springer: Berlin, Germany, 2019; pp. 1–16. [Google Scholar]
- Peet, M. The metabolic syndrome, omega-3 fatty acids and inflammatory processes in relation to schizophrenia. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 323–327. [Google Scholar] [CrossRef]
- Misiak, B.; Łaczmański, Ł.; Słoka, N.K.; Szmida, E.; Piotrowski, P.; Loska, O.; Ślęzak, R.; Kiejna, A.; Frydecka, D. Metabolic dysregulation in first-episode schizophrenia patients with respect to genetic variation in one-carbon metabolism. Psychiatry Res. 2016, 238, 60–67. [Google Scholar] [CrossRef]
- Chiappelli, J.; Postolache, T.T.; Kochunov, P.; Rowland, L.M.; Wijtenburg, S.A.; Shukla, D.K.; Tagamets, M.; Du, X.; Savransky, A.; Lowry, C.A.; et al. Tryptophan Metabolism and White Matter Integrity in Schizophrenia. Neuropsychopharmacology 2016, 41, 2587–2595. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Zeng, B.; Liu, M.; Chen, J.; Pan, J.; Han, Y.; Liu, Y.; Cheng, K.; Zhou, C.; Wang, H.; et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv. 2019, 5, eaau8317. [Google Scholar] [CrossRef] [Green Version]
- Cuomo, A.; Maina, G.; Rosso, G.; Beccarini Crescenzi, B.; Bolognesi, S.; Di Muro, A.; Giordano, N.; Goracci, A.; Neal, S.M.; Nitti, M.; et al. The Microbiome: A New Target for Research and Treatment of Schizophrenia and its Resistant Presentations? A Systematic Literature Search and Review. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef]
- Dickerson, F.; Severance, E.; Yolken, R. The microbiome, immunity, and schizophrenia and bipolar disorder. BrainBehav. Immun. 2017, 62, 46–52. [Google Scholar] [CrossRef]
- R Caso, J.; Balanza-Martinez, V.; Palomo, T.; Garcia-Bueno, B. The microbiota and gut-brain axis: Contributions to the immunopathogenesis of schizophrenia. Curr. Pharm. Des. 2016, 22, 6122–6133. [Google Scholar] [CrossRef]
- Mörkl, S.; Wagner-Skacel, J.; Lahousen, T.; Lackner, S.; Holasek, S.J.; Bengesser, S.A.; Painold, A.; Holl, A.K.; Reininghaus, E.Z. The Role of Nutrition and the Gut-Brain Axis in Psychiatry: A Review of the Literature. Neuropsychobiology 2018, 1–9. [Google Scholar] [CrossRef]
- Dickerson, F.; Stallings, C.; Origoni, A.; Vaughan, C.; Khushalani, S.; Yang, S.; Yolken, R. C-reactive protein is elevated in schizophrenia. Schizophr. Res. 2013, 143, 198–202. [Google Scholar] [CrossRef]
- Wium-Andersen, M.K.; Orsted, D.D.; Nordestgaard, B.G. Tobacco smoking is causally associated with antipsychotic medication use and schizophrenia, but not with antidepressant medication use or depression. Int. J. Epidemiol. 2015, 44, 566–577. [Google Scholar] [CrossRef] [Green Version]
