Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Raw Quinoa Seeds
2.2. Germination Process of Quinoa Seeds
2.3. Quinoa Seeds Extraction
2.4. Determination of TPC, TC, TS, TA, TF, and TFL during Germination
2.5. Free Radical Scavenging Ability on DPPH
2.6. Identification of Phenolic Compounds in Quinoa Sprouts during Germination by HPLC-DAD
2.7. Biological Assessment of RQS and YQS Extracts In Vivo
2.8. Determination of Fasting Glucose Blood Level, Liver Functions, and Lipid Profile
2.9. Oxidative Stress Markers
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Romá-Mateo, C.; Aguado, C.; García-Giménez, J.L.; Ibáñez-Cabellos, J.S.; Seco-Cervera, M.; Pallardó, F.V.; Knecht, E.; Sanz, P. Increased oxidative stress and impaired antioxidant response in Lafora disease. Mol. Neurobiol. 2015, 51, 932–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S. Reactive Oxygen Species and Cellular Defense System. In Free Radicals in Human Health and Disease, 1st ed.; Rani, V., Yadav, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Bonomini, F.; Tengattini, S.; Fabiano, A.; Bianchi, R.; Rezzani, R. Atherosclerosis and oxidative stress. Histol. Histopathol. 2008, 23, 381–390. [Google Scholar] [PubMed]
- Jiménez-Fernández, S.; Gurpegui, M.; Díaz-Atienza, F.; Pérez-Costillas, L.; Gerstenberg, M.; Correll, C.U. Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: Results from a meta-analysis. J. Clin. Psychiatry 2015, 76, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Lakhawat, S. Nutrition facts and functional potential of quinoa (Chenopodium quinoa), an ancient Andean grain: A review. J. Pharmacogn. Phytochem. 2017, 6, 1488–1489. [Google Scholar]
- Carciochi, R.A.; Manrique, G.D.; Dimitrov, K. Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.). Int. Food Res. J. 2014, 21, 767–773. [Google Scholar]
- Navruz-Varli, S.; Sanlier, N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. Cereal Sci. 2016, 69, 371–376. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Galván-D’Alessandro, L.; Vandendriessche, P.; Chollet, S. Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds. Plant Foods Hum. Nutr. 2016, 71, 361–367. [Google Scholar] [CrossRef]
- Chen, P.; Chen, Y.; Wang, Y.; Cai, S.; Deng, L.; Liu, J.; Zhang, H. Comparative evaluation of hepatoprotective activities of geniposide, crocins and crocetin by CCl4-induced liver injury in mice. Biomol. Ther. 2016, 24, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Wang, T.; Sun, Y.; Zhang, M.; Tian, J.; Chen, H.; Shen, Z.; Khan Abro, H.; Su, N.; Cui, J. Protective Effect of Selenium-Enriched Red Radish Sprouts on Carbon Tetrachloride-Induced Liver Injury in Mice. J. Food Sci. 2019, 84, 3027–3036. [Google Scholar] [CrossRef]
- Paśko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.; Fołta, M.; Zachwieja, Z. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 2009, 115, 994–998. [Google Scholar] [CrossRef]
- Paśko, P.; Zagrodzki, P.; Bartoń, H.; Chłopicka, J.; Gorinstein, S. Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods Hum. Nutr. 2010, 65, 333–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barakat, H.; Spielvogel, A.; Hassan, M.; El-Desouky, A.; El-Mansy, H.; Rath, F.; Meyer, V.; Stahl, U. The antifungal protein AFP from Aspergillus giganteus prevents secondary growth of different Fusarium species on barley. Appl. Microbiol. Biotechnol. 