Effects of Collagen Hydrolysates on Human Brain Structure and Cognitive Function: A Pilot Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collagen Hydrolysates
2.2. Study Design
2.3. Participants
2.4. Evaluation Methods
2.4.1. MRI Acquisition
2.4.2. Word List Memory Test
2.4.3. Standard Verbal Paired Associate Learning Test
2.4.4. Measurement of Quality of Life
2.5. Statistical Analyses
3. Results
3.1. Overall Outcomes
3.2. Brain Structural Changes
3.3. WLM and S-PA Test Scores
3.4. Quality of Life Parameters
3.5. Correlations Between Brain Structure Scores and Cognitive and Quality of Life Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministry of Health, Labor and Welfare. White paper of Health, Labor and Welfare Heisei; Ministry of Health, Labour and Welfare: Kasumigaseki Chiyoda-ku, Tokyo, 2016; Volume 20, pp. 1–18.
- Prince, M.J. World Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015; Volume 1, pp. 6–8. [Google Scholar]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [Green Version]
- Erickson, K.; Leckie, R.; Weinstein, A. Physical activity, fitness, and gray matter volume. Neurobiol. Aging 2014, 35, S20–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandel, E.; Schwartz, J.; Jessell, T.; Siegelbaum, S.; Hudspeth, A.J. Principles of Neural Science; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K. Voxel-based morphometry—The methods. Neuroimage 2000, 11, 805–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zatorre, R.J.; Fields, R.D.; Johansen-Berg, H. Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nat. Neurosci. 2012, 15, 528–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen-Berg, H. Behavioural relevance of variation in white matter microstructure. Curr. Opin Neurol. 2010, 23, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006, 5, 64–74. [Google Scholar] [CrossRef]
- Iba, Y.; Yokoi, K.; Eitoku, I.; Goto, M.; Koizumi, S.; Sugihara, F.; Oyama, H.; Yoshimoto, T. Oral administration of collagen hydrolysates improves glucose tolerance in normal mice through GLP-1-dependent and GLP-1-independent mechanisms. J. Med. Food 2016, 19, 836–843. [Google Scholar] [CrossRef]
- Devasia, S.; Kumar, S.; Stephena, P.S.; Inoue, N.; Sugihara, F.; Suzuki, K. Double blind, randomized clinical study to evaluate efficacy of collagen peptide as add on nutritional supplement in Type 2 diabetes. J. Clin. Nutr. Food Sci. 2018, 1, 6–11. [Google Scholar]
- Ichikawa, S.; Morifuji, M.; Ohara, H.; Matsumoto, H.; Takeuchi, Y.; Sato, K. Hydroxyproline-containing dipeptides and tripeptides quantitative high concentration in human blood after oral administration of gelatin hydrolysate. Int. J. Food Sci. Nutr. 2010, 61, 1–9. [Google Scholar] [CrossRef]
- Sugihara, F.; Inoue, N.; Kuwamori, M.; Taniguchi, M. Quantification of hydroxyprolyl-glycine (Hyp-Gly) in human blood after ingestion of collagen hydrolysate. J. Biosci. Bioeng. 2012, 113, 202–203. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Nanbu, P.N.; Kurokawa, M. Distribution of prolylhydroxyproline and its metabolites after oral administration in rats. Biol. Pharm. Bull. 2012, 35, 422–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meilman, E.; Urivetzky, M.M.; Rapoport, C.M. Urinary hydroxyproline peptides. J. Clin. Investig. 