Nutritional Assessment in Preterm Infants: A Practical Approach in the NICU
Abstract
:1. Introduction
2. Anthropometry
2.1. Body Weight
2.1.1. Classification by Birth Weight
2.1.2. Technique and Instrumentation
2.1.3. Reference Values
To Assess Intrauterine Growth Based on Birth Weight
To Monitor Intra-Hospital Growth
After Discharge
2.2. Crown-Heel Length
2.2.1. Technique and Instrumentation
2.2.2. Reference Values
2.3. Head Circumference
2.3.1. Technique and Instrumentation
2.3.2. Reference Values
2.4. Mid-Upper Arm Circumference
2.4.1. Technique and Instrumentation
2.4.2. Reference Values
2.5. Skinfolds
2.5.1. Technique and Instrumentation
2.5.2. Reference Values
2.6. Weight-to-Length Based Equations
Reference Values
2.7. Mid-Upper Arm Circumference to Head Circumference Ratio
Reference Values
2.8. Upper-Arm Cross-Sectional Areas
Reference Values
3. Biochemical Markers
3.1. Metabolic and Electrolyte Status
3.2. Iron Status
3.3. Protein Status
3.3.1. Blood Urea Nitrogen
3.3.2. Serum Prealbumin (Transthyretin)
3.3.3. Serum Retinol Binding Protein
3.3.4. Serum Transferrin
3.4. Bone Status
3.4.1. Serum Calcium
3.4.2. Serum Phosphate
3.4.3. Serum Alkaline Phosphatase
3.4.4. Combination of Serum Phosphate and Alkaline Phosphatase
3.4.5. Urinary Markers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
%FM | percent fat mass |
ADP | air displacement plethysmography |
AGA | appropriate-for-gestational age |
BMI | body mass index |
BUN | blood urea nitrogen |
DXA | dual-energy X-ray absorptiometry |
HC | head circumference |
LGA | large-for-gestational age |
MBD | metabolic bone disease |
MUAC | mid-upper arm circumference |
MUAC:HC | mid-upper arm circumference to head circumference ratio |
RBP | retinol binding protein |
SGA | small-for-gestational age |
References
- Embleton, N.E.; Pang, N.; Cooke, R.J. Postnatal malnutrition and growth retardation: An inevitable consequence of current recommendations in preterm infants? Pediatrics 2001, 107, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, M.T.; Eichenwald, E.C.; McAlmon, K.; Petit, K.; Linton, P.T.; McCormick, M.C.; Richardson, D.K. Interneonatal intensive care unit variation in growth rates and feeding practices in healthy moderately premature infants. J. Perinatol. 2005, 25, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.K.; Kennedy, K.; Castañeda-Gutiérrez, E.; Forsyth, S.; Godfrey, K.M.; Koletzko, B.; Latulippe, M.E.; Ozanne, S.E.; Rueda, R.; Schoemaker, M.H.; et al. Postnatal growth in preterm infants and later health outcomes: A systematic review. Acta Paediatr. 2015, 104, 974–986. [Google Scholar] [CrossRef] [PubMed]
- Belfort, M.B.; Martin, C.R.; Smith, V.C.; Gillman, M.W.; McCormick, M.C. Infant weight gain and school-age blood pressure and cognition in former preterm infants. Pediatrics 2010, 125, e1419–e1426. [Google Scholar] [CrossRef] [PubMed]
- Kerkhof, G.F.; Willemsen, R.H.; Leunissen, R.W.; Breukhoven, P.E.; Hokken-Koelega, A.C. Health profile of young adults born preterm: Negative effects of rapid weight gain in early life. J. Clin. Endocrinol. Metab. 2012, 97, 4498–4506. [Google Scholar] [CrossRef] [PubMed]
- Singhal, A.; Fewtrell, M.; Cole, T.J.; Lucas, A. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 2003, 361, 1089–1097. [Google Scholar] [CrossRef]
- Euser, A.M.; Finken, M.J.; Keijzer-Veen, M.G.; Hille, E.T.; Wit, J.M.; Dekker, F.W.; Dutch POPS-19 Collaborative Study Group. Associations between prenatal and infancy weight gain and BMI, fat mass, and fat distribution in young adulthood: A prospective cohort study in males and females born very preterm. Am. J. Clin. Nutr. 2005, 81, 480–487. [Google Scholar]