2010, 87, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Bettaieb, I.; Bourgou, S.; Wannes, W.A.; Hamrouni, I.; Limam, F.; Marzouk, B. Essential oils, phenolics, and antioxidant activities of different parts of Cumin (Cuminum cyminum L.). J. Agric. Food. Chem. 2010, 58, 10410–10418. [Google Scholar] [CrossRef] [PubMed]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, G.F.; Sun, J.; Yuan, Q.; Wang, Q.M. Effects of different cooking methods on health-promoting compounds of broccoli. J. Zhejiang Univ. Sci. B 2009, 10, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koziol, M. Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). J. Sci. Food Agric. 1991, 54, 211–219. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Hassanien, M.F.R.; Mahmoud, A.; Sarhan, M.A.; Smetanska, I. Phenolics Extracted from Potato, Sugar Beet, and Sesame Processing By-Products. Int. J. Food Prop. 2012, 16, 1148–1168. [Google Scholar] [CrossRef]
- Yawadio Nsimba, R.; Kikuzaki, H.; Konishi, Y. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 2008, 106, 760–766. [Google Scholar] [CrossRef]
- Kim, K.-H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Zafar, M.; Naqvi, S.N.-U.-H. Effects of STZ-Induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: A comparative study. Int. J. Morphol. 2010, 28, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar] [PubMed]
- Steel, R.G. Pinciples and Procedures of Statistics a Biometrical Approach, 3rd ed.; McGraw-Hill: Boston, MA, USA, 1997. [Google Scholar]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Sohaimy, S.; Mohamed, S.; Shehata, M.; Mehany, T.; Zaitoun, M. Compositional analysis and functional characteristics of quinoa flour. Ann. Res. Rev. Biol. 2018, 22, 1–11. [Google Scholar] [CrossRef]
- Yael, B.; Liel, G.; Hana, B.; Ran, H.; Shmuel, G. Total phenolic content and antioxidant activity of red and yellow quinoa (Chenopodium quinoa Willd.) seeds as affected by baking and cooking conditions. Food Nut. Sci. 2012, 3, 1150–1155. [Google Scholar]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Chavan, J.; Kadam, S.; Beuchat, L.R. Nutritional improvement of cereals by sprouting. Crit. Rev. Food Sci. Nutr. 1989, 28, 401–437. [Google Scholar] [CrossRef] [PubMed]
- Nsimba, R.Y.; Kikuzaki, H.; Konishi, Y. Ecdysteroids act as inhibitors of calf skin collagenase and oxidative stress. J. Biochem. Mol. Toxicol. 2008, 22, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.-C.; Anderson, A.; Coker, J.; Ondrus, M. Characterization of lipid oxidation products in quinoa (Chenopodium quinoa). Food Chem. 2007, 101, 185–192. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Hernandez, M.; Zhang, H.; Marcone, M.F.; Liu, R.; Tsao, R. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015, 174, 502–508. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Liu, R.; Hernandez, M.; Draves, J.; Marcone, M.F.; Tsao, R. Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J. Agric. Food Chem. 2016, 64, 1103–1110. [Google Scholar] [CrossRef]
- Mastebroek, H.D.; Limburg, H.; Gilles, T.; Marvin, H.J.P. Occurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd). Agric. Ecosyst. Environ. 2000, 80, 152–156. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.F. Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd) by a liquid chromatography–diode array detection–electrospray ionization–time-of-flight mass spectrometry methodology. J. Agric. Food Chem. 2011, 59, 10815–10825. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, X.; Shi, Z.; Ren, G. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. J. Food Sci. 2014, 79, H1018–H1023. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. Agric. Ecosyst. Environ. 2010, 90, 2541–2547. [Google Scholar] [CrossRef]
- Brady, K.; Ho, C.-T.; Rosen, R.T.; Sang, S.; Karwe, M.V. Effects of processing on the nutraceutical profile of quinoa. Food Chem. 2007, 100, 1209–1216. [Google Scholar] [CrossRef]
