Pediatric Thermoregulation: Considerations in the Face of Global Climate Change
Abstract
:1. Introduction
2. Thermoregulation
3. Global Climate Change
4. Adult–Child Differences in Thermoregulation during Heat Exposure
4.1. Morphology
4.2. Body Composition
4.3. Metabolic Heat Production
4.4. Cardiovascular Responses
4.5. Thermoregulatory Sweating
4.6. Heat Acclimation
4.7. Sweat Composition and Fluid Intake
5. Emerging Environmental Challenges: Effects on Thermoregulation and Health
5.1. Pollution
5.2. Ultraviolet Exposure
6. Child Health, Safety, and Risk Reduction
- Increasing rest periods. Activities lasting >15 min should be reduced in conditions of high solar radiation, high humidity, and ambient temperatures above critical limits.
- When beginning a strenuous exercise program or travelling to a warmer climate, HA over 10–14 days should be planned with reduced exercise intensity, duration, and protective clothing.
- Ensure adequate hydration prior to extended exercise in the heat. Intermittent drinking periods should be enforced, regardless of thirst (100–250 mL every 20 min). Weighing a child pre/post-exercise can assist with verifying hydration.
- Lightweight, light-colored, single-layer clothing should be worn that is absorbent. Sweat-soaked garments should be replaced.
- Child education on heat illness and hydration practices should be adopted to help raise awareness of prevention, and recognition of the signs and symptoms of heat-related illness and injury. Trained staff should be present, and an emergency plan should be in place.
7. Summary
Funding
Conflicts of Interest
References
- Sherbakov, T.; Malig, B.; Guirguis, K.; Gershunov, A.; Basu, R. Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009. Environ. Res. 2018, 160, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M.; Ponsonby, A.-L. Ultraviolet radiation and health: Friend and foe. Med. J. Aust. 2002, 177, 594–598. [Google Scholar] [PubMed]
- Pope, C.A., 3rd; Muhlestein, J.B.; May, H.T.; Renlund, D.G.; Anderson, J.L.; Horne, B.D. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation 2006, 114, 2443–2448. [Google Scholar] [CrossRef] [PubMed]
- Ibald-Mulli, A.; Stieber, J.; Wichmann, H.E.; Koenig, W.; Peters, A. Effects of air pollution on blood pressure: A population-based approach. Am. J. Public Health 2001, 91, 571–577. [Google Scholar] [PubMed]
- Urch, B.; Silverman, F.; Corey, P.; Brook, J.R.; Lukic, K.Z.; Rajagopalan, S.; Brook, R.D. Acute Blood Pressure Responses in Healthy Adults During Controlled Air Pollution Exposures. Environ. Health Perspect. 2005, 113, 1052–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, R.D.; Urch, B.; Dvonch, J.T.; Bard, R.L.; Speck, M.; Keeler, G.; Morishita, M.; Marsik, F.J.; Kamal, A.S.; Kaciroti, N.; et al. Insights into the Mechanisms and Mediators of the Effects of Air Pollution Exposure on Blood Pressure and Vascular Function in Healthy Humans. Hypertens 2009, 54, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Van Loenhout, J.A.F.; Delbiso, T.D.; Kiriliouk, A.; Rodriguez-Llanes, J.M.; Segers, J.; Guha-Sapir, D. Heat and emergency room admissions in the Netherlands. BMC Public Health 2018, 18, 108. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lavigne, E.; Ouellette-Kuntz, H.; Chen, B.E. Acute impacts of extreme temperature exposure on emergency room admissions related to mental and behavior disorders in Toronto, Canada. J. Affect. Disord. 2014, 155, 154–161. [Google Scholar] [CrossRef]
- Sheffield, P.E.; Landrigan, P.J. Global climate change and children’s health: Threats and strategies for prevention. Environ. Health Perspect. 2011, 119, 291–298. [Google Scholar] [CrossRef]
- Xu, Z.; Sheffield, P.E.; Hu, W.; Su, H.; Yu, W.; Qi, X.; Tong, S. Climate Change and Children’s Health—A Call for Research on What Works to Protect Children. Int. J. Environ. Res. Public Health 2012, 9, 3298–3316. [Google Scholar] [CrossRef]
- UNICEF. Climate Change and Children: A Human Security Challenge; Hellenic Foundation for European and Foreign Policy; UNICEF and UNICEF Innocenti Research Centre: New York, NY, USA, 2008. [Google Scholar]
- Inbar, O.; Bar-Or, O.; Dotan, R.; Gutin, B. Conditioning versus exercise in heat as methods for acclimatizing 8- to 10-yr-old boys to dry heat. J. Appl. Physiol. 1981, 50, 406–411. [Google Scholar] [CrossRef]
- Anna, B.; Blazej, Z.; Jacqueline, G.; Andrew, C.J.; Jeffrey, R.; Andrzej, S. Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma. Expert Rev. Dermatol. 2007, 2, 451–469. [Google Scholar] [Green Version]
- Hart, P.H.; Norval, M.; Byrne, S.N.; Rhodes, L.E. Exposure to Ultraviolet Radiation in the Modulation of Human Diseases. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 55–81. [Google Scholar] [CrossRef]
- Franchini, M.; Mannucci, P.M. Air pollution and cardiovascular disease. Thromb. Res. 2012, 129, 230–234. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Verga, M.C.; Renis, M.; Schiavo, A.; Salvatore, V.; Santoriello, C.; Pazzano, D.; Licenziati, M.R.; Polverino, M. Air pollution and carotid arterial stiffness in children. Cardiol. Young 2010, 20, 186–190. [Google Scholar] [CrossRef]
- Katsouyanni, K.; Pantazopoulou, A.; Touloumi, G.; Tselepidaki, I.; Moustris, K.P.; Asimakopoulos, D.; Poulopoulou, G.; Trichopoulos, D. Evidence for Interaction between Air Pollution and High Temperature in the Causation of Excess Mortality. Arch. Environ. Health Int. J. 1993, 48, 235–242. [Google Scholar] [CrossRef]
- Bowatte, G.; Lodge, C.; Lowe, A.J.; Erbas, B.; Perret, J.; Abramson, M.J.; Matheson, M.; Dharmage, S.C. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: A systematic review and a meta-analysis of birth cohort studies. Allergy 2015, 70, 245–256. [Google Scholar] [CrossRef]