- Johnson, M.J.; Wiskin, A.E.; Pearson, F.; Beattie, R.M.; Leaf, A.A. How to use: Nutritional assessment in neonates. Arch. Dis. Child. Educ. Pract. 2015, 100, 147–154. [Google Scholar] [CrossRef]
- Parlapani, E.; Agakidis, C.; Karagiozoglou-Lampoudi, T. Anthropometry and body composition of preterm neonates in the light of metabolic programming. J. Am. Coll. Nutr. 2018, 37, 350–359. [Google Scholar] [CrossRef]
- Andrews, E.T.; Beattie, R.M.; Johnson, M.J. Measuring body composition in the preterm infant: Evidence base and practicalities. Clin. Nutr. 2019. [Google Scholar] [CrossRef]
- Clark, R.H.; Olsen, I.E.; Spitzer, A.R. Assessment of neonatal growth in prematurely born infants. Clin. Perinatol. 2014, 41, 295–307. [Google Scholar] [CrossRef]
- Demerath, E.W.; Fields, D.A. Body composition assessment in the infant. Am. J. Hum. Biol. 2014, 26, 291–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramel, S.E.; Zhang, L.; Misra, S.; Anderson, C.G.; Demerath, E.W. Do anthropometric measures accurately reflect body composition in preterm infants? Pediatr. Obes. 2017, 12 (Suppl. 1), 72–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.; Tint, M.T.; Fortier, M.V.; Aris, I.M.; Shek, L.P.; Tan, K.H.; Chan, S.-Y.; Gluckman, P.D.; Chong, Y.-S.; Godfrey, K.M.; et al. Which anthropometric measures best reflect neonatal adiposity? Int. J. Obes. 2018, 42, 501–506. [Google Scholar] [CrossRef] [PubMed]
- De Bruin, N.C.; van Velthoven, K.A.; Stijnen, T.; Juttmann, R.E.; Degenhart, H.J.; Visser, H.K. Body fat and fat-free mass in infants: New and classic anthropometric indexes and prediction equations compared with total-body electrical conductivity. Am. J. Clin. Nutr. 1995, 61, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Pereira-da-Silva, L. Neonatal anthropometry: A tool to evaluate the nutritional status, and to predict early and late risks. In The Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease; Preedy, V.R., Ed.; Springer Science + Business Media: New York, NY, USA, 2012; pp. 1079–1104. ISBN 978-1-4419-1787-4. [Google Scholar]
- Moyer-Mileur, L.J. Anthropometric and laboratory assessment of very low birth weight infants: The most helpful measurements and why. Semin. Perinatol. 2007, 31, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Griffin, I.J. Nutritional assessment in preterm infants. In Nutrition Support for Infants and Children at Risk; Cooke, R.J., Vandenplas, Y., Wahn, U., Eds.; 2007; Volume 59, pp. 177–188. [Google Scholar] [CrossRef]
- Brennan, A.M.; Murphy, B.P.; Kiely, M.E. Optimising preterm nutrition: Present and future. Proc. Nutr. Soc. 2016, 75, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Hartnoll, G.; Bétrémieux, P.; Modi, N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch. Dis. Child. Fetal Neonatal 2000, 82, F24–F28. [Google Scholar] [CrossRef] [Green Version]
- Ramel, S.E.; Gray, H.L.; Davern, B.A.; Demerath, E.W. Body composition at birth in preterm infants between 30 and 36 weeks gestation. Pediatr. Obes. 2015, 10, 45–51. [Google Scholar] [CrossRef]
- Haggarty, P. Effect of placental function on fatty acid requirements during pregnancy. Eur. J. Clin. Nutr. 2004, 58, 1559–1570. [Google Scholar] [CrossRef] [Green Version]
- Fewtrell, M.; Michaelsen, K.F.; van der Beek, E.; Elburg, R. (Eds.) Growth in Early Life: Growth Trajectory and Assessment, Influencing Factors and Impact of Early Nutrition; John Wiley & Sons Australia: Queensland, Australia, 2016; pp. 105–125. [Google Scholar]
- Rochow, N.; Landau-Crangle, E.; So, H.Y.; Pelc, A.; Fusch, G.; Däbritz, J.; Göpel, W.; Fusch, C. Z-score differences based on cross-sectional growth charts do not reflect the growth rate of very low birth weight infants. PLoS ONE 2019, 14, e0216048. [Google Scholar] [CrossRef] [PubMed]
