Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review
Abstract
:1. Introduction
2. Methods
3. Bisphenol A Analogues in Food
4. Bisphenol A Analogues in Biological Samples and Their Hormonal Effects
5. Obesogenic Effects of Bisphenol A Analogues
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BPA | Bisphenol A |
BPS | Bisphenol S |
BPF | Bisphenol F |
BPB | Bisphenol B |
BPE | Bisphenol E |
BPAF | Bisphenol AF |
BPs | Bisphenols analogues |
BPP | Bisphenol P |
BPZ | Bisphenol Z |
BADGE | Bisphenol A diglycidyl ether |
BFDGE | Bisphenol F diglycidyl ether |
PPARα | Peroxisome proliferator-activated receptor alfa |
PPARδ | Peroxisome proliferator-activated receptor delta |
PPARγ | Peroxisome proliferator-activated receptor gamma |
References
- Kabir, E.R.; Rahman, M.S.; Rahman, I. A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol. 2015, 40, 241–258. [Google Scholar] [CrossRef]
- Anifandis, G.; Amiridis, G.; Dafopoulos, K.; Daponte, A.; Dovolou, E.; Gavriil, E.; Gorgogietas, V.; Kachpani, E.; Mamuris, Z.; Messini, C.I.; et al. The in Vitro Impact of the Herbicide Roundup on Human Sperm Motility and Sperm Mitochondria. Toxics 2018, 6, 2. [Google Scholar] [CrossRef]
- Anifandis, G.; Katsanaki, K.; Lagodonti, G.; Messini, C.; Simopoulou, M.; Dafopoulos, K.; Daponte, A. The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation. Int. J. Environ. Res. Public Health 2018, 15, 1117. [Google Scholar] [CrossRef]
- Kang, J.H.; Kondo, F.; Katayama, Y. Human exposure to bisphenol A. Toxicology 2006, 226, 79–89. [Google Scholar] [CrossRef]
- Cacho, J.I.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. Stir Bar Sorptive Extraction Coupled to Gas Chromatography-Mass Spectrometry for the Determination of Bisphenols in Canned Beverages and Filling Liquids of Canned Vegetables. J. Chromatogr. A 2012, 1247, 146–153. [Google Scholar] [CrossRef]
- García, J.A.; Gallego, C.; Font, G. Toxicidad del Bisfenol A: Revisión. Rev. Toxicol. 2015, 32, 144–160. [Google Scholar]
- Chen, M.Y.; Ike, M.; Fujita, M. Acute toxicity, mutagenicity, and estrogenicity of bisphenol A and other bisphenols. Environ. Toxicol. Int. J. 2002, 17, 80–86. [Google Scholar] [CrossRef]
- Regueiro, J.; Breidbach, A.; Wenzl, T. Derivatization of bisphenol A and its analogues with pyridine-3-sulfonyl chloride: Multivariate optimization and fragmentation patterns by liquid chromatography/Orbitrap mass spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 1473–1484. [Google Scholar] [CrossRef]
- Regueiro, J.; Wenzl, T. Determination of bisphenols in beverages by mixed-mode solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2015, 1422, 230–238. [Google Scholar] [CrossRef]
- García-Córcoles, M.T.; Cipa, M.; Rivas, A.; Olea-Serrano, F.; Vílchez, A.J.; Zafra-Gómez, A. Determination of Bisphenols with Estrogenic Activity in Plastic Packaged Baby Food Samples Using Solid-Liquid Extraction and Clean-up with Dispersive Sorbents Followed by Gas Chromatography Tandem Mass Spectrometry. Talanta 2018, 178, 441–448. [Google Scholar] [CrossRef]
- Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol. 2013, 42, 132–155. [Google Scholar] [CrossRef]
- Barroso, J.M. European Commission Directive 2011/8/EU of 28 January 2011 amending directive 2002/72/EC as regards the restriction of use of bisphenol A in plastic infant feeding bottles. Off. J. Eur. Union 2011, 26, 11–14. [Google Scholar]
- European Commission. Commission Regulation (EU) 2018/213 on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation No 10/2011 as regards the use of that substance in plastic food. 2018. Available online: http://data.europa.eu/eli/reg/2018/213/oj (accessed on 31 August 2019).
- French Republic, Regulation No. 1442/2012 of 24 December 2012 Aiming at Banning the Manufacture, Import, Export and Commercialisation of All Forms of Food Packaging Containing Bisphenol A. Off. J. French Republic 2012. Available online: https://www.legifrance.gouv.fr/jo_pdf.do?numJO=0&dateJO=20121226&numTexte=2&pageDebut=20395&pageFin=20396 (accessed on 31 August 2019).