- Falk, B. Effects of Thermal Stress during Rest and Exercise in the Paediatric Population. Sports Med. 1998, 25, 221–240. [Google Scholar] [CrossRef]
- Inoue, Y.; Kuwahara, T.; Araki, T. Maturation- and Aging-related Changes in Heat Loss Effector Function. J. Physiol. Anthr. Appl. Hum. Sci. 2004, 23, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J.; Johnson, J.M. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: Neural control of skin blood flow and sweating in humans. Auton. Neurosci. 2016, 196, 25–36. [Google Scholar] [CrossRef]
- Moorhouse, V.H.K. Effect of Increased Temperature of the Carotid Blood. Am. J. Physiol. Content 1911, 28, 223–234. [Google Scholar] [CrossRef]
- Ott, I. The Heat-Center in the Brain. J. Nerv. Ment. Dis. 1887, 14, 152–162. [Google Scholar] [CrossRef]
- Benzinger, T.H. On physical heat regulation and the sense of temperature in man. Proc. Natl. Acad. Sci. USA 1959, 45, 645–659. [Google Scholar] [CrossRef]
- Cramer, M.N.; Jay, O. Biophysical aspects of human thermoregulation during heat stress. Auton. Neurosci. 2016, 196, 3–13. [Google Scholar] [CrossRef]
- Kellogg, D.L.; John, M.J. Thermoregulatory and thermal control in the human cutaneous circulation. Front. Biosci. 2010, 2, 825–853. [Google Scholar] [CrossRef]
- Johnson, J.M.; Minson, C.T.; Kellogg, D.L. Cutaneous Vasodilator and Vasoconstrictor Mechanisms in Temperature Regulation. Compr. Physiol. 2014, 4, 33–89. [Google Scholar]
- Kenney, W.L.; Johnson, J.M. Control of skin blood flow during exercise. Med. Sci. Sports Exerc. 1992, 24, 303. [Google Scholar] [CrossRef]
- Bouchama, A.; Knochel, J.P. Heat stroke. N. Engl. J. Med. 2002, 346, 1978–1988. [Google Scholar] [CrossRef]
- Bar-Or, O.; Shephard, R.J.; Allen, C.L. Cardiac output of 10- to 13-year-old boys and girls during submaximal exercise. J. Appl. Physiol. 1971, 30, 219–223. [Google Scholar] [CrossRef]
- Shibasaki, M.; Inoue, Y.; Kondo, N.; Iwata, A. Thermoregulatory responses of prepubertal boys and young men during moderate exercise. Graefe Arch. Clin. Exp. Ophthalmol. 1997, 75, 212–218. [Google Scholar] [CrossRef]
- Davies, C.T.M. Thermal responses to exercise in children. Ergonomics 1981, 24, 55–61. [Google Scholar] [CrossRef]
- Wagner, J.A.; Robinson, S.; Tzankoff, S.P.; Marino, R.P. Heat tolerance and acclimatization to work in the heat in relation to age. J. Appl. Physiol. 1972, 33, 616–622. [Google Scholar] [CrossRef]
- Shibasaki, M.; Inoue, Y.; Kondo, N. Mechanisms of underdeveloped sweating responses in prepubertal boys. Graefe’s Arch. Clin. Exp. Ophthalmol. 1997, 76, 340–345. [Google Scholar] [CrossRef]
- Drinkwater, B.L.; Kupprat, I.C.; Denton, J.E.; Crist, J.L.; Horvath, S.M. Response of prepubertal girls and college women to work in the heat. J. Appl. Physiol. 1977, 43, 1046–1053. [Google Scholar] [CrossRef]
- Hosokawa, Y.; Stearns, R.L.; Casa, D.J. Is Heat Intolerance State or Trait? Sports Med. 2019, 49, 365–370. [Google Scholar] [CrossRef]
- Falk, B.; Dotan, R. Children’s thermoregulation during exercise in the heat—A revisit. Appl. Physiol. Nutr. Metab. 2008, 33, 420–427. [Google Scholar] [CrossRef]
- Berko, J.; Ingram, D.D.; Saha, S.; Parker, J.D. Deaths Attributed to Heat, Cold, and Other Weather Events in the United States, 2006–2010; National Health Statistics Reports; no 76; National Center for Health Statistics: Hyattsville, MD, USA, 2014; pp. 1–15.
- Semenza, J.C.; Rubin, C.H.; Falter, K.H.; Selanikio, J.D.; Wilhelm, J.L.; Flanders, W.D.; Howe, H.L. Heat-Related Deaths during the July 1995 Heat Wave in Chicago. N. Engl. J. Med. 1996, 335, 84–90. [Google Scholar] [CrossRef]
- WHO. Quantitative Risk Assessment of the Effects of Climate Change on Selected Causes of Death, 2030s and 2050s; WHO Press: Geneva, Switzerland, 2014. [Google Scholar]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Guo, Y.; Gasparrini, A.; Armstrong, B.G.; Tawatsupa, B.; Tobias, A.; Lavigne, E.; Coelho, M.; Pan, X.; Kim, H.; Hashizume, M.; et al. Heat Wave and Mortality: A Multicountry, Multicommunity Study. Environ. Health Perspect. 2017, 125, 087006. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.D.; Bobb, J.F.; Tebaldi, C.; McDaniel, L.; Bell, M.L.; Dominici, F. Toward a quantitative estimate of future heat wave mortality under global climate change. Environ. Health Perspect. 2011, 119, 701–706. [Google Scholar] [CrossRef]
- Ciscar, J.C.; Iglesias, A.; Feyen, L.; Szabó, L.; Van Regemorter, D.; Amelung, B.; Nicholls, R.; Watkiss, P.; Christensen, O.B.; Dankers, R.; et al. Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. USA 2011, 108, 2678–2683. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.G.; Tait, P.W. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming. Int. J. Environ. Res. Public Health 2015, 12, 8034–8074. [Google Scholar] [CrossRef]
- Basu, R.; Samet, J.M. Relation between Elevated Ambient Temperature and Mortality: A Review of the Epidemiologic Evidence. Epidemiologic Rev. 2002, 24, 190–202. [Google Scholar] [CrossRef]
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. Chapter 2: Our Changing Climate. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014. [Google Scholar]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P.; Gao, X.J.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1037, 1065–1068. [Google Scholar]
- Rimsza, M.E.; Hotaling, A.J.; Keown, M.E.; Marcin, J.P.; Moskowitz, W.B.; Sigrest, T.D.; Simon, H.K.; Harris, C.E.; McGuinness, G.A.; Mulvey, H.J.; et al. Definition of a Pediatrician. Pediatrics 2015, 135, 780–781. [Google Scholar] [Green Version]
- US Food and Drug Administration. General Clinical Pharmacology Considerations for Pediatric Studies for Drugs and Biological Products: Guidance for Industry. FDA Website. Available online: www. fda.gov/downloads/drugs/guidance complianceregulatoryinformation/gui dances/ucm425885.pdf (accessed on 26 December 2014).