- Na, K.-S.; Jung, H.-Y.; Kim, Y.-K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 48, 277–286. [Google Scholar] [CrossRef]
- De Leon, J.; Diaz, F.J. A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Chizophrenia Res. 2005, 76, 135–157. [Google Scholar] [CrossRef]
- Fair, D.A.; Graham, A.M.; Mills, B. A role of early life stress on subsequent brain and behavioral development. Wash. Univ. J. Law Policy 2018, 57, 89. [Google Scholar]
- Hardingham, G.E.; Do, K.Q. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat. Rev. Neurosci. 2016, 17, 125–134. [Google Scholar] [CrossRef]
- Joseph, J.; Depp, C.; Shih, P.-A.B.; Cadenhead, K.S.; Schmid-Schönbein, G. Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia? Front. Neurosci. 2017, 11, 155. [Google Scholar] [CrossRef] [Green Version]
- Misiak, B.; Stańczykiewicz, B.; Kotowicz, K.; Rybakowski, J.K.; Samochowiec, J.; Frydecka, D. Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: A systematic review. Schizophr. Res. 2018, 192, 16–29. [Google Scholar] [CrossRef]
- Weickert, T.; Jacomb, I.; Stanton, C.; Vasudevan, R.; Powell, H.; Liu, D.; Galletly, C.; Lenroot, R.; Weickert, C.S. 770. C-Reactive Protein as a Marker of Inflammation in Acute Psychosis and Schizophrenia. Biol. Psychiatry 2017, 81, S312–S313. [Google Scholar] [CrossRef]
- Singh, B.; Chaudhuri, T.K. Role of C-reactive protein in schizophrenia: An overview. Psychiatry Res. 2014, 216, 277–285. [Google Scholar] [CrossRef]
- Kizil, M.; Tengilimoglu-Metin, M.M.; Gumus, D.; Sevim, S.; Turkoglu, İ.; Mandiroglu, F. Dietary inflammatory index is associated with serum C-reactive protein and protein energy wasting in hemodialysis patients: A cross-sectional study. Nutr. Res. Pract. 2016, 10, 404–410. [Google Scholar] [CrossRef] [Green Version]
Characteristic Variable | Cases | Controls | p-Value |
---|---|---|---|
Continuous variables (mean ± SD) | |||
Age (years) | 41.69 ± 13.00 | 41.63 ± 13.24 | 0.96 |
Weight (Kg) | 83.58 ± 23.05 | 77.43 ± 17.02 | 0.02 * |
Height (cm) | 165.39 ± 9.01 | 166.98 ± 9.61 | 0.19 |
Body mass index (BMI) (Kg/m2) | 30.65 ± 9.24 | 27.58 ± 6.25 | 0.003 * |
Categorical variables: | |||
Male (%) | 55 | 55 | - |
Overweight (%) | 23.33 | 37.27 | 0.40 |
Obese (%) | 46.67 | 27.73 | 0.002 * |
Education level (%) | |||
| 36.7 | 10.8 | 0.001 * |
| 43.3 | 30.0 | |
| 20.0 | 59.2 | |
Job (%) | |||
| 43.3 | 0.8 | 0.001 * |
| 39.2 | 85.0 | |
| 17.5 | 14.2 | |
Marital status (%) | |||
| 30.00 | 79.17 | 0.001* |
| 55.00 | 14.17 | |
| 14.17 | 3.33 | |
| 0.83 | 3.33 | |
Physical activity level (%) | |||
| 76.67 | 40.00 | 0.001 * |
| 23.33 | 60.00 | |
Current smoking status (%) | |||
| 61.67 | 85.83 | * |
| 38.33 | 14.17 | |
Smoking type (%) | |||
| 58.70 | 64.71 | 0.001 * |