1963, 42, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sugita, K.; Nihei, K.I.; Yoneyama, K.; Tanaka, H. Absorption of hydroxyproline-containing peptides in vascularly perfused rat small intestine in situ. Biosci. Biotechnol. Biochem. 2009, 73, 1741–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baerts, L.; Glorie, L.; Maho, W.; Eelen, A.; Verhulst, A.; D’Haese, P.; Covaci, A.; De Meester, I. Potential impact of sitagliptin on collagen-derived dipeptides in diabetic osteoporosis. Pharmacol. Res. 2015, 100, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Kawakami, K.; Uraji, M. Inhibitory effect of collagen-derived tripeptides on dipeptidylpeptidase-IV activity. J. Enzyme Inhib. Med. Chem. 2014, 29, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Sugihara, F.; Inoue, N. Clinical effects of collagen hydrolysates ingestion on UV-induced pigmented spots of human skin: A preliminary study. Health Sci. 2012, 28, 153–156. [Google Scholar]
- Inoue, N.; Sugihara, F.; Wang, X. Ingestion of bioactive collagen hydrolysates enhance facial skin moisture and elasticity and reduce facial ageing signs in a randomised double-blind placebo-controlled clinical study. J. Sci. Food Agric. 2016, 96, 4077–4081. [Google Scholar] [CrossRef]
- Kumar, S.; Sugihara, F.; Suzuki, K.; Inoue, N.; Venkateswarathirukumara, S. A double-blind, placebo-controlled, randomised, clinical study on the effectiveness of collagen peptide on osteoarthritis. J. Sci. Food Agric. 2015, 95, 702–707, 201415. [Google Scholar] [CrossRef]
- Huang, K.F.; Hsu, W.C.; Hsiao, J.K.; Chen, G.S.; Wang, J.Y. Collagen-Glycosaminoglycan Matrix Implantation Promotes Angiogenesis following Surgical Brain Trauma. Biomed. Res. Int. 2014, 2014, 672409. [Google Scholar] [CrossRef]
- Chen, J.H.; Hsu, W.C.; Huang, K.F.; Hung, C.H. Neuroprotective Effects of Collagen-Glycosaminoglycan Matrix Implantation following Surgical Brain Injury. Mediat. Inflamm. 2019, 2019, 6848943. [Google Scholar] [CrossRef]
- Pei, X.; Yang, R.; Zhang, Z.; Gao, L.; Wang, J.; Xu, Y.; Zhao, M.; Han, X.; Liu, Z.; Li, Y. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6J mice. Food Chem. 2010, 118, 333–340. [Google Scholar] [CrossRef]
- Nemoto, K.; Oka, H.; Fukuda, H.; Yamakawa, Y. MRI-based Brain Healthcare Quotients: A bridge between neural and behavioral analyses for keeping the brain healthy. PLoS ONE 2017, 12, e0187137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchbinder, B.R. Functional magnetic resonance imaging. Handb. Clin. Neurol. 2016, 135, 61–92. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.; Sugimura, M.; Nakano, S.; Yamada, T. The Japanese MCI Screen for Early Detection of Alzheimer’s Disease and Related Disorders. Am. J. Alzheimer’s Dis. Other Dement. 2008, 23, 162–166. [Google Scholar] [CrossRef]
- Fukuhara, S.; Bito, S.; Green, J.; Hsiao, A.; Kurokawa, K. Translation, adaptation, and validation of the SF-36 Health Survey for use in Japan. J. Clin. Epidemiol. 1998, 51, 1037–1044. [Google Scholar] [CrossRef]
- Syouji, S.; Mizushige, T.; Kabuyama, Y. Effects of collagen hydrolysate on proliferation of neural stem cells and expression of neurotrophic factor in hippocampus. Amino Acid Sci. 2017, 11, 100. [Google Scholar]
- Wang, X.; Yu, H.; Xing, R.; Liu, S.; Chen, X.; Li, P. Effect and mechanism of oyster hydrolytic peptides on spatial learning and memory in mice. RSC Adv. 2018, 8, 6125–6135. [Google Scholar] [CrossRef] [Green Version]