- Royston, P.; Altman, D.G. Design and analysis of longitudinal studies of fetal size. Ultrasound Obstet. Gynecol. 1995, 6, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Silverwood, R.J.; Cole, T.J. Statistical methods for constructing gestational age-related reference intervals and centile charts for fetal size. Ultrasound Obstet. Gynecol. 2007, 29, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Ohuma, E.O.; for the international fetal and newborn growth consortium for the 21st century (Intergrowth-21st). Statistical considerations for the development of prescriptive fetal and newborn growth standards in the Intergrowth-21st project. BJOG 2013, 120 (Suppl. 2), 71–76. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef] [PubMed]
- Norris, T.; Johnson, W.; Farrar, D.; Tuffnell, D.; Wright, J.; Cameron, N. Small-for-gestational age and large-for-gestational age thresholds to predict infants at risk of adverse delivery and neonatal outcomes: Are current charts adequate? An observational study from the Born in Bradford cohort. BMJ Open 2015, 53, e006743. [Google Scholar] [CrossRef] [PubMed]
- Gardosi, J. Preterm standards for fetal growth and birthweight. Acta Paediatr. 2017, 106, 1383–1384. [Google Scholar] [CrossRef] [Green Version]
- Beune, I.M.; Bloomfield, F.H.; Ganzevoort, W.; Embleton, N.D.; Rozance, P.J.; van Wassenaer-Leemhuis, A.G.; Wynia, K.; Gordijn, S.J. Consensus based definition of growth restriction in the newborn. J. Pediatr. 2018, 196, 71–76. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Becker, P.J.; Brigham, K.; Carlson, S.; Fleck, L.; Gollins, L.; Sandrock, M.; Fullmer, M.; van Poots, H.A. Identifying malnutrition in preterm and neonatal populations: Recommended indicators. J. Acad. Nutr. Diet. 2018, 118, 571–1582. [Google Scholar] [CrossRef]
- Mamelle, N.; Cochet, V.; Claris, O. Definition of fetal growth restriction according to constitutional growth potential. Neonatology 2001, 80, 277–285. [Google Scholar] [CrossRef]
- Aye, S.S.; Miller, V.; Saxena, S.; Farhan, M. Management of large-for-gestational-age pregnancy in non-diabetic women. Obstetr. Gynaecol. 2010, 12, 250–256. [Google Scholar] [CrossRef]
- Gibson, A.T.; Carney, S.; Wright, N.P.; Wales, J.K.N. Measurement and the newborn infant. Horm. Res. 2003, 59 (Suppl. 1), 119–128. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Thakur, A.; Goyal, S.; Garg, P.; Kler, N. Growth charts in neonates. Curr. Med. Res. Pract. 2016, 6, 79–84. [Google Scholar] [CrossRef]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006, 450, 76–85. [Google Scholar]
- Fenton, T.R.; Nasser, R.; Eliasziw, M.; Kim, J.H.; Bilan, D.; Sauve, R. Validating the weight gain of preterm infants between the reference growth curve of the fetus and the term infant. BMC Pediatr. 2013, 13, 92. [Google Scholar] [CrossRef]
- Pereira-da-Silva, L.; Virella, D. Is intrauterine growth appropriate to monitor postnatal growth of preterm neonates? BMC Pediatr. 2014, 14, 14. [Google Scholar] [CrossRef]
- Rochow, N.; Raja, P.; Liu, K.; Fenton, T.; Landau-Crangle, E.; Göttler, S.; Jahn, A.; Lee, S.; Seigel, S.; Campbell, D.; et al. Physiological adjustment to postnatal growth trajectories in healthy preterm infants. Pediatr. Res. 2016, 79, 870–979. [Google Scholar] [CrossRef]
- Landau-Crangle, E.; Rochow, N.; Fenton, T.R.; Liu, K.; Ali, A.; So, H.Y.; Fusch, G.; Marrin, M.L.; Fusch, C. Individualized postnatal growth trajectories for preterm infants. JPEN J. Parenter. Enter. Nutr. 2018, 42, 1084–1092. [Google Scholar] [CrossRef]