- Paśko, P.; Sajewicz, M.; Gorinstein, S.; Zachwieja, Z. Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC. Acta Chromatogr. 2008, 20, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kaur, M.; Katnoria, J.K.; Nagpal, A.K. Polyphenols in food: Cancer prevention and apoptosis induction. Curr. Med. Chem. 2018, 25, 4740–4757. [Google Scholar] [CrossRef] [PubMed]
- Hirose, Y.; Fujita, T.; Ishii, T.; Ueno, N. Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem. 2010, 119, 1300–1306. [Google Scholar] [CrossRef]
- Abderrahim, F.; Huanatico, E.; Segura, R.; Arribas, S.; Gonzalez, M.C.; Condezo-Hoyos, L. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chem. 2015, 183, 83–90. [Google Scholar] [CrossRef]
- Pellegrini, M.; Lucas-Gonzales, R.; Ricci, A.; Fontecha, J.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Ind. Crops Prod. 2018, 111, 38–46. [Google Scholar] [CrossRef]
- Hübner, F.; Arendt, E.K. Germination of cereal grains as a way to improve the nutritional value: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Khang, D.T.; Dung, T.N.; Elzaawely, A.A.; Xuan, T.D. Phenolic profiles and antioxidant activity of germinated legumes. Foods 2016, 5, 27. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Hellström, J.K.; Pihlava, J.-M.; Mattila, P.H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Miranda, M.; Delatorre-Herrera, J.; Vega-Gálvez, A.; Jorquera, E.; Quispe-Fuentes, I.; Martínez, E.A. Antimicrobial potential and phytochemical content of six diverse sources of quinoa seeds (Chenopodium quinoa Willd.). Agric. Sci. 2014, 5, 1015–1024. [Google Scholar]
- Singh, A.K.; Rehal, J.; Kaur, A.; Jyot, G. Enhancement of attributes of cereals by germination and fermentation: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1575–1589. [Google Scholar] [CrossRef]
- Watanabe, M.; Ayugase, J. Effects of buckwheat sprouts on plasma and hepatic parameters in type 2 diabetic db/db mice. J. Food Sci. 2010, 75, H294–H299. [Google Scholar] [CrossRef] [PubMed]
- Mbarki, S.; Alimi, H.; Bouzenna, H.; Elfeki, A.; Hfaiedh, N.J.B. Phytochemical study and protective effect of Trigonella foenum graecum (Fenugreek seeds) against carbon tetrachloride-induced toxicity in liver and kidney of male rat. Biomed. Pharmacother. 2017, 88, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Halaby, M.S.; Abdel-Rahman, M.K.; Hassan, R.A. Protective influence of quinoa on hypercholesterolemia in male rats. Curr. Sci. Int. 2017, 6, 259–270. [Google Scholar]
- Saxena, S.; Shahani, L.; Bhatnagar, P. Hepatoprotective effect of Chenopodium quinoa seed against CCL4-induced liver toxicity in Swiss albino male mice. Asian J. Pharm. Clin. Res. 2017, 10, 273–276. [Google Scholar] [CrossRef]
- Lin, T.A.; Ke, B.J.; Cheng, C.-S.; Wang, J.-J.; Wei, B.-L.; Lee, C.-L. Red quinoa bran extracts protects against carbon tetrachloride-induced liver injury and fibrosis in mice via activation of antioxidative enzyme systems and blocking TGF-β1 pathway. Nutrients 2019, 11, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farinazzi-Machado, F.M.V.; Barbalho, S.M.; Oshiiwa, M.; Goulart, R.; Pessan Junior, O. Use of cereal bars with quinoa (Chenopodium quinoa W.) to reduce risk factors related to cardiovascular diseases. Food Sci. Technol. 2012, 32, 239–244. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, F.G.; Ovídio, P.P.; Padovan, G.J.; Jordao Junior, A.A.; Marchini, J.S.; Navarro, A.M. Metabolic parameters of postmenopausal women after quinoa or corn flakes intake–a prospective and double-blind study. Int. J. Food Sci. Nutr. 2014, 65, 380–385. [Google Scholar] [CrossRef]