- McCrimmon, R.J.; Ryan, C.M.; Frier, B.M. Diabetes and cognitive dysfunction. Lancet 2012, 379, 2291–2299. [Google Scholar] [CrossRef]
- Talbot, K.; Wang, H.-Y.; Kazi, H.; Han, L.-Y.; Bakshi, K.P.; Stucky, A.; Fuio, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Investig. 2012, 122, 1316–1338. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Li, C. Linking type 2 diabetes and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2010, 107, 6557–6558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, S.; Sato, N.; Uchio-Yamada, K.; Sawada, K.; Kunieda, T.; Takeuchi, D.; Kurinami, H.; Shinohara, M.; Rakugi, H.; Morishita, R. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc. Natl. Acad. Sci. USA 2010, 107, 7036–7041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talbot, K.; Wang, H.Y. The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer’s disease. Alzheimers Dement. 2014, 10, S12–S25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N | Age, Year | |||
---|---|---|---|---|
Baseline | 30 | 56.10 | ± | 3.57 |
Post | 29 | 56.10 | ± | 3.63 |
S-PA | 24 | 56.08 | ± | 3.82 |
N | Baseline | Post | Δ | p (versus Baseline) * | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GM-BHQ | 29 | 93.42 | ± | 5.90 | 93.00 | ± | 5.92 | −0.42 | ± | 1.53 | 0.1415 |
FA-BHQ | 29 | 94.82 | ± | 4.81 | 95.73 | ± | 4.46 | 0.91 | ± | 1.51 | 0.0095 |
N | Baseline | Post | Δ | p (versus Baseline) * | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
WLM Score | 29 | 67.83 | ± | 6.47 | 71.06 | ± | 6.39 | 3.23 | ± | 5.79 | 0.0046 |
S-PA Score | 24 | 13.71 | ± | 6.72 | 19.29 | ± | 6.63 | 5.58 | ± | 6.18 | 0.0007 |
N | Baseline | Post | Δ | p (versus Baseline) * | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PCS | 29 | 48.98 | ± | 7.84 | 51.24 | ± | 7.55 | 2.25 | ± | 7.44 | 0.1145 |
MCS | 29 | 50.17 | ± | 11.43 | 52.49 | ± | 9.80 | 2.31 | ± | 6.30 | 0.0799 |
RCS | 29 | 50.91 | ± | 12.04 | 51.35 | ± | 7.35 | 0.44 | ± | 10.76 | 0.8457 |
N | ΔGM-BHQ | ΔFA-BHQ | |||
---|---|---|---|---|---|
r | r | ||||
ΔWLM | 29 | 0.4448 | # | −0.0502 | |
ΔS-PA | 24 | 0.2438 | 0.4645 | # | |
ΔPCS | 29 | −0.1340 | 0.1754 | ||
ΔMCS | 29 | 0.1286 | −0.1557 | ||
ΔRCS | 29 | 0.2660 | −0.0256 | ||
ΔFA-BHQ | 29 | 0.0567 | − |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koizumi, S.; Inoue, N.; Sugihara, F.; Igase, M. Effects of Collagen Hydrolysates on Human Brain Structure and Cognitive Function: A Pilot Clinical Study. Nutrients 2020, 12, 50. https://doi.org/10.3390/nu12010050
Koizumi S, Inoue N, Sugihara F, Igase M. Effects of Collagen Hydrolysates on Human Brain Structure and Cognitive Function: A Pilot Clinical Study. Nutrients. 2020; 12(1):50. https://doi.org/10.3390/nu12010050
Chicago/Turabian StyleKoizumi, Seiko, Naoki Inoue, Fumihito Sugihara, and Michiya Igase. 2020. "Effects of Collagen Hydrolysates on Human Brain Structure and Cognitive Function: A Pilot Clinical Study" Nutrients 12, no. 1: 50. https://doi.org/10.3390/nu12010050
APA StyleKoizumi, S., Inoue, N., Sugihara, F., & Igase, M. (2020). Effects of Collagen Hydrolysates on Human Brain Structure and Cognitive Function: A Pilot Clinical Study. Nutrients, 12(1), 50. https://doi.org/10.3390/nu12010050