- Fenton, T.R.; Senterre, T.; Griffin, I.J. Time interval for preterm infant weight gain velocity calculation precision. Arch. Dis. Child. Fetal Neonatal 2019, 104, F218–F219. [Google Scholar] [CrossRef]
- Fenton, T.R.; Anderson, D.; Groh-Wargo, S.; Hoyos, A.; Ehrenkranz, R.A.; Senterre, T. An attempt to standardize the calculation of growth velocity of preterm infants-evaluation of practical bedside methods. J. Pediatr. 2018, 196, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.L.; Engstrom, J.L.; Meier, P.P.; Jegier, B.J.; Kimura, R.E. Calculating postnatal growth velocity in very low birth weight (VLBW) premature infants. J. Perinatol. 2009, 29, 618–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villar, J.; Giuliani, F.; Bhutta, Z.A.; Bertino, E.; Ohuma, E.O.; Ismail, L.C.; Barros, F.C.; Altman, D.G.; Victora, C.; Noble, J.A.; et al. Postnatal growth standards for preterm infants: The preterm postnatal follow-up study of the Intergrowth-21st project. Lancet Glob. Health 2015, 3, e681–e691. [Google Scholar] [CrossRef]
- Papageorghiou, A.T.; Ohuma, E.O.; Altman, D.G.; Todros, T.; Cheikh Ismail, L.; Lambert, A.; Jaffer, Y.A.; Bertino, E.; Gravett, M.G.; Purwar, M.; et al. International standards for fetal growth based on serial ultrasound measurements: The fetal growth longitudinal study of the Intergrowth-21st project. Lancet 2014, 384, 869–879. [Google Scholar] [CrossRef]
- Wood, A.J.; Raynes-Greenow, C.H.; Carberry, A.E.; Jeffery, H.E. Neonatal length inaccuracies in clinical practice and related percentile discrepancies detected by a simple length-board. J. Paediatr. Child Health 2013, 49, 199–203. [Google Scholar] [CrossRef]
- Johnson, T.S.; Engstrom, J.L.; Gelhar, D.K. Intra- and interexaminer reliability of anthropometric measurements of term infants. J. Pediatr. Gastroenterol. Nutr. 1997, 24, 497–505. [Google Scholar] [CrossRef]
- Shinwell, E.S.; Shlomo, M. Measured length of normal term infants changes over the first two days of life. J. Pediatr. Endocrinol. Metab. 2003, 16, 537–540. [Google Scholar] [CrossRef]
- Pereira-da-Silva, L.; Bergmans, K.I.; van Kerkhoven, L.A.; Leal, F.; Virella, D.; Videira-Amaral, J.M. Reducing discomfort while measuring crown-heel length in neonates. Acta Paediatr. 2006, 95, 742–746. [Google Scholar] [CrossRef]
- Pereira-da-Silva, L.; Virella, D. Accurate direct measures are required to validate derived measures. Neonatology 2018, 113, 266. [Google Scholar] [CrossRef]
- Brennan, A.M.; Murphy, B.P.; Kiely, M.E. Nutritional management and assessment of preterm infants. The BabyGrow longitudinal nutrition and growth study. Top. Clin. Nutr. 2015, 30, 80–93. [Google Scholar] [CrossRef]
- Schneider, J.; Fischer Fumeaux, C.J.; Duerden, E.G.; Guo, T.; Foong, J.; Graz, M.B.; Hagmann, P.; Chakravarty, M.M.; Hüppi, P.S. Nutrient intake in the first two weeks of life and brain growth in preterm neonates. Pediatrics 2018, 141, e20172169. [Google Scholar] [CrossRef] [PubMed]
- Raghuram, K.; Yang, J.; Church, P.T.; Cieslak, Z.; Synnes, A.; Mukerji, A.; Shah, P.S.; Canadian neonatal network; Canadian neonatal follow-up network investigators. Head growth trajectory and neurodevelopmental outcomes in preterm neonates. Pediatrics 2017, 140, e20170216. [Google Scholar] [CrossRef] [PubMed]