- Food and Drug Administration (FDA). Indirect Food Additives: Polymers; Federal Register: Rockville, MD, USA, 2012; Volume 77, pp. 41899–41902. [Google Scholar]
- Food and Drug Administration (FDA). Indirect Food Additives: Adhesives and Components of Coatings; Federal Register: Rockville, MD, USA, 2013; Volume 78, pp. 41840–41843. [Google Scholar]
- Liao, C.; Liu, F.; Kannan, K.; Bisphenol, S. A new bisphenol analogue, in paper products and currency bills and its association with bisphenol A residues. Environ. Sci. Technol. 2012, 46, 6515–6522. [Google Scholar] [CrossRef]
- Gallo, P.; Pisciottano, I.D.M.; Esposito, F.; Fasano, E.; Scognamiglio, G.; Mita, G.D.; Cirillo, T. Determination of BPA, BPB, BPF, BADGE and BFDGE in Canned Energy Drinks by Molecularly Imprinted Polymer Cleaning up and UPLC with Fluorescence Detection. Food Chem. 2017, 220, 406–412. [Google Scholar] [CrossRef]
- Kitamura, S.; Suzuki, T.; Sanoh, S.; Kohta, R.; Jinno, N.; Sugihara, K. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol. Sci. 2005, 84, 249–259. [Google Scholar] [CrossRef]
- Feng, Y.; Yin, J.; Jiao, Z.; Shi, J.; Li, M.; Shao, B. Bisphenol AF may cause testosterone reduction by directly affecting testis function in adult male rats. Toxicol. Lett. 2012, 211, 201–209. [Google Scholar] [CrossRef]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.L.; Wu, Y.; Widelka, M. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity: A review. Environ. Sci. Technol. 2012, 50, 5438–5453. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, B.; Zhao, Y.; Zhang, J.; Shao, B. Highly sensitive and high-throughput method for the analysis of bisphenol analogues and their halogenated derivatives in breast milk. J. Agric. Food Chem. 2017, 65, 10452–10463. [Google Scholar] [CrossRef]
- Liao, C.; Liu, F.; Alomirah, H.; Loi, V.D.; Mohd, M.A.; Moon, H.B.; Nakata, H.; Kannan, K. Bisphenol S in urine from the United States and seven Asian countries: Occurrence and human exposures. Environ. Sci. Technol. 2012, 46, 6860–6866. [Google Scholar] [CrossRef]
- Kojima, H.; Takeuchi, S.; Sanoh, S.; Okuda, K.; Kitamura, S.; Uramaru, N.; Sugihara, K.; Yoshinari, K. Profiling of bisphenol A and eight its analogues on transcriptional activity via human nuclear receptors. Toxicology 2019, 413, 48–55. [Google Scholar] [CrossRef]
- Pelch, K.; Wignall, J.A.; Goldstone, A.E.; Ross, P.K.; Blain, R.B.; Shapiro, A.J.; Holmgren, S.D.; Hsieh, J.H.; Svoboda, D.; Auerbach, S.S.; et al. A scoping review of the health and toxicological activity of bisphenol A (BPA) structural analogues and functional alternatives. Toxicology 2019, 424, 152235. [Google Scholar] [CrossRef]
- Punt, A.; Aartse, A.; Bovee, T.F.H.; Gerssen, A.; Van Leeuwen, S.P.J. Hoogenboom RLAP, Peijnenburg AACM. Quantitative in vitro-to-in vivo extrapolation (QIVIVE) of estrogenic and anti-androgenic potencies of BPA and BADGE analogues. Arch. Toxicol. 2019, 93, 1941–1953. [Google Scholar] [CrossRef]
- Rivas, A.; Lacroix, M.; Olea-Serrano, F.; Laos, I.; Leclercq, G.; Olea, N. Estrogenic effect of a series of bisphenol analogues on gene and protein expression in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 2002, 82, 45–53. [Google Scholar] [CrossRef]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef]
- Gallart-Ayala, H.; Moyano, E.; Galceran, M.T. Fast liquid chromatographytandem mass spectrometry for the analysis of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether and their derivatives in canned food and beverages. J. Chromatogr. A 1218, 2011, 1603–1610. [Google Scholar]
- Eladak, S.; Grisin, T.; Moison, D.; Guerquin, M.J.; N’Tumba-Byn, T.; Pozzi-Gaudin, S.; Benachi, A.; Livera, G.; Rouiller-Fabre, V.; Habert, R. A new chapter in the bisphenol a story: Bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil. Steril. 2015, 103, 11–21. [Google Scholar] [CrossRef]
- Chin, K.Y.; Pang, K.L.; Mark-Lee, W.F. A Review on the Effects of Bisphenol A and Its Derivatives on Skeletal Health. Int. J. Med. Sci. 2018, 15, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Ješeta, M.; Crha, T.; Žáková, J.; Ventruba, P. Bisphenols in the pathology of reproduction. Ceska Gynekol. 2019, 84, 161–165. [Google Scholar]
- Liu, B.; Lehmler, H.J.; Sun, Y.; Xu, G.; Liu, Y.; Zong, G.; Sun, Q.; Hu, F.B.; Wallace, R.B.; Bao, W. Bisphenol A substitutes and obesity in US adults: Analysis of a population-based, cross-sectional study. Lancet Planet. Health 2017, 1, e114–e122. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Lan, Z.; Yu, Y.; Mukherjee, B.; McElrath, T.F.; Meeker, J.D. Urinary concentrations of phenols in association with biomarkers of oxidative stress in pregnancy: Assessment of effects independent of phthalates. Environ. Int. 2019, 131, 104903. [Google Scholar] [CrossRef]
- Inadera, H. Neurological Effects of Bisphenol A and its Analogues. Int. J. Med. Sci. 2015, 12, 926–936. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the united states and their implications for human exposure. J. Agric. Food Chem. 2013, 61, 4655–4662. [Google Scholar] [CrossRef]
- Liao, A.; Kannan, K. A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 319–329. [Google Scholar] [CrossRef]