| 4.35 | 11.76 | |
| 36.95 | 17.65 | |
| 0.0 | 5.88 | |
Medical comorbidity (%) | |||
| 30.83 | 10.00 | 0.001 * |
| 31.67 | 14.17 | 0.001 * |
| 8.33 | 5.83 | 0.45 |
| 36.67 | 23.33 | 0.02 * |
Adequate Sleep (%) | 56.67 | 92.44 | 0.001 * |
Characteristic | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 |
---|---|---|---|---|
Age (years): Mean ± SD | 46.44 ± 15.00 | 41.25 ± 14.16 | 43.66 ± 12.51 | 37.56 ± 10.00 |
Body mass index (BMI) (Kg/m2): Mean ± SD | 30.69 ± 6.64 | 30.64 ± 9.47 | 31.10 ± 11.90 | 30.28 ± 8.12 |
Overweight (%) | 31.81 | 19.36 | 23.33 | 21.62 |
Obese (%) | 54.55 | 45.16 | 46.67 | 43.24 |
Education (%) | ||||
| 26.7 | 40 | 41.9 | 37.9 |
| 56.7 | 20 | 41.9 | 34.5 |
| 16.7 | 20 | 16.1 | 27.6 |
Job (%) | ||||
| 40 | 50 | 38.7 | 44.8 |
| 43.3 | 40 | 32.3 | 41.4 |
| 16.7 | 10 | 29 | 13.8 |
Social Status (%) | ||||
| 30 | 26.7 | 45.2 | 17.2 |
| 50 | 63.3 | 38.7 | 69 |
| 20 | 6.7 | 16.1 | 13.8 |
| 0 | 3.3 | 0 | 0 |
Physical activity (%): | ||||
| 73.3 | 76.7 | 83.9 | 72.4 |
| 26.7 | 23.3 | 16.1 | 27.6 |
Smoking (%) | ||||
| 36.3 | 66.7 | 58.1 | 58.6 |
| 36.7 | 33.3 | 41.9 | 41.4 |
Smoking Type (%) | ||||
| 54.5 | 60 | 76.9 | 41.7 |
| 9.1 | 10 | 0 | 0 |
| 36.4 | 30 | 23.1 | 58.3 |
Medical Comorbidity (%) | ||||
| 36.7 | 36.7 | 32.3 | 17.2 |
| 33.3 | 36.7 | 32.3 | 24.1 |
| 6.7 | 13.3 | 6.5 | 6.9 |
| 36.7 | 43.3 | 22.6 | 44.8 |
Adequate Sleep (%) | 50 | 66.7 | 45.2 | 65.5 |
Nutrient or Dietary Factor/Day (Mean ± SD) | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 |
---|---|---|---|---|
Energy (Kcal) | 2113.72 ± 512.3 | 2715.78 ± 832.29 | 2469.4 ± 814.44 | 2856.51 ± 810.95 |
Protein (g) | 86.64 ± 20.72 | 115.87 ± 38.62 | 105.37 ± 30.31 | 116.29 ± 29.86 |
Carbohydrates (g) | 310.06 ± 71.52 | 372.53 ± 117.92 | 322.52 ± 104.97 | 364.62 ± 109.32 |
Fibers (g) | 26.53 ± 10.86 | 29.01 ± 13 | 20.55 ± 8.05 | 22.9 ± 9.75 |
Fat (g) | 63.01 ± 21.31 | 90.49 ± 33.22 | 88.79 ± 35.98 | 108.11 ± 37.02 |
SFA (g) | 22.94 ± 7.09 | 33.54 ± 10.94 | 31.39 ± 10.45 | 40.13 ± 13.02 |
MUFA (g) | 8.18 ± 3.49 | 11.58 ± 6.12 | 12.96 ± 11 | 12.29 ± 6.1 |
PUFA (g) | 9.06 ± 4.56 | 11.43 ± 5.7 | 13.25 ± 9.7 | 12.84 ± 5.4 |
Trans fats (g) | 0.37 ± 0.24 | 0.43 ± 0.25 | 0.29 ± 0.16 | 0.37 ± 0.21 |
Cholesterol (mg) | 372.7 ± 217.79 | 579.4 ± 300 | 501.72 ± 200.86 | 607.58 ± 248.07 |
Omega-3 (g) | 0.59 ± 0.2 | 0.81 ± 0.34 | 0.93 ± 0.72 | 0.75 ± 0.38 |
Omega-6 (g) | 7.55 ± 4.03 | 9.41 ± 4.81 | 11.29 ± 8.92 | 10.71 ± 4.63 |
Thiamin (mg) | 1.29 ± 0.32 | 1.55 ± 0.49 | 1.45 ± 0.74 | 1.34 ± 0.4 |
Riboflavin (mg) | 1.12 ± 0.35 | 1.54 ± 0.69 | 1.37 ± 0.8 | 1.27 ± 0.62 |
Niacin (mg) | 16.02 ± 6.97 | 19.39 ± 9.59 | 17.32 ± 9.64 | 18.42 ± 7.43 |