- Ashton, J.J.; Johnson, M.J.; Pond, J.; Crowley, P.; Dimitrov, B.D.; Pearson, F.; Beattie, R.M. Assessing the growth of preterm infants using detailed anthropometry. Acta Paediatr. 2017, 106, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Daly-Wolfe, K.M.; Jordan, K.C.; Slater, H.; Beachy, J.C.; Moyer-Mileur, L.J. Mid-arm circumference is a reliable method to estimate adiposity in preterm and term infants. Pediatr. Res. 2015, 78, 336–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueira, B.B.; Segre, C.A. Mid-arm circumference and mid-arm/head circumference ratio in term newborns. Sao Paulo Med. J. 2004, 122, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Pereira-da-Silva, L.; Abecasis, F.; Virella, D.; Videira-Amaral, J.M. Upper arm anthropometry is not a valid predictor of regional body composition in preterm infants. Neonatology 2009, 95, 74–79. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Younes, N.; Lemons, J.A.; Fanaroff, A.A.; Donovan, E.F.; Wright, L.L.; Katsikiotis, V.; Tyson, J.E.; Oh, W.; Shankaran, S.; et al. Longitudinal growth of hospitalized very low birth weight infants. Pediatrics 1999, 104, 280–289. [Google Scholar] [CrossRef]
- Rodríguez, G.; Samper, M.P.; Olivares, J.L.; Ventura, P.; Moreno, L.A.; Pérez-González, J.M. Skinfold measurements at birth: Sex and anthropometric influence. Arch. Dis. Child. Fetal Neonatal 2005, 90, F273–F275. [Google Scholar] [CrossRef]
- Rigo, J.; De Curtis, M.; Pieltain, C. Nutritional assessment in preterm infants with special reference to body composition. Semin. Neonatol. 2001, 6, 383–391. [Google Scholar] [CrossRef]
- Schmelzle, H.R.; Fusch, C. Body fat in neonates and young infants: Validation of skinfold thickness versus dual-energy X-ray absorptiometry. Am. J. Clin. Nutr. 2002, 76, 1096–1100. [Google Scholar] [CrossRef]
- Koo, W.W.; Walters, J.C.; Hockman, E.M. Body composition in neonates: Relationship between measured and derived anthropometry with dual-energy X-ray absorptiometry measurements. Pediatr. Res. 2004, 56, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Olhager, E.; Forsum, E. Assessment of total body fat using the skinfold technique in full-term and preterm infants. Acta Paediatr. 2006, 95, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Uthaya, S.; Thomas, E.L.; Hamilton, G.; Doré, C.J.; Bell, J.; Modi, N. Altered adiposity after extremely preterm birth. Pediatr. Res. 2005, 57, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, G.; Samper, M.P.; Ventura, P.; Moreno, L.A.; Olivares, J.L.; Pérez-González, J.M. Gender differences in newborn subcutaneous fat distribution. Eur. J. Pediatr. 2004, 163, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Dde Gamarra, M.E.; Schutz, Y.; Catzeflis, C.; Freymond, D.; Cauderay, M.; Calame, A.; Micheli, J.L.; Jéquier, E. Skinfold thickness and adiposity index in premature infants. Neonatology 1987, 51, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Olsen, I.E.; Lawson, M.L.; Meinzen-Derr, J.; Sapsford, A.L.; Schibler, K.R.; Donovan, E.F.; Morrow, A.L. Use of a body proportionality index for growth assessment of preterm infants. J. Pediatr. 2009, 154, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.N.; Grabich, S.C.; Olsen, I.E.; Cantrell, R.; Clark, R.H.; Ballew, W.N.; Chou, J.; Lawson, M.L. BMI is a better body proportionality measure than the ponderal index and weight-for-length for preterm infants. Neonatology 2018, 113, 108–116. [Google Scholar] [CrossRef]
- De Cunto, A.; Paviotti, G.; Ronfani, L.; Travan, L.; Bua, J.; Cont, G.; Demarini, S. Can body mass index accurately predict adiposity in newborns? Arch. Dis. Child. Fetal Neonatal 2014, 99, F238–F239. [Google Scholar] [CrossRef]
- Olsen, I.E.; Lawson, M.L.; Ferguson, A.N.; Cantrell, R.; Grabich, S.C.; Zemel, B.S.; Clark, R.H. BMI curves for preterm infants. Pediatrics 2015, 135, e572–e581. [Google Scholar] [CrossRef]
- Sasanow, S.R.; Georgieff, M.K.; Pereira, G.R. Mid-arm circumference and mid-arm/head circumference ratios: Standard curves for anthropometric assessment of neonatal nutritional status. J. Pediatr. 1986, 109, 311–315. [Google Scholar] [CrossRef]