- Gallart-Ayala, H.; Moyano, E.; Galceran, M.T. Analysis of bisphenols in soft drinks by on-line solid phase extraction fast liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2011, 683, 227–233. [Google Scholar] [CrossRef]
- Cesen, M.; Lambropoulou, D.; Laimou-Geraniou, M.; Kosjek, T.; Blanznik, U.; Heath, D.; Heath, E. Determination of Bisphenols and Related Compounds in Honey and Their Migration from Selected Food Contact Materials. J. Agric. Food. Chem. 2016, 64, 8866–8875. [Google Scholar] [CrossRef]
- Sadeghi, M.; Nematifar, Z.; Fattahi, N.; Pirsaheb, M.; Shamsipur, M. Determination of Bisphenol A in Food and Environmental Samples Using Combined Solid-Phase Extraction-Dispersive Liquid-Liquid Microextraction with Solidification of Floating Organic Drop Followed by HPLC. Food Anal. Methods 2016, 9, 1814–1824. [Google Scholar] [CrossRef]
- Zoller, O.; Brüschweiler, B.J.; Magnin, R.; Reinhard, H.; Rhyn, P.; Rupp, H.; Zeltner, S.; Felleisen, R. Natural occurrence of bisphenol F in mustard. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 137–146. [Google Scholar] [CrossRef]
- Xionga, L.; Yana, P.; Chua, M.; Gaoa, Y.Q.; Lia, W.H.; Yanga, X.L. A rapid and simple HPLC-FLD screening method with QuEChERS as the sample treatment for the simultaneous monitoring of nine bisphenols in milk. Food Chem. 2018, 244, 371–377. [Google Scholar] [CrossRef]
- Lane, R.F.; Adams, C.D.; Randtke, S.J.; Carter, R.E. Chlorination and chloramination of bisphenol A, bisphenol F, and bisphenol A diglycidyl ether in drinking water. Water Res. 2015, 79, 68–78. [Google Scholar] [CrossRef]
- Abou-Omar, T.; Sukhn, C.; Fares, S.A.; Abiad, M.G.; Habib, R.R.; Dhaini, H.R. Bisphenol A exposure assessment from olive oil consumption. Environ. Monit. Assess. 2017, 189, 341. [Google Scholar] [CrossRef]
- Alabi, A.; Caballero-Casero, N.; Rubio, S. Quick and simple sample treatment for multiresidue analysis of bisphenols, bisphenol diglycidyl ethers and their derivatives in canned food prior to liquid chromatography and fluorescence detection. J. Chromatogr. A 2014, 1336, 23–33. [Google Scholar] [CrossRef]
- Cirillo, T.; Latini, G.; Castaldi, M.A.; Dipaola, L.; Fasano, E.; Esposito, F.; Scognamiglio, G.; Di Francesco, F.; Cobellis, L. Exposure to di-2-ethylhexyl phthalate, di-n-butyl phthalate and bisphenol A through infant formulas. J. Agric. Food Chem. 2015, 63, 3303–3310. [Google Scholar] [CrossRef]
- Cunha, S.C.; Almeida, C.; Mendes, E.; Fernandes, J.O. Simultaneous determination of bisphenol A and bisphenol B in beverages and powdered infant formula by dispersive liquid-liquid micro-extraction and heart-cutting multidimensional gas chromatography-mass spectrometry. Food Addit. Contam. 2011, 28, 513–526. [Google Scholar] [CrossRef]
- Cunha, S.C.; Cunha, C.; Ferreira, A.R.; Fernandes, J.O. Determination of bisphenol A and bisphenol B in canned seafood combining QuEChERS extraction with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2012, 404, 2453–2463. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Assessment of bisphenol A and bisphenol B in canned vegetables and fruits by gas chromatography mass spectrometry after QuEChERS and dispersive liquid-liquid microextraction. Food Control 2013, 33, 549–555. [Google Scholar] [CrossRef]
- Fasano, E.; Esposito, F.; Scognamiglio, G.; Di Francesco, F.; Montuori, P.; Amodio-Cocchieri, R.; Cirillo, T. Bisphenol A contamination in soft drinks as a risk for children’s health in Italy. Food Add. Contm. A 2015, 32, 1207–1214. [Google Scholar] [CrossRef]
- Feshin, D.B.; Fimushkin, P.V.; Brodskii, E.S.; Shelepchikov, A.A.; Mir-Kadyrova, E.Y.; Kalinkevich, G.A. Determination of bisphenol A in foods as 2,2-bis-(4-(isopropoxycarbonyloxy) phenyl) propane by gas chromatography/mass spectrometry. J. Anal. Chem. 2012, 67, 460–466. [Google Scholar] [CrossRef]
- Grumetto, L.; Gennari, O.; Montesano, D.; Ferracane, R.; Ritieni, A.; Albrizio, S.; Barbato, F. Determination of five bisphenols in commercial milk samples by liquid chromatography coupled to fluorescence detection. J. Food Prot. 2013, 76, 1590–1596. [Google Scholar] [CrossRef]
- Kuo, H.W.; Ding, W.H. Trace determination of bisphenol A and phytoestrogens in infant formula powders by gas chromatography–mass spectrometry. J. Chromatogr. A 2004, 1027, 67–74. [Google Scholar] [CrossRef]
- Lapviboonsuk, J.; Leepipatpiboon, N. A simple method for the determination of bisphenol A diglycidyl ether and its derivatives in canned fish. Anal. Methods 2014, 6, 5666–5672. [Google Scholar] [CrossRef]
- Pardo, O.; Yusa, V.; Leon, N.; Pastor, A. Determination of bisphenol diglycidyl ether residues in canned foods by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1107, 70–78. [Google Scholar] [CrossRef]
- Rastkari, N.; Ahmadkhaniha, R.; Yunesian, M.; Baleh, L.J.; Mesdaghinia, A. Sensitive determination of bisphenol A and bisphenol F in canned food using a solid-phase microextraction fibre coated with single-walled carbon nanotubes before GC/MS. Food Addit. Contam. 2010, 27, 1460–1468. [Google Scholar] [CrossRef]
- Rauter, W.; Dickinger, G.; Zihlarz, R.; Lintschinger, J. Determination of bisphenol A diglycidyl ether (BADGE) and its hydrolysis products it canned oily foods from the Austrian market. Z. Leb. Unters. Forsch. A 1999, 208, 208–211. [Google Scholar] [CrossRef]