- WHO. Paediatric Age Categories to be Used in Differentiating Between Listing on a Model Essential Medicines List for Children; Position Paper; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Med, C.S.; Hlth, F.C.S. Policy Statement-Climatic Heat Stress and Exercising Children and Adolescents. Pediatrics 2011, 128, E741–E747. [Google Scholar]
- Falk, B.; Bar-Or, O.; Calvert, R.; MacDougall, J.D. Sweat gland response to exercise in the heat among pre-, mid-, and late-pubertal boys. Med. Sci. Sports Exerc. 1992, 24, 313–319. [Google Scholar] [CrossRef]
- Falk, B.; Bar-OR, O.; MacDougall, J.D.; Goldsmith, C.H.; McGillis, L. Longitudinal analysis of the sweating response of pre-, mid-, and late-pubertal boys during exercise in the heat. Am. J. Hum. Boil. 1992, 4, 527–535. [Google Scholar] [CrossRef]
- Falk, B.; Bar-Or, O.; MacDougall, J.D. Thermoregulatory responses of pre-, mid-, and late-pubertal boys to exercise in dry heat. Med. Sci. Sports Exerc. 1992, 24, 688–694. [Google Scholar] [CrossRef]
- Bar-Or, O. Climate and the Exercising Child—A Review. Int. J. Sports Med. 1980, 01, 53–65. [Google Scholar] [CrossRef]
- Inbar, O.; Morris, N.; Epstein, Y.; Gass, G. Comparison of thermoregulatory responses to exercise in dry heat among prepubertal boys, young adults and older males. Exp. Physiol. 2004, 89, 691–700. [Google Scholar] [CrossRef]
- Epstein, Y.; Shapiro, Y.; Brill, S. Role of surface area-to-mass ratio and work efficiency in heat intolerance. J. Appl. Physiol. 1983, 54, 831–836. [Google Scholar] [CrossRef]
- Chung, N.K.; Pin, C.H. Obesity and the Occurrence of Heat Disorders. Mil. Med. 1996, 161, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Bedno, S.A.; Urban, N.; Boivin, M.R.; Cowan, D.N. Fitness, obesity and risk of heat illness among army trainees. Occup. Med. 2014, 64, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Bedno, S.A.; Li, Y.; Han, W.; Cowan, D.N.; Scott, C.T.; Cavicchia, M.A.; Niebuhr, D.W. Exertional heat illness among overweight U.S. Army recruits in basic training. Aviat. Space Environ. Med. 2010, 81, 107–111. [Google Scholar] [CrossRef]
- Skinner, A.C.; Ravanbakht, S.N.; Skelton, J.A.; Perrin, E.M.; Armstrong, S.C. Prevalence of Obesity and Severe Obesity in US Children, 1999–2016. Pediatrics 2018, 141, e20173459. [Google Scholar] [CrossRef]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilai-Salinas, C.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- American College of Sports Medicine; Armstrong, L.E.; Casa, D.J.; Millard-Stafford, M.; Moran, D.S.; Pyne, S.W.; Roberts, W.O. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med. Sci. Sports Exerc. 2007, 39, 556–572. [Google Scholar] [CrossRef]
- Miller, A.T.; Blyth, C.S. Lack of Insulating Effect of Body Fat during Exposure to Internal and External Heat Loads. J. Appl. Physiol. 1958, 12, 17–19. [Google Scholar] [CrossRef]
- Limbaugh, J.D.; Wimer, G.S.; Long, L.H.; Baird, W.H. Body fatness, body core temperature, and heat loss during moderate-intensity exercise. Aviat. Space Environ. Med. 2013, 84, 1153–1158. [Google Scholar] [CrossRef]
- Moyen, N.E.; Burchfield, J.M.; Butts, C.L.; Glenn, J.M.; Tucker, M.A.; Treece, K.; Smith, A.J.; McDermott, B.P.; Ganio, M.S. Effects of obesity and mild hypohydration on local sweating and cutaneous vascular responses during passive heat stress in females. Appl. Physiol. Nutr. Metab. 2016, 41, 879–887. [Google Scholar] [CrossRef]
- Dervis, S.; Coombs, G.B.; Chaseling, G.K.; Filingeri, D.; Smoljanic, J.; Jay, O. A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat. J. Appl. Physiol. 2016, 120, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.D.; Ganio, M.S.; Burchfield, J.M.; Matthews, A.C.; Werner, R.N.; Chokbengboun, A.J.; Dougherty, E.K.; LaChance, A.A. Effects of obesity on body temperature in otherwise-healthy females when controlling hydration and heat production during exercise in the heat. Eur. J. Appl. Physiol. 2015, 115, 167–176. [Google Scholar] [CrossRef]
- Haymes, E.M.; McCormick, R.J.; Buskirk, E.R. Heat tolerance of exercising lean and obese prepubertal boys. J. Appl. Physiol. 1975, 39, 457–461. [Google Scholar] [CrossRef]
- Bar-Or, O.; Lundegren, H.M.; Buskirk, E.R. Heat tolerance of exercising obese and lean women. J. Appl. Physiol. 1969, 26, 403–409. [Google Scholar] [CrossRef]
- Dougherty, K.A.; Chow, M.; Kenney, W.L. Responses of lean and obese boys to repeated summer exercise in the heat bouts. Med. Sci. Sport Exerc. 2009, 41, 279–289. [Google Scholar] [CrossRef]
- Robinson, S. The effect of body size upon energy exchange in work. Am. J. Physiol. Content 1942, 136, 363–368. [Google Scholar] [CrossRef]
- Haymes, E.M.; Buskirk, E.R.; Hodgson, J.L.; Lundegren, H.M.; Nicholas, W.C. Heat tolerance of exercising lean and heavy prepubertal girls. J. Appl. Physiol. 1974, 36, 566–571. [Google Scholar] [CrossRef]
- Geddes, L.A.; Baker, L.E. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med. Boil. Eng. 1967, 5, 271–293. [Google Scholar] [CrossRef]
- Koppe, C.; Kovats, S.; Menne, B.; Jendritzky, G.; Baumuller, J.; Bitan, A.; Jimenez, J.D.; Ebi, K.L.; Havenith, G.; World Health Oragnization; et al. Heat Waves: Risks and Responses; WHO Regional Office for Europe: Copenhagen, Denmark, 2004. [Google Scholar]
- Shibata, R.; Ouchi, N.; Ohashi, K.; Murohara, T. The role of adipokines in cardiovascular disease. J. Cardiol. 2017, 70, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Perrin, J.M.; Anderson, L.E.; Van Cleave, J. The Rise in Chronic Conditions Among Infants, Children, And Youth Can Be Met with Continued Health System Innovations. Health Aff. 2014, 33, 2099–2105. [Google Scholar] [CrossRef]