- Patterson, R.M.; Pouliot, M.R. Neonatal morphometrics and perinatal outcome: Who is growth retarded? Am. J. Obstet. Gynecol. 1987, 157, 691–693. [Google Scholar] [CrossRef]
- Georgieff, M.K.; Amarnath, U.M.; Sasanow, S.R.; Ophoven, J.J. Mid-arm circumference and mid-arm circumference: Head circumference ratio for assessing longitudinal growth in hospitalized preterm infants. J. Am. Coll. Nutr. 1989, 8, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Yau, K.I.; Chang, M.H. Growth and body composition of preterm, small-for-gestational-age infants at a postmenstrual age of 37–40 weeks. Early Hum. Dev. 1993, 33, 117–131. [Google Scholar] [PubMed]
- Gurney, J.M.; Jelliffe, D.B. Arm anthropometry in nutritional assessment: Nomogram for rapid calculation of muscle circumference and cross-sectional muscle and fat areas. Am. J. Clin. Nutr. 1973, 26, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Rolland-Cachera, M.F.; Brambilla, P.; Manzoni, P.; Akrout, M.; Sironi, S.; Del Maschio, A.; Chiumello, G. Body composition assessed on the basis of arm circumference and triceps skinfold thickness: A new index validated in children by magnetic resonance imaging. Am. J. Clin. Nutr. 1997, 65, 1709–1713. [Google Scholar] [CrossRef] [PubMed]
- Pereira-da-Silva, L.; Veiga Gomes, J.; Clington, A.; Videira-Amaral, J.M.; Bustamante, S.A. Upper arm measurements of healthy neonates comparing ultrasonography and anthropometric methods. Early Hum. Dev. 1999, 54, 117–128. [Google Scholar] [CrossRef]
- Sann, L.; Durand, M.; Picard, J.; Lasne, Y.; Bethenod, M. Arm fat and muscle areas in infancy. Arch. Dis. Child. 1988, 63, 256–260. [Google Scholar] [CrossRef]
- Anderson, D.M. Nutritional assessment and therapeutic interventions for the preterm infant. Clin. Perinatol. 2002, 29, 313–326. [Google Scholar] [CrossRef]
- Fisher, K.; Parker, A.; Zelig, R. Impact of sodium status on growth in premature infants. Top. Clin. Nutr. 2017, 32, 113–122. [Google Scholar] [CrossRef]
- Carmody, J.B. Focus on diagnosis: Urine electrolytes. Pediatr. Rev. 2011, 32, 65–68. [Google Scholar] [CrossRef]
- Wales, P.W.; Allen, N.; Worthington, P.; George, D.; Compher, C.; American society for parenteral and enteral nutrition; Teitelbaum, D. ASPEN clinical guidelines: Support of pediatric patients with intestinal failure at risk of parenteral nutrition-associated liver disease. JPEN J. Parenter. Enter. Nutr. 2014, 38, 538–557. [Google Scholar] [CrossRef] [PubMed]
- Pereira-da-Silva, L.; Nóbrega, S.; Rosa, M.L.; Alves, M.; Pita, A.; Virella, D.; Papoila, A.L.; Serelha, M.; Cordeiro-Ferreira, G.; Koletzko, B. Parenteral nutrition-associated cholestasis and triglyceridemia in surgical term and near-term neonates: A pilot randomized controlled trial of two mixed intravenous lipid emulsions. Clin. Nutr. ESPEN 2017, 22, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Goldenberg, R.L.; Hou, J.; Johnston, K.E.; Cliver, S.P.; Ramey, S.L.; Nelson, K.G. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J. Pediatr. 2002, 140, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Georgieff, M.K. Iron in fetal and neonatal nutrition. Semin. Fetal Neonatal. Med. 2007, 12, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raju, T.N.; Singhal, N. Optimal timing for clamping the umbilical cord after birth. Clin. Perinatol. 2012, 39, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Fernandez, J.; Ochoa, J.J.; Latunde-Dada, G.O.; Diaz-Castro, J. Iron deficiency and iron homeostasis in low birth weight preterm infants: A systematic review. Nutrients 2019, 11, 1090. [Google Scholar] [CrossRef]