- Simoneau, A.; Van den Eede, L.; Valzacchi, S. Identification and quantification of the migration of chemicals from plastic baby bottles used as substitutes for polycarbonate. Food Addit. Contam. 2012, 29, 469–480. [Google Scholar] [CrossRef]
- Viñas, P.; Campillo, N.; Martínez-Castillo, N.; Hernández-Córdoba, M. Comparison of two derivatization-based methods for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans. Anal. Bioanal. Chem. 2010, 397, 115–125. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, J.; Yin, J.; Shao, B.; Zhang, J. Molecularly imprinted solid-phase extraction for selective extraction of bisphenol analogues in beverages and canned food. J. Agric. Food Chem. 2014, 62, 11130–11137. [Google Scholar] [CrossRef]
- Liu, B.; Lehmler, H.-J.; Sun, Y.; Xu, G.; Sun, Q.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Association of Bisphenol A and Its Substitutes, Bisphenol F and Bisphenol S, with Obesity in United States Children and Adolescents. Diabetes Metab. J. 2019, 43, 59. [Google Scholar] [CrossRef]
- Pottenger, L.H.; Domoradzki, J.Y.; Markham, D.A.; Hansen, S.C.; Cagen, S.Z.; Waechter, J.M., Jr. The Relative Bioavailability and Metabolism of Bisphenol A in Rats Is Dependent upon the Route of Administration. Toxicol. Sci. 2000, 54, 3–18. [Google Scholar] [CrossRef]
- Hanioka, N.; Naito, T.; Narimatsu, S. Human UDP-glucuronosyltransferase isoforms involved in bisphenol A glucuronidation. Chemosphere 2008, 74, 33–36. [Google Scholar] [CrossRef]
- Gramec-Skledar, D.; Peterlin-Mašič, L. Bisphenol A and its analogs: Do their metabolites have endocrine activity? Environ. Toxicol. Pharmacol. 2016, 47, 182–199. [Google Scholar] [CrossRef]
- Taylor, J.A.; vom Saal, F.S.; Welshons, W.V.; Drury, B.; Rottinghaus, G.; Hunt, P.A.; Toutain, P.-L.; Laffont, C.M.; VandeVoort, C.A. Similarity of bisphenol A pharmacokinetics in rhesus monkeys and mice: Relevance for human exposure. Environ. Health Perspect. 2011, 119, 422–430. [Google Scholar] [CrossRef]
- Koch, H.M.; Kolossa-Gehring, M.; Schröter-Kermani, C.; Angerer, J.; Brüning, T. Bisphenol A in 24 h urine and plasma samples of the German Environmental Specimen Bank from 1995 to 2009: A retrospective exposure evaluation. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Wong, L.-Y.; Kramer, J.; Zhou, X.; Jia, T.; Calafat, A.M. Urinary concentrations of bisphenol A and three other bisphenols in convenience samples of US adults during 2000–2014. Environ. Sci. Technol. 2015, 49, 11834–11839. [Google Scholar] [CrossRef]
- Lehmler, H.J.; Liu, B.; Gadogbe, M.; Bao, W. Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013-2014. ACS Omega 2018, 3, 6523–6532. [Google Scholar] [CrossRef]
- Deceuninck, Y.; Bichon, E.; Marchand, P.; Boquien, C.Y.; Legrand, A.; Boscher, C.; Antignac, J.P.; Le Bizec, B. Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 2485–2497. [Google Scholar] [CrossRef]
- Thayer, K.A.; Doerge, D.R.; Hunt, D.; Schurman, S.H.; Twaddle, N.C.; Churchwell, M.; Garantziotis, S.; Kissling, G.E.; Easterling, M.R.; Bucher, J.R.; et al. Pharmacokinetics of bisphenol A in humans following a single oral administration. Environ Int. 2015, 83, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Duan, Y.; Zhang, T.; Zhang, B.; Zhao, Z.; Bai, X.; Xie, L.; He, Y.; Ouyang, J.P.; Huang, X.; et al. Serum concentrations of bisphenol A and its alternatives in elderly population living around e-waste recycling facilities in China: Associations with fasting blood glucose. Ecotoxicol. Environ. Saf. 2019, 106, 822–828. [Google Scholar] [CrossRef]
- Perez, P.; Pulgar, R.; Olea-Serrano, F.; Villalobos, M.; Rivas, A.; Metzler, M.; Pedraza, V.; Olea, N. The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environ. Health Perspect. 1998, 106, 167–174. [Google Scholar] [CrossRef]
- Cao, H.; Wang, F.; Liang, Y.; Wang, H.; Zhang, A.; Song, M. Experimental and computational insights on the recognition mechanism between the estrogen receptor α with bisphenol compounds. Arch. Toxicol. 2017, 91, 3897–3912. [Google Scholar] [CrossRef]
- Caballero-Casero, N.; Lunar, L.; Rubio, S. Analytical methods for the determination of mixtures of bisphenols and derivatives in human and environmental exposure sources and biological fluids. A review. Anal. Chim. Acta 2016, 908, 22–53. [Google Scholar] [CrossRef]
- Kim, J.; Choi, H.; Lee, H.; Lee, G.; Hwang, K.; Choi, K. Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells. J. Biomed. Res. 2017, 31, 358–369. [Google Scholar] [Green Version]
- Van Leeuwen, S.P.; Bovee, T.F.; Awchi, M.; Klijnstra, M.D.; Hamers, A.R.; Hoogenboom, R.L.; Portier, L.; Gerssen, A. BPA, BADGE and analogues: A new multi-analyte LC-ESI-MS/MS method for their determination and their in vitro (anti)estrogenic and (anti)androgenic properties. Chemosphere 2019, 221, 246–253. [Google Scholar] [CrossRef]
- Rosenmai, A.K.; Dybdahl, M.; Pedersen, M.; Van Vugt-Lussenburg, B.M.A.; Wedebye, E.B.; Taxvig, C.; Vinggaard, A.M. Are structural analogues to bisphenol a safe alternatives? Toxicol. Sci. 2014, 139, 35–47. [Google Scholar] [CrossRef]
- Roelofs, M.J.E.; van den Berg, M.; Bovee, T.F.H.; Piersma, A.H.; Van Duursen, M.B.M. Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor. Toxicology 2015, 329, 10–20. [Google Scholar] [CrossRef]