- Horace, A.E.; Ahmed, F. Polypharmacy in pediatric patients and opportunities for pharmacists’ involvement. Integr. Pharm. Res. Pr. 2015, 4, 113–126. [Google Scholar] [CrossRef]
- Cox, E.R.; Halloran, D.R.; Homan, S.M.; Welliver, S.; Mager, D.E. Trends in the Prevalence of Chronic Medication Use in Children: 2002–2005. Pediatrics 2008, 122, 1053–1061. [Google Scholar] [CrossRef]
- Wirix, A.J.G.; Kaspers, P.J.; Nauta, J.; Chinapaw, M.J.M.; Kist-van Holthe, J.E. Pathophysiology of hypertension in obese children: A systematic review. Obes. Rev. 2015, 16, 831–842. [Google Scholar] [CrossRef]
- Din-Dzietham, R.; Liu, Y.; Bielo, M.V.; Shamsa, F. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation 2007, 116, 1488–1496. [Google Scholar] [CrossRef]
- Magge, S.N.; Goodman, E.; Armstrong, S.C. The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering. Pediatrics 2017, 140, 20171603. [Google Scholar] [CrossRef]
- Balmain, B.N.; Sabapathy, S.; Jay, O.; Adsett, J.; Stewart, G.M.; Jayasinghe, R.; Morris, N.R. Heart Failure and Thermoregulatory Control: Can Patients with Heart Failure Handle the Heat? J. Card. Fail. 2017, 23, 621–627. [Google Scholar] [CrossRef]
- Kenney, W.L.; Morgan, A.L.; Farquhar, W.B.; Brooks, E.M.; Pierzga, J.M.; Derr, J.A. Decreased active vasodilator sensitivity in aged skin. Am. J. Physiol. Circ. Physiol. 1997, 272, 1609. [Google Scholar] [CrossRef]
- Balmain, B.N.; Jay, O.; Morris, N.R.; Shiino, K.; Stewart, G.M.; Jayasinghe, R.; Chan, J.; Sabapathy, S. Thermoeffector Responses at a Fixed Rate of Heat Production in Heart Failure Patients. Med. Sci. Sports Exerc. 2018, 50, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Balmain, B.N.; Jay, O.; Sabapathy, S.; Royston, D.; Stewart, G.M.; Jayasinghe, R.; Morris, N.R. Altered thermoregulatory responses in heart failure patients exercising in the heat. Physiol. Rep. 2016, 4, e13022. [Google Scholar] [CrossRef]
- Åstrand, P.O. Experimental Studies of Physical Working Capacity in Relation to Sex and Age. Ph.D. Thesis, Munksgaard Forlag, Copenhagen, Denmark, 1952. [Google Scholar]
- MacDougall, J.D.; Roche, P.D.; Bar-Or, O.; Moroz, J.R. Maximal Aerobic Capacity of Canadian Schoolchildren: Prediction Based on Age-Related Oxygen Cost of Running. Int. J. Sports Med. 1983, 4, 194–198. [Google Scholar] [CrossRef]
- Frost, G.; Dowling, J.; Bar-Or, O.; Dyson, K. Ability of mechanical power estimations to explain differences in metabolic cost of walking and running among children. Gait Posture 1997, 5, 120–127. [Google Scholar] [CrossRef]
- Frost, G.; Bar-Or, O.; Dowling, J.; Dyson, K. Explaining differences in the metabolic cost and efficiency of treadmill locomotion in children. J. Sports Sci. 2002, 20, 451–461. [Google Scholar] [CrossRef]
- Unnithan, V.B.; Eston, R.G. Stride Frequency and Submaximal Treadmill Running Economy in Adults and Children. Pediatr. Exerc. Sci. 1990, 2, 149–155. [Google Scholar] [CrossRef]
- Ebbeling, C.J.; Hamill, J.; Freedson, P.S.; Rowland, T.W. An Examination of Efficiency during Walking in Children and Adults. Pediatr. Exerc. Sci. 1992, 4, 36–49. [Google Scholar] [CrossRef]
- Ries, A.J.; Schwartz, M.H. Low gait efficiency is the primary reason for the increased metabolic demand during gait in children with cerebral palsy. Hum. Mov. Sci. 2018, 57, 426–433. [Google Scholar] [CrossRef]
- Turley, K.R.; Wilmore, J.H. Cardiovascular responses to treadmill and cycle ergometer exercise in children and adults. J. Appl. Physiol. 1997, 83, 948–957. [Google Scholar] [CrossRef]
- Katsuura, T. Influences of age and sex on cardiac output during submaximal exercise. Ann. Physiol. Anthr. 1986, 5, 39–57. [Google Scholar] [CrossRef]
- Gadhoke, S.; Jones, N.L. The responses to exercise in boys aged 9–15 years. Clin. Sci. 1969, 37, 789–801. [Google Scholar]
- Godfrey, S.; Davies, C.T.M.; Woźniak, E.; Barnes, C.A. Cardio-Respiratory Response to Exercise in Normal Children. Clin. Sci. 1971, 40, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Kenney, W.L.; Stanhewicz, A.E.; Bruning, R.S.; Alexander, L.M. Blood pressure regulation III: What happens when one system must serve two masters: Temperature and pressure regulation? Eur. J. Appl. Physiol. 2014, 114, 467–479. [Google Scholar] [CrossRef]
- Kenefick, R.W.; Cheuvront, S.N. Physiological adjustments to hypohydration: Impact on thermoregulation. Auton. Neurosci. 2016, 196, 47–51. [Google Scholar] [CrossRef]
- Bar-Or, O.; Dotan, R.; Inbar, O.; Rotshtein, A.; Zonder, H. Voluntary hypohydration in 10- to 12-year-old boys. J. Appl. Physiol. 1980, 48, 104–108. [Google Scholar] [CrossRef]
- Havenith, G.; Fogarty, A.; Bartlett, R.; Smith, C.J.; Ventenat, V. Male and female upper body sweat distribution during running measured with technical absorbents. Eur. J. Appl. Physiol. 2008, 104, 245–255. [Google Scholar] [CrossRef]
- Smith, C.J.; Havenith, G. Body mapping of sweating patterns in athletes: A sex comparison. Med. Sci. Sports Exerc. 2012, 44, 2350–2361. [Google Scholar] [CrossRef]
- Smith, C.J.; Havenith, G. Upper body sweat mapping provides evidence of relative sweat redistribution towards the periphery following hot-dry heat acclimation. Temperature 2019, 6, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Taylor, N.A.S.; Machado-Moreira, C.A. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem. Physiol. Med. 2013, 2, 4. [Google Scholar] [CrossRef]
- Machado-Moreira, C.A.; Smith, F.M.; van den Heuvel, A.M.; Mekjavic, I.B.; Taylor, N.A. Sweat secretion from the torso during passively-induced and exercise-related hyperthermia. Eur. J. Appl. Physiol. 2008, 104, 265–270. [Google Scholar] [CrossRef]