- Löfving, A.; Domellöf, M.; Hellström-Westas, L.; Andersson, O. Reference intervals for reticulocyte hemoglobin content in healthy infants. Pediatr. Res. 2018, 84, 657–661. [Google Scholar] [CrossRef]
- Roggero, P.; Giannì, M.L.; Morlacchi, L.; Piemontese, P.; Liotto, N.; Taroni, F.; Mosca, F. Blood urea nitrogen concentrations in low-birth-weight preterm infants during parenteral and enteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 213–215. [Google Scholar] [CrossRef]
- Arslanoglu, S.; Moro, G.E.; Ziegler, E.E. Adjustable fortification of human milk fed to preterm infants: Does it make a difference? J. Perinatol. 2006, 26, 614–621. [Google Scholar] [CrossRef]
- Bhatia, J.; Mena, P.; Denne, S.; García, C. Evaluation of adequacy of protein and energy. J. Pediatr. 2013, 162 (Suppl. 3), 31–36. [Google Scholar] [CrossRef]
- Rochow, N.; Landau-Crangle, E.; Fusch, C. Challenges in breast milk fortification for preterm infants. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Fusch, G.; Mitra, S.; Rochow, N.; Fusch, C. Target fortification of breast milk: Levels of fat, protein or lactose are not related. Acta Paediatr. 2015, 104, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Mól, N.; Kwinta, P. How to determine the nutritional status of preterm babies? Review of the literature. Dev. Period Med. 2015, 19, 324–329. [Google Scholar] [PubMed]
- Myron Johnson, A.; Merlini, G.; Sheldon, J.; Ichihara, K.; Scientific Division Committee on Plasma Proteins (C-PP); International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). Clinical indications for plasma protein assays: Transthyretin (prealbumin) in inflammation and malnutrition. Clin. Chem. Lab. Med. 2007, 45, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.E.; Falcão, M.C. Nutritional assessment of very low birth weight infants: Relationships between anthropometric and biochemical parameters. Nutr. Hosp. 2007, 22, 322–329. [Google Scholar] [PubMed]
- Dellière, S.; Cynober, L. Is transthyretin a good marker of nutritional status? Clin. Nutr. 2017, 36, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Visser, F.; Sprij, A.J.; Brus, F. The validity of biochemical markers in metabolic bone disease in preterm infants: A systematic review. Acta Paediatr. 2012, 101, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.M.; Gibson, A.T. Osteopenia in preterm infants. Arch. Dis. Child. Fetal Neonatal 2013, 98, F272–F275. [Google Scholar] [CrossRef]
Purpose | Chart/Reference Values | Characteristics |
---|---|---|
To assess intrauterine growth | Fenton 2013 [37]. | Reference sex specific, cross-sectional charts. Range: 22 to 50 weeks postmenstrual age. |
To monitor intra-hospital growth | Growth calculator: https://www.growthcalculator.org/ [41,42]. | Reference specific for sex, gestational age and percentile, longitudinal curves. |
To monitor growth after discharge | Intergrowth-21st standards [46]. | Standard longitudinal curves. Range: 37 to 64 postmenstrual age. |
Measurement | Advantages | Limitations |
---|---|---|
Direct measurements | ||
Body weight | Simple and reproducible. | Does not give any information on body composition. |
Body length | Reflects skeletal growth and predicts fat-free mass. | Accurate measurement is difficult. |
Head circumference (HC) | Reflects brain growth. | It may be affected by causes other than nutrient intake. |
Mid-upper arm circumference (MUAC) | Reflects the combined arm muscle and fat. It may estimate body adiposity. | Measurement is technically difficult in extremely preterm infants. |
Skinfolds | Estimates body fat. Convenient for bedside assessment. | Do not reflect intra-abdominal fat. |
Derived measurements | ||
Weight-to-length ratio | Reflects body proportionality at birth and postnatal body composition. | Its validity as a predictor of body composition has been questioned. |