- Wu, L.H.; Zhang, X.M.; Wang, F.; Gao, C.J.; Chen, D.; Palumbo, J.R.; Guo, Y.; Zeng, E.Y. Occurrence of bisphenol S in the environment and implications for human exposure: A short review. Sci. Total Environ. 2018, 615, 87–98. [Google Scholar] [CrossRef]
- Siracusa, J.S.; Yin, L.; Measel, E.; Liang, S.; Yu, X. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reprod. Toxicol. 2018, 79, 96–123. [Google Scholar] [CrossRef]
- Qui, W.; Fang, M.; Liu, C.; Zheng, C.; Chen, B.; Wang, K.J. In vivo actions of bisphenol F on the reproductive neuroendocrine system after long-term exposure in zebrafish. Sci. Total Environ. 2019, 15, 995–1002. [Google Scholar]
- Shi, M.; Sekulovski, N.; MacLean, J.A., 2nd; Hayashi, K. Prenatal Exposure to Bisphenol A Analogues on Male Reproductive Functions in Mice. Toxicol Sci. 2018, 163, 620–631. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Pirzada, M.; Jahan, S.; Ullah, H.; Turi, N.; Ullah, W.; Siddiqui, M.F.; Zakria, M.; Lodhi, K.Z.; Khan, M.M. Impact of low-dose chronic exposure to bisphenol A and its analogue bisphenol B, bisphenol F and bisphenol S on hypothalamo-pituitary-testicular activities in adult rats: A focus on the possible hormonal mode of action. Food Chem. Toxicol. 2018, 121, 24–36. [Google Scholar] [CrossRef]
- Shi, M.; Sekulovski, N.; MacLean, J.A.; Whorton, A.; Hayashi, K. Prenatal Exposure to Bisphenol A Analogues on Female Reproductive Functions in Mice. Toxicol. Sci. 2019, 168, 561–571. [Google Scholar] [CrossRef]
- Kolla, S.; Morcos, M.; Martin, B.; Vandenberg, L.N. Low dose bisphenol S or ethinyl estradiol exposures during the perinatal period alter female mouse mammary gland development. Reprod. Toxicol. 2018, 78, 50–59. [Google Scholar] [CrossRef]
- Zhou, D. Ecotoxicity of bisphenol S to Caenorhabditis elegans by prolonged exposure in comparison with bisphenol A. Environ. Toxicol. Chem. 2018, 37, 2560–2565. [Google Scholar] [CrossRef]
- Desdoits-Lethimonier, C.; Lesné, L.; Gaudriault, P.; Zalko, D.; Antignac, J.P.; Deceuninck, Y.; Platel, C.; Dejucq-Rainsford, N.; Mazaud-Guittot, S.; Jégou, B. Parallel assessment of the effects of bisphenol A and several of its analogs on the adult human testis. Hum. Reprod. 2017, 32, 1465–1473. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Choi, K.; Ji, K. Effects of bisphenol analogs on thyroid endocrine system and possible interaction with 17β-estradiol using GH3 cells. Toxicol. Vitr. 2018, 53, 107–113. [Google Scholar] [CrossRef]
- Castro, B.; Sánchez, P.; Torres, J.M.; Ortega, E. Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. Environ. Res. 2015, 142, 281–287. [Google Scholar] [CrossRef]
- Mokra, K.; Woźniak, K.; Bukowska, B.; Sicińska, P.; Michałowicz, J. Low-concentration exposure to BPA, BPF and BPAF induces oxidative DNA bases lesions in human peripheral blood mononuclear cells. Chemosphere 2018, 201, 119–126. [Google Scholar] [CrossRef]
- Molina-Molina, J.M.; Amaya, E.; Grimaldi, M.; Sáenz, J.M.; Real, M.; Fernández, M.F.; Balaguer, P.; Olea, N. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol. Appl. Pharmacol. 2013, 272, 127–136. [Google Scholar] [CrossRef]
- Naderi, M.; Wong, M.Y.L.; Gholami, F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquat. Toxicol. 2014, 148, 195–203. [Google Scholar] [CrossRef]
- Stroheker, T.; Chagnon, M.C.; Pinnert, M.F.; Berges, R.; Canivenc-Lavier, M.C. Estrogenic effects of food wrap packaging xenoestrogens and flavonoids in female Wistar rats: A comparative study. Reprod. Toxicol. 2003, 17, 421–432. [Google Scholar] [CrossRef]
- Darbre, P.D. Endocrine Disruptors and Obesity. Curr. Obes. Rep. 2017, 6, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Wassenaar, N.H.; Trasando, L.; Legler, J. Systematic Review and Meta-Analysis of Early-Life Exposure to Bisphenol A and Obesity-Related Outcomes in Rodents. Environ. Health Perspect. 2017, 125, 106001. [Google Scholar] [CrossRef]
- Legeay, S.; Faure, S. Is bisphenol A an environmental obesogen? Fund. Clin. Pharmacol. 2017, 31, 594–609. [Google Scholar] [CrossRef]
- Riu, A.; Grimaldi, M.; Le Maire, A.; Bey, G.; Phillips, K.; Boulahtouf, A.; Perdu, E.; Zalko, D.; Bourguet, W.; Balaguer, P. Peroxisome proliferator-activated receptor gamma is a target for halogenated analogues of bisphenol A. Environ. Health Perspect. 2011, 119, 1227–1232. [Google Scholar] [CrossRef]
- Zheng, S.; Shi, J.; Zhang, J.; Yang, Y.; Hu, J.; Shaon, B. Identification of the disinfection byproducts of bisphenol S and the disrupting effect on peroxisome proliferator-activated receptor gamma (PPARg) induced by chlorination. Water Res. 2018, 132, 167–176. [Google Scholar] [CrossRef]
- Boucher, J.G.; Ahmed, S.; Atlas, E. Bisphenol S induces adipogenesis in primary human preadipocytes from female donors. Endocrinology 2016, 157, 1397–1407. [Google Scholar] [CrossRef]
- Verbanck, M.; Canouil, M.; Leloire, A.; Dhennin, V.; Coumoul, X.; Yengo, L.; Froguel, P.; Poulain-Godefroy, O. Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles. PLoS ONE 2017, 12, e0179583. [Google Scholar] [CrossRef]
- Ahmed, S.; Atlas, E. Bisphenol S- and bisphenol A-induced adipogenesis of murine preadipocytes occurs through direct peroxisome proliferatoractivated receptor gamma activation. Int. J. Obes. 2016, 40, 1566–1573. [Google Scholar] [CrossRef]