- Meyer, F.; Bar-Or, O.; MacDougall, D.; Heigenhauser, G.J. Sweat electrolyte loss during exercise in the heat: Effects of gender and maturation. Med. Sci. Sports Exerc. 1992, 24, 776–781. [Google Scholar] [CrossRef]
- Poirier, M.P.; Gagnon, D.; Kenny, G.P. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation. Appl. Physiol. Nutr. Metab. 2016, 41, 816–824. [Google Scholar] [CrossRef]
- Havenith, G.; Van Middendorp, H. Determination of the Individual State of Acclimatization; IZF Report 1986-27; TNO Institute for Perception: Soesterberg, The Netherlands, 1986; p. 24. [Google Scholar]
- Patterson, M.J.; Stocks, J.M.; Taylor, N.A. Humid heat acclimation does not elicit a preferential sweat redistribution toward the limbs. Am. J. Physiol. Integr. Comp. Physiol. 2004, 286, 512–518. [Google Scholar] [CrossRef]
- Sawka, M.N.; Young, A.J.; Cadarette, B.S.; Levine, L.; Pandolf, K.B. Influence of heat stress and acclimation on maximal aerobic power. Graefe’s Arch. Clin. Exp. Ophthalmol. 1985, 53, 294–298. [Google Scholar] [CrossRef]
- Kodesh, E.; Nesher, N.; Simaan, A.; Hochner, B.; Beeri, R.; Gilon, D.; Stern, M.D.; Gerstenblith, G.; Horowitz, M. Heat acclimation and exercise training interact when combined in an overriding and trade-off manner: Physiologic-genomic linkage. Am. J. Physiol. Integr. Comp. Physiol. 2011, 301, R1786–R1797. [Google Scholar] [CrossRef]
- Pandolf, K.B. Effects of physical training and cardiorespiratory physical fitness on exercise-heat tolerance: Recent observations. Med. Sci. Sports 1979, 11, 60–65. [Google Scholar]
- Taylor, N.A. Eccrine sweat glands. Adaptations to physical training and heat acclimation. Sports Med. 1986, 3, 387–397. [Google Scholar] [CrossRef]
- Taylor, N.A.S. Principles and practices of heat adaptation. J. Hum.-Environ. Syst. 2000, 4, 11–22. [Google Scholar] [CrossRef]
- Inoue, Y.; Havenith, G.; Kenney, W.L.; Loomis, J.L.; Buskirk, E.R. Exercise- and methylcholine-induced sweating responses in older and younger men: Effect of heat acclimation and aerobic fitness. Int. J. Biometeorol. 1999, 42, 210–216. [Google Scholar] [CrossRef]
- Périard, J.D.; Travers, G.J.S.; Racinais, S.; Sawka, M.N. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton. Neurosci. 2016, 196, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Pandolf, K.B.; Burse, R.L.; Goldman, R.F. Role of Physical Fitness in Heat Acclimatisation, Decay and Reinduction. Ergonomics 1977, 20, 399–408. [Google Scholar] [CrossRef]
- Lorenzo, S.; Halliwill, J.R.; Sawka, M.N.; Minson, C.T. Heat acclimation improves exercise performance. J. Appl. Physiol. 2010, 109, 1140–1147. [Google Scholar] [CrossRef] [Green Version]
- Jay, O.; Imbeault, P.; Ravanelli, N. The Sweating and Core Temperature Response to Compensable and Uncompensable Heat Stress Following Heat Acclimation. FASEB J. 2018, 32, 590–16124. [Google Scholar]
- Havenith, G. Individualized model of human thermoregulation for the simulation of heat stress response. J. Appl. Physiol. 2001, 90, 1943–1954. [Google Scholar] [CrossRef]
- Wyndham, C.H.; Rogers, G.G.; Senay, L.C.; Mitchell, D. Acclimization in a hot, humid environment: Cardiovascular adjustments. J. Appl. Physiol. 1976, 40, 779–785. [Google Scholar] [CrossRef]
- Nielsen, B.; Hales, J.R.; Strange, S.; Christensen, N.J.; Warberg, J.; Saltin, B. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J. Physiol. 1993, 460, 467–485. [Google Scholar] [CrossRef]
- Sato, F.; Owen, M.; Matthes, R.; Sato, K.; Gisolfi, C.V. Functional and morphological changes in the eccrine sweat gland with heat acclimation. J. Appl. Physiol. 1990, 69, 232–236. [Google Scholar] [CrossRef]
- Candas, V.; Libert, J.P.; Vogt, J.J. Sweating and sweat decline of resting men in hot humid environments. Graefe’s Arch. Clin. Exp. Ophthalmol. 1983, 50, 223–234. [Google Scholar] [CrossRef]
- Buono, M.J.; Ball, K.D.; Kolkhorst, F.W. Sodium ion concentration vs. sweat rate relationship in humans. J. Appl. Physiol. 2007, 103, 990–994. [Google Scholar] [CrossRef]
- Ogawa, T.; Asayama, M.; Miyagawa, T. Effects of sweat gland training by repeated local heating. Jpn. J. Physiol. 1982, 32, 971–981. [Google Scholar] [CrossRef]
- Kirby, C.R.; Convertino, V.A. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation. J. Appl. Physiol. 1986, 61, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Bytomski, J.R.; Squire, D.L. Heat illness in children. Curr. Sports Med. Rep. 2003, 2, 320–324. [Google Scholar] [CrossRef]
- Zappe, D.H.; Bell, G.W.; Swartzentruber, H.; Wideman, R.F.; Kenney, W.L. Age and regulation of fluid and electrolyte balance during repeated exercise sessions. Am. J. Physiol. Integr. Comp. Physiol. 1996, 270, 71. [Google Scholar] [CrossRef]
- Kenny, G.P.; Wilson, T.E.; Flouris, A.D.; Fujii, N. Heat exhaustion. Handb. Clin. Neurol. 2018, 157, 505–529. [Google Scholar]
- Claremont, A.D.; Costill, D.L.; Fink, W.; Van Handel, P. Heat tolerance following diuretic induced dehydration. Med. Sci. Sports Exerc. 1976, 8, 239. [Google Scholar] [CrossRef]
- Sawka, M.N.; Montain, S.J.; Latzka, W.A. Hydration effects on thermoregulation and performance in the heat. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 128, 679–690. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Carter, R.I.; Sawka, M.N. Fluid Balance and Endurance Exercise Performance. Curr. Sports Med. Rep. 2003, 2, 202–208. [Google Scholar] [CrossRef]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar]