Body mass index (BMI) | Reflects body proportionality at birth and postnatal body composition. It seems more appropriate to assess body proportionality than weight-to-length ratio and ponderal index. | The reliability of BMI is highly dependent on the accuracy of length measurement. Its validity as a predictor of body composition has been questioned. |
Ponderal index | Reflects body proportionality at birth and postnatal body composition. | The reliability of this index is highly dependent on the accuracy of length measurement. Its validity as a predictor of body composition has been questioned. |
MUAC:HC ratio | Combined with other measurements, contributes to estimating body composition in appropriate-for-gestational age neonates. | Validation as an independent predictor of body composition is needed. |
Upper-arm cross-sectional areas | They might indicate the relative contribution of fat and muscle to the total arm area better than the direct measurements. | Their ability to predict total body fat and muscle is questioned. |
Measurement | Advantages | Limitations |
---|---|---|
Protein status | ||
Blood urea nitrogen (BUN) | Low BUN is a good marker of low protein intake in enterally fed, clinically stable infants. | High BUN is not easy to interpret, since it may represent appropriate amino acid intake, low energy intake relative to protein intake, or amino acid intolerance. |
Serum prealbumin | Half-life of approximately 2 days. A low level reflects current protein deficit. | Inflammation or infection may decrease prealbumin levels. |
Retinol-binding protein (RBP) | Half-life of approximately 12 h. A low level reflects current protein deficit. | RBP levels may be also be affected by suboptimal iron, zinc, and vitamin A status. Measuring RBP is more expensive than prealbumin, providing equivalent information. |
Serum transferrin | A complementary marker of protein status. | In iron deficiency, transferrin concentration increases regardless of nutritional status. It is seldom used. |
Bone status | ||
Serum calcium | It is a poor marker of MBD. | |
Serum phosphate | High specificity and positive predictive value as a marker of MBD. | Low sensitivity and negative predictive value as a marker of MBD. Insufficient evidence as a reliable marker of MBD. |
Serum alkaline phosphatase | Levels >900 U/L yield a specificity of 71% and a sensitivity of 88% as a marker of MBD | Insufficient evidence as a reliable marker of MBD. |
Serum alkaline phosphatase plus serum phosphate | Alkaline phosphatase >900 U/L plus phosphate <1.8 mmol/L (5.6 mg/dL) yield a specificity of 70% and a sensitivity of 100% as a marker of MBD | Insufficient evidence as a reliable marker of MBD. |
Urinary calcium and phosphate markers | Urinary calcium-creatinine ratio, phosphate concentration and tubular reabsorption of phosphate may be complementarily used in the diagnosis of MBD | Levels are dependent on whether infants are formula-fed or breastfed. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira-da-Silva, L.; Virella, D.; Fusch, C. Nutritional Assessment in Preterm Infants: A Practical Approach in the NICU. Nutrients 2019, 11, 1999. https://doi.org/10.3390/nu11091999
Pereira-da-Silva L, Virella D, Fusch C. Nutritional Assessment in Preterm Infants: A Practical Approach in the NICU. Nutrients. 2019; 11(9):1999. https://doi.org/10.3390/nu11091999
Chicago/Turabian StylePereira-da-Silva, Luis, Daniel Virella, and Christoph Fusch. 2019. "Nutritional Assessment in Preterm Infants: A Practical Approach in the NICU" Nutrients 11, no. 9: 1999. https://doi.org/10.3390/nu11091999