- Ivry Del Moral, L.; Le Corre, L.; Poirier, H.; Niot, I.; Truntzer, T.; Merlin, J.F.; Rouimi, P.; Besnard, P.; Rahmani, R.; Chagnon, M.C. Obesogen effects after perinatal exposure of 4,4’-sulfonyldiphenol (Bisphenol S) in C57BL/6 mice. Toxicology 2016, 357, 11–20. [Google Scholar] [CrossRef]
- Charisiadis, P.; Andrianou, X.D.; van der Meer, T.P.; den Dunnen, W.F.A.; Swaab, D.F.; Wolffenbuttel, B.H.R.; Makris, K.C.; van Vliet-Ostaptchouk, J.V. Possible obesogenic effects of bisphenols accumulation in the human brain. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
Reference | Food | Bisphenol | Concentration | Analytic Technique |
---|---|---|---|---|
Abou-Omar et al., 2017 [45] | 27 olive oils | BPA | non-plastic packaging Mean = 333 μg/kg plastic packaging Mean = 150 μg/kg | High Performance Liquid Chromatography with Fluorescence Detection (HPLC-FLD) |
Alabi et al., 2014 [46] | Canned vegetables (mushroom, red pepper, olive, green beans, asparagus), legumes (chickpeas, lentils), canned fruits (pineapple, peach), canned fish and other seafood (mackerel, mussels, tuna, cockles), canned meat products (tripe, meat ball), and canned grains (sweet corn) | BPA | 13–241 μg/kg | HPLC-FLD |
BPF | ND | |||
BADGE | 7.1 μg/kg | |||
BPE | ND | |||
BPB | 25–40 μg/kg | |||
BFDGE | 21–314 μg/kg | |||
Cacho et al., 2012 [5] | Canned beverages and filling liquids of canned vegetables | BPA | 0.10–0.35 μg/L | Stir bar sorptive extraction combined with thermal desorption (Gas chromatography–mass spectrometry, GC-MS) |
BPF | 0.4 μg/L | |||
BPZ | ND | |||
Cesen et al., 2016 [40] | 36 honey samples | BPA | Mean = 107 ng/g | GC-MS |
BPAF | Mean = 53.5 ng/g | |||
BPE | Mean = 12.8 ng/g | |||
BPF | Mean = 31.6 ng/g | |||
BPS | Mean = 302 ng/g | |||
BPZ | Mean = 28.4 ng/g | |||
Cirillo et al., 2015 [47] | Infant formulas | BPA | Median = 0.015 μg/g | HPLC-FLD |
Cunha et al., 2011 [48] | 30 beverages and 7 powdered infant formulas | BPA | Mean = 0.115 μg/L | Dispersive liquid–liquid microextraction and GC-MS |
BPB | Mean = 2.365 μg/L | |||
Cunha et al., 2012 [49] | 47 canned seafood samples (22 tuna, 10 sardines, 3 mackerel, 3 squid, 3 octopus, 2 mussels, 1 eel, 1 anchovy, 1 cod) | BPA | 1.0–99.9 μg/kg | QuEChERS (dispersive solid-phase cleanup) combined with dispersed liquid–liquid microextraction and GC-MS |
BPB | 21.8 μg/kg (only one sample) | |||
Cunha and Fernandes, 2013 [50] | 20 canned vegetables and 19 canned fruits | BPA | Mean = 265.6 μg/kg | QuEChERS combined with GC-MS |
BPB | Mean = 3.4 μg/kg | |||
Fasano et al., 2015 [51] | 3 packed grated cheese, 2 meat, 2 fish, and 2 vegetables broths, 2 white and 2 red wines, 4 pasta, 4 rice, 3 chicken and vegetables | BPA | 0.72–218 ng/g | QuEChERS combined with GC-MS |
Feshin et al., 2012 [52] | Fruit and vegetable puree, canned fruit and vegetables; milk, meat puree, and canned meat | BPA | 2.15–42.91 ng/g | GC-MS |
Gallart-Ayala et al., 2011a [39] | 11 canned soft drinks (soda, cola, tea, energy drink, and beer) | BPA | 44–607 ng/L | Liquid chromatography-tandem mass spectrometry (LC-MS/MS) |
BPF | 218–141 ng/L | |||
Gallart-Ayala et al., 2011b [29] | 6 canned foods (vegetables and fruits) and 7 canned beverages (soda, cola, tea, and tonic drink) | BADGE | 2.3–675 μg/kg | LC-MS/MS |
BFDGE | ND | |||
Gallo et al., 2017 [18] | 40 canned energy drink samples | BPA | 0.50–3.3 ng/ml | Ultra-high performance liquid chromatography linked with fluorescence detection (UPLC-FLD) |
BADGE | 0.50–19.4 ng/ml | |||
BFDGE | 0.50–0.60 ng/ml | |||
García-Córcoles et al., 2018 [10] | 15 baby food samples | BPS | 11.7–49.2 ng/g | GC-MS/MS |
BPB | 1.1–8.5 ng/g | |||
BPP | 1–7.7 ng/g | |||
Grumetto et al., 2013 [53] | 68 milk samples were packed in Tetra Pack or Tetra Brix boxes or in plastic bottles (PET, PEHD) | BPA | 5.21–14.0 ng/ml | LC-FLD |
BPF | 0.1–26.2 ng/ml | |||
BPB | 16.0–67.0 ng/ml | |||
Kuo and Ding, 2004 [54] | 4 soy-based infant formula powders | BPA | 45–113 ng/g | GC-MS |
Lapviboonsuk and Leepipatpiboon, 2014 [55] | 3 canned tuna | BADGE | ND | QuEChERS and HPLC |
Liao and Kannan, 2013 [37] | 31 beverages, 29 dairy products, 5 fats and oils, 23 fish and seafood, 48 cereals and cereal products, 51 meat and meat products, 20 fruits and canned fruits, 45 vegetables and canned vegetables, and 15 “others” | BPA | 0.285–9.97 ng/g | HPLC-MS/MS |
BPAF | 0.005–0.021 ng/g | |||
BPAP | 0.005–0.185 ng/g | |||
BPB | 0.013–0.017 ng/g | |||
BPF | 0.025–4.63 ng/g | |||
BPP | 0.013–0.562 ng/g | |||
BPS | 0.005–0.609 ng/g | |||
BPZ | 0.025–0.076 ng/g | |||
Pardo et al., 2006 [56] | 10 canned pig meat | BADGE | 83–87 ng/g | Reversed-phase HPLC coupled to atmospheric pressure chemical ionization tandem mass spectrometry |
BFDGE | 96–101 ng/g | |||
Rastkari et al., 2010 [57] | 12 canned tomato paste and 12 canned corn | BPA | 0.90–47.38 μg/kg | GC-MS |
BPF | 0.89–47.11 μg/kg | |||
Rauter et al., 1999 [58] | 142 canned oily foods | BADGE | 0.02–1.5 mg/kg | HPLC combined with GC-MS |
Sadeghi et al., 2015 [41] | Canned fruits (pineapple, peach), canned vegetables (tomato), powdered milk, soft drinks, honey, and fish | BPA | 0.9–8.3 ng/g | HPLC-FLD |
Simoneau et al., 2012 [59] | 449 plastic baby bottles | BPA | 0.5–1000 μg/kg | HPLC and UPLC-MS combined with LC-MS |