- Kenney, W.L.; Tankersley, C.G.; Newswanger, D.L.; Hyde, D.E.; Puhl, S.M.; Turner, N.L. Age and hypohydration independently influence the peripheral vascular response to heat stress. J. Appl. Physiol. 1990, 68, 1902–1908. [Google Scholar] [CrossRef]
- Fortney, S.M.; Wenger, C.B.; Bove, J.R.; Nadel, E.R. Effect of hyperosmolality on control of blood flow and sweating. J. Appl. Physiol. 1984, 57, 1688–1695. [Google Scholar] [CrossRef]
- Sawka, M.N.; Young, A.J.; Francesconi, R.P.; Muza, S.R.; Pandolf, K.B. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J. Appl. Physiol. 1985, 59, 1394–1401. [Google Scholar] [CrossRef]
- Bar-David, Y.; Urkin, J.; Kozminsky, E. The effect of voluntary dehydration on cognitive functions of elementary school children. Acta Paediatr. 2005, 94, 1667–1673. [Google Scholar] [CrossRef]
- Benton, D.; Burgess, N. The effect of the consumption of water on the memory and attention of children. Appetite 2009, 53, 143–146. [Google Scholar] [CrossRef]
- Perry, C.S., 3rd; Rapinett, G.; Glaser, N.S.; Ghetti, S. Hydration status moderates the effects of drinking water on children’s cognitive performance. Appetite 2015, 95, 520–527. [Google Scholar] [CrossRef]
- Masento, N.A.; Golightly, M.; Field, D.T.; Butler, L.T.; van Reekum, C.M. Effects of hydration status on cognitive performance and mood. Br. J. Nutr. 2014, 111, 1841–1852. [Google Scholar] [CrossRef]
- Braun, H.; von Andrian-Werburg, J.; Malisova, O.; Athanasatou, A.; Kapsokefalou, M.; Ortega, J.F.; Mora-Rodriguez, R.; Thevis, M. Differing Water Intake and Hydration Status in Three European Countries—A Day-to-Day Analysis. Nutrients 2019, 11, 773. [Google Scholar] [CrossRef]
- Guelinckx, I.; Vecchio, M.; Perrier, E.T.; Lemetais, G. Fluid Intake and Vasopressin: Connecting the Dots. Ann. Nutr. Metab. 2016, 68, 6–11. [Google Scholar] [CrossRef]
- Roussel, R.; Fezeu, L.; Bouby, N.; Balkau, B.; Lantieri, O.; Alhenc-Gelas, F.; Marre, M.; Bankir, L. Low Water Intake and Risk for New-Onset Hyperglycemia. Diabetes Care 2011, 34, 2551–2554. [Google Scholar] [CrossRef] [Green Version]
- Enhoörning, S.; Wang, T.J.; Nilsson, P.M.; Almgren, P.; Hedblad, B.; Berglund, G.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Lindholm, E.; et al. Plasma copeptin and the risk of diabetes mellitus. Circulation 2010, 121, 2102–2108. [Google Scholar] [CrossRef]
- Sontrop, J.M.; Dixon, S.N.; Garg, A.X.; Buendia-Jimenez, I.; Dohein, O.; Huang, S.H.; Clark, W.F. Association between Water Intake, Chronic Kidney Disease, and Cardiovascular Disease: A Cross-Sectional Analysis of NHANES Data. Am. J. Nephrol. 2013, 37, 434–442. [Google Scholar] [CrossRef]
- Shoham, D.A.; Durazo-Arvizu, R.; Kramer, H.; Luke, A.; Vupputuri, S.; Kshirsagar, A.; Cooper, R.S. Sugary Soda Consumption and Albuminuria: Results from the National Health and Nutrition Examination Survey, 1999–2004. PLoS ONE 2008, 3, e3431. [Google Scholar] [CrossRef]
- Fung, T.T.; Malik, V.; Rexrode, K.M.; Manson, J.E.; Willett, W.C.; Hu, F.B. Sweetened beverage consumption and risk of coronary heart disease in women1234. Am. J. Clin. Nutr. 2009, 89, 1037–1042. [Google Scholar] [CrossRef]
- Wilk, B.; Bar-Or, O. Effect of drink flavor and NaCL on voluntary drinking and hydration in boys exercising in the heat. J. Appl. Physiol. 1996, 80, 1112–1117. [Google Scholar] [CrossRef]
- Barnes, K.A.; Anderson, M.L.; Stofan, J.R.; Dalrymple, K.J.; Reimel, A.J.; Roberts, T.J.; Randell, R.K.; Ungaro, C.T.; Baker, L.B. Normative data for sweating rate, sweat sodium concentration, and sweat sodium loss in athletes: An update and analysis by sport. J. Sports Sci. 2019. [Google Scholar] [CrossRef]
- Baker, L.B.; De Chavez, P.J.D.; Ungaro, C.T.; Sopena, B.C.; Nuccio, R.P.; Reimel, A.J.; Barnes, K.A. Exercise intensity effects on total sweat electrolyte losses and regional vs. whole-body sweat [Na(+)], [Cl(-)], and [K(+)]. Eur. J. Appl. Physiol. 2019, 119, 361–375. [Google Scholar] [CrossRef]
- Baker, L.B.; Ungaro, C.T.; Sopeňa, B.C.; Nuccio, R.P.; Reimel, A.J.; Carter, J.M.; Stofan, J.R.; Barnes, K.A. Body map of regional vs. whole body sweating rate and sweat electrolyte concentrations in men and women during moderate exercise-heat stress. J. Appl. Physiol. 2018, 124, 1304–1318. [Google Scholar] [CrossRef]
- Baker, L.B.; Jeukendrup, A.E. Optimal Composition of Fluid-Replacement Beverages. Compr. Physiol. 2014, 4, 575–620. [Google Scholar]
- Amano, T.; Hirose, M.; Konishi, K.; Gerrett, N.; Ueda, H.; Kondo, N.; Inoue, Y. Maximum rate of sweat ions reabsorption during exercise with regional differences, sex, and exercise training. Eur. J. Appl. Physiol. Occup. Physiol. 2017, 30, 708–1327. [Google Scholar] [CrossRef]
- Henkin, S.D.; Sehl, P.L.; Meyer, F. Sweat rate and electrolyte concentration in swimmers, runners, and nonathletes. Int. J. Sports Physiol. Perform. 2010, 5, 359–366. [Google Scholar] [CrossRef]
- Buono, M.J.; Kolding, M.; Leslie, E.; Moreno, D.; Norwood, S.; Ordille, A.; Weller, R. Heat acclimation causes a linear decrease in sweat sodium ion concentration. J. Therm. Boil. 2018, 71, 237–240. [Google Scholar] [CrossRef]
- Pilardeau, P.A.; Lavie, F.; Vaysse, J.; Garnier, M.; Harichaux, P.; Margo, J.N.; Chalumeau, M.T. Effect of different work-loads on sweat production and composition in man. J. Sports Med. Phys. Fit. 1988, 28, 247–252. [Google Scholar]
- Gerrett, N.; Amano, T.; Inoue, Y.; Havenith, G.; Kondo, N. The effects of exercise and passive heating on the sweat glands ion reabsorption rates. Physiol. Rep. 2018, 6, e13619. [Google Scholar] [CrossRef]
- Meyer, F.; Laitano, O.; Bar-Or, O.; McDougall, D.; Heigenhauser, G.J. Effect of age and gender on sweat lactate and ammonia concentrations during exercise in the heat. Braz. J. Med Boil. Res. 2007, 40, 135–143. [Google Scholar] [CrossRef]