Vitamin B6 (mg) | 0.96 ± 0.29 | 1.09 ± 0.39 | 0.97 ± 0.65 | 0.87 ± 0.36 |
Vitamin B12 (µg) | 1.88 ± 0.82 | 2.97 ± 1.8 | 3.41 ± 2.73 | 2.8 ± 2.31 |
Vitamin C (mg) | 125.03 ± 44.08 | 105.75 ± 38.17 | 90.56 ± 37.39 | 88.09 ± 43.76 |
Vitamin D (IU) | 64.86 ± 52.43 | 94.22 ± 72.07 | 76.7 ± 60.99 | 58.63 ± 59.94 |
Vitamin E (mg) | 2.63 ± 1.1 | 3.13 ± 1.64 | 2.86 ± 1.85 | 3.11 ± 1.69 |
Folic Acid (µg) | 458.82 ± 225.73 | 534.7 ± 212.28 | 373.91 ± 165.98 | 350.11 ± 129.41 |
Vitamin A (IU) | 6472.23 ± 1953.38 | 6412.42 ± 2022.39 | 5066.16 ± 1980.85 | 4543.75 ± 1968.46 |
β-carotene (µg) | 2737.61 ± 931.49 | 2455.61 ± 900.81 | 1966.68 ± 926.29 | 1527.49 ± 871.88 |
Iron (mg) | 14.67 ± 4.73 | 17.76 ± 6.27 | 15.58 ± 7.91 | 14.94 ± 4.84 |
Magnesium (mg) | 225.4 ± 98.21 | 249.91 ± 128.36 | 179.48 ± 77.05 | 199 ± 76.42 |
Selenium (µg) | 55.73 ± 16.38 | 69.45 ± 25.69 | 63.76 ± 31.95 | 60.93 ± 17.07 |
Zinc (mg) | 4.96 ± 1.57 | 6.4 ± 2.86 | 5.3 ± 2.58 | 5.07 ± 2.52 |
Alcohol (g) | 0.05 ± 0.23 | 0 ± 0 | 0.26 ± 1.26 | 0.97 ± 2.82 |
Caffeine (mg) | 179.51 ± 260.16 | 190.2 ± 208.82 | 95.38 ± 121.05 | 168.7 ± 171.97 |
Quartiles of the Energy-Adjusted Dietary Inflammatory Index * | |||||
---|---|---|---|---|---|
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | E-DII (Continuous) | |
E-DII Range | ≤0.07 | 0.71–1.78 | 1.79–2.45 | ≥2.46 | |
Cases/Controls | 11/30 | 38/30 | 28/30 | 43/30 | 120/120 |
Multivariate-adjusted a | 1 (Ref) | 4.27 (1.27–14.35) | 2.78 (0.77–10.0) | 5.96 (1.74–20.38) | 1.62 (1.17–2.26) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahrami, H.; Faris, M.A.-I.; Ghazzawi, H.A.; Saif, Z.; Habib, L.; Shivappa, N.; Hébert, J.R. Increased Dietary Inflammatory Index Is Associated with Schizophrenia: Results of a Case–Control Study from Bahrain. Nutrients 2019, 11, 1867. https://doi.org/10.3390/nu11081867
Jahrami H, Faris MA-I, Ghazzawi HA, Saif Z, Habib L, Shivappa N, Hébert JR. Increased Dietary Inflammatory Index Is Associated with Schizophrenia: Results of a Case–Control Study from Bahrain. Nutrients. 2019; 11(8):1867. https://doi.org/10.3390/nu11081867
Chicago/Turabian StyleJahrami, Haitham, Mo’ez Al-Islam Faris, Hadeel Ali Ghazzawi, Zahra Saif, Layla Habib, Nitin Shivappa, and James R. Hébert. 2019. "Increased Dietary Inflammatory Index Is Associated with Schizophrenia: Results of a Case–Control Study from Bahrain" Nutrients 11, no. 8: 1867. https://doi.org/10.3390/nu11081867
APA StyleJahrami, H., Faris, M. A.-I., Ghazzawi, H. A., Saif, Z., Habib, L., Shivappa, N., & Hébert, J. R. (2019). Increased Dietary Inflammatory Index Is Associated with Schizophrenia: Results of a Case–Control Study from Bahrain. Nutrients, 11(8), 1867. https://doi.org/10.3390/nu11081867