Viñas et al., 2010 [60] | Canned foods (peas, peas with carrots, sweet corn, artichoke, mushroom, bean shoot, and mixed vegetables) | BPA | 11.7–321 ng/mL supernatant | GC-MS in the selected ion monitoring |
12.9–77.7 ng/g food | ||||
BPS | 8.90–175 ng/g supernatant | |||
34.1–36.1 ng/g foods | ||||
Xionga et al., 2018 [43] | Milk samples from supermarkets and dairy farms | BPA | 14.31 µg/kg | QuEChERS and HPLC-FLD |
BADGE 2H2O | 15.80 µg/kg | |||
BFDGE 2H2O | 16.23–17.82 µg/kg | |||
Yang et al., 2014 [61] | 2 coconut juice samples | BPS | 0.019–0.036 ng/g | LC-MS/MS |
BPA | 0.23–12 ng/g | |||
BPF | 0.39 ng/g | |||
BPAF | 0.013–0.052 ng/g | |||
Zhang et al., 2010 [62] | Canned fish and meat | BADGE | 58.76–140.72 ng/g | HPLC-FLD |
BFDGE | 40.57–77.64 ng/g | |||
Zoller et al., 2016 [42] | 61 mustard samples | BPF | Mean 1.85 mg/kg | LC-MS/MS, liquid chromatography/high resolution mass spectrometry (LC-HRMS) and gas chromatography/high resolution mass spectrometry GC-HRMS) |
Zou et al., 2012 [45] | 3 canned porridge, 3 canned mushroom, 3 canned Cirrhinus molitorella, 3 canned tuna, 3 canned anchovy, 3 canned pork, 3 canned pork sauce, 3 canned peanut butter | BADGE | 1.78–88.08 ng/g | UPLC-MS/MS |
BFDGE | 2.13–32.96 ng/g |
Reference | Species Strain Mode | Dose Exposure | Exposure Route | Outcomes | Conclusion |
---|---|---|---|---|---|
Desdoits-Lethimonier et al., 2017 [88] | Human | 1−⁹ to 10−⁵ M for 24 or 48 h (BPA, BPF, BFS, BFE, BPB, and BADGE) | In vitro adult testes from prostate cancer patients | Significant dose-dependent inhibition between testosterone levels in the culture medium and concentrations of BPA and analogues. BPA and analogues induced inhibition of testosterone production with variations based on duration of exposure and BPA/analogue concentrations. Germ cells were not affected by BPA and analogues. | Direct exposure to BPA or its analogues can result in endocrine alteration in adult human testes. |
Eladak et al., 2015 [90] | Mouse, human | 10, 100, 1000, and 10,000 μmol/L (BPA, BPF, and BPS) for 48 h | In vitro human fetal testes, in vitro mouse fetal testes | BPS or BPF reduced basal testosterone secretion. BPS or BPF decreased Insl3 expression. | BPS and BPF result in adverse effects on testes of mice and humans. |
Kim et al., 2017 [76] | Human | 10 −⁹ to 10 −⁵ mol/L (BPA, BPF, and BFS) for 24 h | In vitro human breast cancer cells | BPA, BPS, and BPF increased proliferation of MCF-7 CV cell line by regulating the protein expression of cell cycle-related genes and epithelial mesenchymal transition (EMT) markers via the ER-dependent pathway. | BPS and BPF are associated with the increased risk of breast cancer progression as much as BPA in the proliferation and migration of MCF-7 CV cells. |
Mokra et al., 2018 [91] | Human | 0.01, 0.1, and 1 μg/mL for 4 h (BPA, BPS, BPF, and BPAF) 0.001, 0.01, and 0.1 μg/mL for 48 h (BPA, BPS, BPF, and BPAF) | In vitro peripheral blood mononuclear cells (PBMCs) | After 48 h, damage was present and change in PBMCs (peripheral blood mononuclear cell) viability exposed to BPA, BPS, BPF, and BPAF for 48 h (from 0.001 to 0.1 μg/mL for which a decrease in cell viability did not exceed 20%). | BPA, BPS, BPF, but mostly BPAF, caused oxidative damage to DNA in pyrimidine bases and more strongly to purine bases in human PBMCs. Confirmation of BPA and BPA analogues being strongly genotoxic. |
Molina-Molina et al., 2013 [92] | Human | 0.01 to 10 μM (BPA, BPS, and BPF) for 4 h | In vitro cells from leukocyte-buffy coat | BPS, BPF, and BPA activated estrogen receptors. BPS was more active in the estrogen receptor beta. BPF and BPA were full androgen receptor agonist. | BPA and its analogues affect non-genomic signaling in estrogen-responsive cells, with potential consequences for cell function. |
Naderi et al., 2014 [93] | Zebrafish | 0, 0.1, 1, 10, and 100 μg/L for 75 days (BPS) | In vivo embryos | Gonadosomatic index was reduced (≥10 μg/L) and hepatosomatic index increased. Plasma 17β-estradiol levels (≥1 μg/L) were increased and testosterone showed a reduction in males (10 and 100 μg/L). An induction in plasma vitolegenin level was observed (≥10 μg/L). Egg production and sperm count were decreased (10 and 100 μg/L). Postponed and decreased rates of hatching were observed. | Exposure to low doses of BPS has adverse effects on different parts of the endocrine system in zebrafish. |
Roelofs et al., 2015 [79] | Mouse | 10 to 300 μM (BPA) for 48 h 0.01 to 100 μM (BPF) for 48 h 10 μM (BPS) for 48 h 10 to 100 μM (TBBPA) for 48 h | In vitro Leydig cell line M−10 | BPA and BPF presented glucocorticoid receptor (GR) and androgen receptor (AR) antagonism with IC₅₀ values of 67 μM, 60 μM, and 22 nM for GR, and 39 μM, 20 μM, and 982 nM for AR, respectively, whereas BPS did not affect receptor activity. Testicular steroidogenesis was altered by all BPs tested. BPF and BPS increased the levels of progestogens that are formed in the beginning of the steroidogenic pathway. | BPF and BPS induce Leydig cell testosterone secretion and GR antagonism in the nanomolar range. |