- Lamont, L.S. Sweat lactate secretion during exercise in relation to women’s aerobic capacity. J. Appl. Physiol. 1987, 62, 194–198. [Google Scholar] [CrossRef]
- Bijman, J.; Quinton, P.M. Lactate and Bicarbonate Uptake in the Sweat Duct of Cystic Fibrosis and Normal Subjects. Pediatr. Res. 1987, 21, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, D.; Songo-Williams, R.; Drack, E. Hydrogen ion and electrolyte excretion of the single human sweat gland. Pflügers Arch. Eur. J. Physiol. 1974, 349, 63–72. [Google Scholar] [CrossRef]
- Falk, B.; Bar-Or, O.; MacDougall, J.D.; McGillis, L.; Calvert, R.; Meyer, F. Sweat lactate in exercising children and adolescents of varying physical maturity. J. Appl. Physiol. 1991, 71, 1735–1740. [Google Scholar] [CrossRef]
- WHO. Inheriting a Sustainable World? Atlas on Children’s Health and the Environment; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Lomax, P.; Schönbaum, E. Chapter 12 the Effects of Drugs on Thermoregulation during Exposure to Hot Environments. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 1998; Volume 115, pp. 193–204. [Google Scholar]
- Gordon, C.J.; Johnstone, A.F.; Aydin, C. Thermal stress and toxicity. Compr. Physiol. 2014, 4, 995–1016. [Google Scholar]
- Gordon, C.J. Response of the Thermoregulatory System to Toxic Chemicals. In Theory and Applications of Heat Transfer in Humans; Wiley: Hoboken, NJ, USA, 2018; Volume 1, pp. 529–552. [Google Scholar]
- Moffatt, A.; Mohammed, F.; Eddleston, M.; Azher, S.; Eyer, P.; Buckley, N.A. Hypothermia and Fever After Organophosphorus Poisoning in Humans—A Prospective Case Series. J. Med Toxicol. 2010, 6, 379–385. [Google Scholar] [CrossRef]
- Michelozzi, P.; Forastiere, F.; Fusco, D.; Perucci, C.A.; Ostro, B.; Ancona, C.; Pallotti, G. Air pollution and daily mortality in Rome, Italy. Occup. Environ. Med. 1998, 55, 605–610. [Google Scholar] [CrossRef] [Green Version]
- WHO. The Cost of a Polluted Environment: 1.7 Million Child Deaths a Year, Says WHO. Available online: https://www.who.int/en/news-room/detail/06-03-2017-the-cost-of-a-polluted-environment-1-7-million-child-deaths-a-year-says-who (accessed on 29 June 2019).
- Cheng, Y.; Kan, H. Effect of the Interaction between Outdoor Air Pollution and Extreme Temperature on Daily Mortality in Shanghai, China. J. Epidemiol. 2012, 22, 28–36. [Google Scholar] [CrossRef]
- Li, G.; Zhou, M.; Cai, Y.; Zhang, Y.; Pan, X. Does temperature enhance acute mortality effects of ambient particle pollution in Tianjin City, China. Sci. Total. Environ. 2011, 409, 1811–1817. [Google Scholar] [CrossRef]
- Rider, C.V.; Boekelheide, K.; Catlin, N.; Gordon, C.J.; Morata, T.; Selgrade, M.K.; Sexton, K.; Simmons, J.E. Cumulative risk: Toxicity and interactions of physical and chemical stressors. Toxicol. Sci. 2014, 137, 3–11. [Google Scholar] [CrossRef]
- Heinzerling, A.; Hsu, J.; Yip, F. Respiratory Health Effects of Ultrafine Particles in Children: A Literature Review. Water Air Soil Pollut. 2016, 227, 32. [Google Scholar] [CrossRef]
- Franchini, M.; Mannucci, P.M. Short-term effects of air pollution on cardiovascular diseases: Outcomes and mechanisms. J. Thromb. Haemost. 2007, 5, 2169–2174. [Google Scholar] [CrossRef]
- Tager, I.B.; Balmes, J.; Lurmann, F.; Ngo, L.; Alcorn, S.; Künzli, N. Chronic Exposure to Ambient Ozone and Lung Function in Young Adults. Epidemiology 2005, 16, 751–759. [Google Scholar] [CrossRef]
- Hemminki, K.; Pershagen, G. Cancer risk of air pollution: Epidemiological evidence. Environ. Health Perspect. 1994, 102, 187–192. [Google Scholar]
- He, F.; Shaffer, M.L.; Rodriguez-Colon, S.; Yanosky, J.D.; Bixler, E.; Cascio, W.E.; Liao, D. Acute Effects of Fine Particulate Air Pollution on Cardiac Arrhythmia: The APACR Study. Environ. Health Perspect. 2011, 119, 927–932. [Google Scholar] [CrossRef]
- Liao, D.; Shaffer, M.L.; He, F.; Rodriguez-Colon, S.; Wu, R.; Whitsel, E.A.; Bixler, E.O.; Cascio, W.E. Fine Particulate air Pollution is Associated with Higher Vulnerability to Atrial Fibrillation—The APACR Study. J. Toxicol. Environ. Health Part A 2011, 74, 693–705. [Google Scholar] [CrossRef]
- Su, T.C.; Hwang, J.J.; Shen, Y.C.; Chan, C.C. Carotid Intima-Media Thickness and Long-Term Exposure to Traffic-Related Air Pollution in Middle-Aged Residents of Taiwan: A Cross-Sectional Study. Environ. Health Perspect. 2015, 123, 773–778. [Google Scholar] [CrossRef] [Green Version]
- Rao, X.; Zhong, J.; Brook, R.D.; Rajagopalan, S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxid. Redox Signal 2018, 28, 797–818. [Google Scholar] [CrossRef]
- Lawal, A.O. Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: The role of Nrf2 and AhR-mediated pathways. Toxicol. Lett. 2017, 270, 88–95. [Google Scholar] [CrossRef]
- Schwartz, J. Air pollution and children’s health. Pediatrics 2004, 113, 1037–1043. [Google Scholar]
- Calderón-Garcidueñas, L.; Villarreal-Calderon, R.; Valencia-Salazar, G.; Henríquez-Roldán, C.; Gutiérrez-Castrellón, P.; Torres-Jardón, R.; Osnaya-Brizuela, N.; Romero, L.; Torres-Jardón, R.; Solt, A.; et al. Systemic Inflammation, Endothelial Dysfunction, and Activation in Clinically Healthy Children Exposed to Air Pollutants. Inhal. Toxicol. 2008, 20, 499–506. [Google Scholar] [CrossRef]
- Armijos, R.X.; Weigel, M.M.; Myers, O.B.; Li, W.W.; Racines, M.; Berwick, M. Residential Exposure to Urban Traffic Is Associated with Increased Carotid Intima-Media Thickness in Children. J. Environ. Public Health 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bais, A.F.; McKenzie, R.L.; Bernhard, G.; Aucamp, P.J.; Ilyas, M.; Madronich, S.; Tourpali, K. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2015, 14, 19–52. [Google Scholar] [CrossRef]