Rosenmai et al., 2014 [78] | Human | 0.3 to 100 μM (BPA, BPB, BPE, BPF, BPS, and BPP) for 24 h | In vitro adrenal cortico-carcinoma cells | BPS presented less estrogenic and antiandrogenic activity than BPA. BPS showed the largest efficacy on17α-hydroxyprogesterone. | BPA analogues interfere with the endocrine system. |
Stroheker et al., 2003 [94] | Rat | 0, 25, 50, 100, and 200 mg/kg bw/day (BPA and BPF) for 21 days | In vivo system | BPA did not induce an increase in relative wet or dry uterine weight. BPF induced a significant dose-related increase in relative wet uterine weight at 100 mg/kg bw/day and above and a significant increase of relative dry uterine weight at 200mg/kg bw/day. | Exposure to BPF has weak estrogenic effects in rats. In immature rats, the effects are more sensitive, inducing uterine growth. |
Reference | Species Strain Model | Dose Exposure Period | Exposure Route | Outcomes | Conclusion |
---|---|---|---|---|---|
Ahmed and Atlas, 2016 [102] | Mouse | 0.01–50 μM (BPS) and 0.01–50 μM (BPA) for 2 days | In vitro 3T3-L1 cells | BPS promotes the expression of adipogenic markers and lipid storage. Treatment of 3T3-L1 cells with BPS can increase lipoprotein lipase, adipocyte protein 2, PPARγ (Peroxisome proliferator-activated receptor), perilipin, adipsin, and enhancer-binding protein alpha mRNA expression levels. BPS and BPA can weakly activate PPARγ using a PPARγ. BPS but not BPA was able to competitively inhibit rosiglitazone activated PPARγ. | BPS is a more potent adipogen than BPA. BPA and BPS can upgrade 3T3-L1 adipocyte differentiation in a dose-dependent manner and require PPARγ to adipogenesis. |
Boucher et al., 2016 [100] | Human | 0.1 nM to 25 μM (BPS) for 14 days | In vitro primary preadipocytes | 25 μM BPS induced lipid accumulation, increased the mRNA and protein levels of several adipogenic markers, including lipoprotein lipase and adipocyte protein2 (aP2). BPS did not affect lipoprotein lipase protein levels. | BPS promotes lipid storage and differentiation of primary human preadipocyte. |
Ivry Del Moral et al., 2016 [103] | Mouse | 0.2, 1.5, 50 μg/kg bw/day (BPS) for 23 weeks | In vivo system | BPs induced overweightedness in male mice offspring fed with a high-fat diet at the two highest doses of BPs. Obesity was related to hyperinsulinemia, hyperleptinemia, and fat mass. Plasma triglycerides were significantly increased with BPs. Finally, BPS induced alteration in mRNA expression of marker genes involved in adipose tissue homeostasis. | BPS potentiates obesity in high-fat diets by inducing lipid storage linked to faster lipid plasma clearance. |
Liu et al., 2017 [33] | Human | Median urinary concentrations were: −0.7 to 1.47 ng/L BPA −0.1 to 1.3 ng/L BPF −0.2 to 1.0 ng/L BPS | Human urine | Associations between BPA levels and obesity were stronger in men (OR = 2.10; 95% CI: 1.20–3.68) than in women and for white (OR = 2.41; 95% CI: 1.32–4.43) than non-white participants. The associations of BPS and BPF with general obesity did not differ by sex or ethnicity. | There was association of BPA exposure with general obesity and abdominal obesity. |
Riu et al., 2011 [98] | Human, zebrafish, Xenopus | 10−9 to 10−4 M (BPA, TetrabromoBPA and tetrachloroBPA) | In vitro estrogen receptors (ERs) and PPARs | TetrabromoBPA and tetrachloroBPA are human, zebrafish, and Xenopus PPARγ ligands and determine the mechanism by which these chemicals bind to an activated PPARγ. Activation of ERα, ERβ, and PPARγ depends on the degree of halogenation in BPA analogues. Bulkier brominated BPA analogues have a greater capability to activate PPARγ and a weaker estrogenic potential. | Polyhalogenated BPs could function as obesogens acting as agonists to disrupt physiological functions regulated by human or animal PPARγ. |
Verbanck et al., 2017 [101] | Human | 10 nM and 10 μM (BPA, BPS, and BPF) for 10 days | In vitro primary preadipocytes from subcutaneous fats | Chronic exposure of preadipocytes to BPA, or its substitutes BPS and BPF, results in deleterious effects on their transcriptome during differentiation of human primary adipocytes, even at a low dose (10 nM). | Caution required over the use of BPA, BPS, and BPF, since unsuspected cell damage could be initiated at low doses. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andújar, N.; Gálvez-Ontiveros, Y.; Zafra-Gómez, A.; Rodrigo, L.; Álvarez-Cubero, M.J.; Aguilera, M.; Monteagudo, C.; Rivas, A. Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review. Nutrients 2019, 11, 2136. https://doi.org/10.3390/nu11092136
Andújar N, Gálvez-Ontiveros Y, Zafra-Gómez A, Rodrigo L, Álvarez-Cubero MJ, Aguilera M, Monteagudo C, Rivas A. Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review. Nutrients. 2019; 11(9):2136. https://doi.org/10.3390/nu11092136
Chicago/Turabian StyleAndújar, Natalia, Yolanda Gálvez-Ontiveros, Alberto Zafra-Gómez, Lourdes Rodrigo, María Jesús Álvarez-Cubero, Margarita Aguilera, Celia Monteagudo, and Ana Rivas. 2019. "Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review" Nutrients 11, no. 9: 2136. https://doi.org/10.3390/nu11092136
APA StyleAndújar, N., Gálvez-Ontiveros, Y., Zafra-Gómez, A., Rodrigo, L., Álvarez-Cubero, M. J., Aguilera, M., Monteagudo, C., & Rivas, A. (2019). Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review. Nutrients, 11(9), 2136. https://doi.org/10.3390/nu11092136