- Armstrong, B.K.; Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B: Boil. 2001, 63, 8–18. [Google Scholar] [CrossRef]
- Krause, R.; Bühring, M.; Hopfenmüller, W.; Holick, M.F.; Sharma, A.M. Ultraviolet B and blood pressure. Lancet 1998, 352, 709–710. [Google Scholar] [CrossRef]
- Liebmann, P.M.; Wölfler, A.; Felsner, P.; Hofer, D.; Schauenstein, K. Melatonin and the Immune System. Int. Arch. Allergy Immunol. 1997, 112, 203–211. [Google Scholar] [CrossRef]
- Maestroni, G.J.M. The immunotherapeutic potential of melatonin. Expert Opin. Investig. Drugs 2001, 10, 467–476. [Google Scholar] [CrossRef]
- Constantinescu, C.S.; Hilliard, B.; Ventura, E.; Rostami, A. Luzindole, a Melatonin Receptor Antagonist, Suppresses Experimental Autoimmune Encephalomyelitis. Pathobiology 1997, 65, 190–194. [Google Scholar] [CrossRef]
- Ren, W.; Liu, G.; Chen, S.; Yin, J.; Wang, J.; Tan, B.; Wu, G.; Bazer, F.W.; Peng, Y.; Li, T.; et al. Melatonin signaling in T cells: Functions and applications. J. Pineal Res. 2017, 62, e12394. [Google Scholar] [CrossRef] [Green Version]
- De Gruijl, F.R. Skin cancer and solar UV radiation. Eur. J. Cancer 1999, 35, 2003–2009. [Google Scholar] [CrossRef]
- Rass, K.; Reichrath, J. UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. Adv. Exp. Med. Biol. 2008, 624, 162–178. [Google Scholar]
- Ponsonby, A.L.; McMichael, A.; van der Mei, I. Ultraviolet radiation and autoimmune disease: Insights from epidemiological research. Toxicology 2002, 181, 71–78. [Google Scholar] [CrossRef]
- Pandolf, K.B.; Gange, R.W.; Latzka, W.A.; Blank, I.H.; Kraning, K.K., 2nd; Gonzalez, R.R. Human thermoregulatory responses during heat exposure after artificially induced sunburn. Am. J. Physiol. 1992, 262, R610–R616. [Google Scholar] [CrossRef]
- Pandolf, K.B.; Griffin, T.B.; Munro, E.H.; Goldman, R.F. Persistence of impaired heat tolerance from artificially induced miliaria rubra. Am. J. Physiol. Integr. Comp. Physiol. 1980, 239, R226–R232. [Google Scholar] [CrossRef]
- Bruning, R.S.; Santhanam, L.; Stanhewicz, A.E.; Smith, C.J.; Berkowitz, D.E.; Kenney, W.L.; Holowatz, L.A. Endothelial nitric oxide synthase mediates cutaneous vasodilation during local heating and is attenuated in middle-aged human skin. J. Appl. Physiol. 2012, 112, 2019–2026. [Google Scholar] [CrossRef]
- Kellogg, D.L., Jr.; Liu, Y.; Kosiba, I.F.; O’Donnell, D. Role of nitric oxide in the vascular effects of local warming of the skin in humans. J. Appl. Physiol. 1999, 86, 1185–1190. [Google Scholar] [CrossRef]
- Minson, C.T.; Berry, L.T.; Joyner, M.J. Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J. Appl. Physiol. 2001, 91, 1619–1626. [Google Scholar] [CrossRef]
- Kellogg, D.L., Jr.; Crandall, C.G.; Liu, Y.; Charkoudian, N.; Johnson, J.M. Nitric oxide and cutaneous active vasodilation during heat stress in humans. J. Appl. Physiol. 1998, 85, 824–829. [Google Scholar] [CrossRef]
- Wolf, S.T.; Stanhewicz, A.E.; Jablonski, N.G.; Kenney, W.L. Acute ultraviolet radiation exposure attenuates nitric oxide-mediated vasodilation in the cutaneous microvasculature of healthy humans. J. Appl. Physiol. 2018. [Google Scholar] [CrossRef]
- Wolf, S.T.; Berry, C.W.; Stanhewicz, A.E.; Kenney, L.E.; Ferguson, S.B.; Kenney, W.L. Sunscreen or simulated sweat minimizes the impact of acute ultraviolet radiation on cutaneous microvascular function in healthy humans. Exp. Physiol. 2019. [Google Scholar] [CrossRef]
- Wick, D.E.; Roberts, S.K.; Basu, A.; Sandroni, P.; Fealey, R.D.; Sletten, D.; Charkoudian, N. Delayed threshold for active cutaneous vasodilation in patients with Type 2 diabetes mellitus. J. Appl. Physiol. 2006, 100, 637–641. [Google Scholar] [CrossRef]
- Petrofsky, J.S.; Lee, S.; Patterson, C.; Cole, M.; Stewart, B. Sweat production during global heating and during isometric exercise in people with diabetes. Med Sci. Monit. 2005, 11, 515–521. [Google Scholar]
- Fealey, R.D.; Low, P.A.; Thomas, J.E. Thermoregulatory Sweating Abnormalities in Diabetes Mellitus. Mayo Clin. Proc. 1989, 64, 617–628. [Google Scholar] [CrossRef]
- Dougherty, K.A.; Chow, M.; Kenney, W.L. Critical environmental limits for exercising heat-acclimated lean and obese boys. Eur. J. Appl. Physiol. 2010, 108, 779–789. [Google Scholar] [CrossRef]
- Bar-Or, O.; Blimkie, C.; Hay, J.A.; MacDougall, J.D.; Ward, D.S.; Wilson, W.M. Voluntary dehydration and heat intolerance in cystic fibrosis. Lancet 1992, 339, 696–699. [Google Scholar] [CrossRef]
- Roelands, B.; Hasegawa, H.; Watson, P.; Piacentini, M.F.; Buyse, L.; De Schutter, G.; Meeusen, R.R. The Effects of Acute Dopamine Reuptake Inhibition on Performance. Med. Sci. Sports Exerc. 2008, 40, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Havenith, G. Metabolic rate and clothing insulation data of children and adolescents during various school activities. Ergonomics 2007, 50, 1689–1701. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, C.J. Pediatric Thermoregulation: Considerations in the Face of Global Climate Change. Nutrients 2019, 11, 2010. https://doi.org/10.3390/nu11092010
Smith CJ. Pediatric Thermoregulation: Considerations in the Face of Global Climate Change. Nutrients. 2019; 11(9):2010. https://doi.org/10.3390/nu11092010
Chicago/Turabian StyleSmith, Caroline J. 2019. "Pediatric Thermoregulation: Considerations in the Face of Global Climate Change" Nutrients 11, no. 9: 2010. https://doi.org/10.3390/nu11092010