- Dai, N.; Zou, Y.; Zhu, L.; Wang, H.-F.; Dai, M.-G. Antioxidant properties of proanthocyanidins attenuate carbon tetrachloride (CCl4)–induced steatosis and liver injury in rats via CYP2E1 regulation. J. Med. Food 2014, 17, 663–669. [Google Scholar] [CrossRef] [Green Version]
Phytochemicals | Germination Period (Days) | |||||||
---|---|---|---|---|---|---|---|---|
RQ | YQ | |||||||
0-d | 3-d | 6-d | 9-d | 0-d | 3-d | 6-d | 9-d | |
Total phenolic content (mg GAE 100 g−1) | 105.16 ± 9.66 d | 257.10 ± 28.81 b | 293.35 ± 14.80 a | 251.23 ± 13.77 c | 112.42 ± 5.65 d | 190.43 ± 3.00 c | 259.02 ± 5.84 a | 221.74 ± 5.92 b |
DPPH-RSA (m mol TE 100 g−1) | 4.35 ± 0.70 c | 6.02 ± 0.17 b | 7.39 ± 0.14 a | 7.20 ± 0.04 a | 3.00 ± 0.16 c | 3.71 ± 0.51 b | 5.26 ± 0.17 a | 3.01 ± 0.33 c |
Total carotenoids (mg 100−1) | 2.22 ± 0.07 c | 7.27 ± 0.78 b | 15.58 ± 0.92 a | 17.14 ± 2.67 a | 3.44 ± 0.16 c | 4.93 ± 0.34 b | 8.11 ± 1.24 a | 7.48 ± 0.95 a |
Total saponins (mg g−1) | 6.53 ± 0.07 a | 6.10 ± 0.78 a | 2.66 ± 0.43 b | 0.93 ± 0.27 c | 6.10 ± 0.43 a | 3.52 ± 0.34 b | 0.93 ± 0.24 c | 0.50 ± 0.15 d |
Total anthocyanin (mg 100−1) | 179.96 ± 15.81a | 160.75 ± 11.70 ab | 125.90 ± 23.49 bc | 91.82 ± 4.98 c | - | - | - | - |
Total flavonoids (mg QE 100 g−1) | 7.05 ± 0.09 d | 9.59 ± 0.10 c | 10.38 ± 0.38 b | 13.17 ± 0.27 a | 9.04 ± 0.45 c | 19.24 ± 0.60 b | 24.00 ± 2.10 a | 24.36 ± 1.14 a |
Total flavonols (mg QE 100 g−1) | 5.88 ± 0.42 d | 7.23 ± 0.45 c | 8.06 ± 0.05 b | 9.36 ± 0.26 a | 3.69 ± 0.25 d | 11.06 ± 0.97 c | 20.66 ± 0.33 b | 22.24 ± 1.06 a |
Compound | Rt | Phenolics (µg g−1) | ||||||
---|---|---|---|---|---|---|---|---|
RQ | YQ | |||||||
0-d | 3-d | 6-d | 0-d | 3-d | 6-d | |||
1 | Gallic acid | 4.413 | - | 0.47 | - | - | - | - |
2 | Protocatechuic acid | 7.593 | - | 11.11 | 9.87 | 14.29 | 9.66 | 39.01 |
3 | p-hydroxybenzoic acid | 11.000 | 1.00 | 39.25 | 4.80 | 13.40 | 10.37 | 19.71 |
4 | Cateachin | 12.604 | 34.57 | - | 46.79 | - | - | - |
5 | Scopoletin | 25.224 | - | 46.65 | 15.85 | - | - | - |
6 | Ferulic acid | 26.442 | - | 17.33 | 37.19 | 28.42 | 55.14 | 81.15 |
7 | Sinapic acid | 28.282 | 47.13 | 4.93 | 57.33 | 5.94 | 9.96 | 12.34 |
8 | p-coumaric acid | 30.865 | 18.18 | 0.98 | 17.21 | - | - | - |
9 | Rutin | 32.58 | 0.59 | 1.56 | 8.69 | 2.23 | 2.33 | 3.85 |
10 | Apigenin-7-glucoside | 36.827 | 1.05 | 1.18 | 1.83 | - | - | - |
11 | Rosmarinic acid | 38.004 | - | 1.46 | 1.28 | 2.36 | 3.23 | 2.30 |
12 | Cinnamic acid | 41.33 | 1.91 | 2.48 | 4.07 | - | - | - |
13 | Quercetin | 44.435 | 1.28 | 1.98 | 3.13 | 5.69 | 2.95 | 7.16 |
14 | Apigenin | 48.156 | 1.51 | 0.52 | 2.56 | - | - | - |
15 | Kaempferol | 48.758 | - | 2.09 | 0.98 | 0.41 | 1.10 | 2.69 |
16 | Chrysin | 55.123 | 0.43 | 2.58 | 1.36 | - | - | - |
Groups | Liver Relative Weight (%) | Kidney Relative Weight (%) |
---|---|---|
NR | 2.83 ± 0.18 b | 0.68 ± 0.04 a |
CCl4-R | 3.47 ± 0.09 a | 0.71 ± 0.05 a |
CCl4-R + Si-Vit E | 2.89 ± 0.12 b | 0.69 ± 0.02 a |
CCl4-R + YQS | 2.85 ± 0.08 b | 0.63 ± 0.01 ab |
CCl4-R + RQS | 2.76 ± 0.03 b | 0.61 ± 0.01 b |
Groups | FBG (mg dL−1) | ALT (u L−1) | AST (u L−1) | TBILI (mg dL−1) |
---|---|---|---|---|
NR | 90.00 ± 1.00 b | 72.67 ± 3.14 c | 182.33 ± 3.31 d | 0.22 ± 0.05 c |
CCl4-R | 108.60 ± 1.46 a | 104.00 ± 2.27 a | 259.33 ± 12.42 a | 0.85 ± 0.11 a |
CCl4-R + Si-Vit E | 107.87 ± 1.15 a | 71.23 ± 2.37 c | 184.77 ± 1.29 d | 0.46 ± 0.13 b |
CCl4-R + YQS | 106.17 ± 0.79 a | 97.32 ± 3.15 b | 199.00 ± 1.04 b | 0.55 ± 0.09 b |
CCl4-R + RQS | 87.76 ± 1.92 bc | 97.33 ± 4.55 b | 188.33 ± 1.29 c | 0.49 ± 0.08 b |
Groups | TG (mg dL−1) | TCh (mg dL−1) | HDL (mg dL−1) | LDL (mg dL−1) | VLDL (mg dL−1) |
---|---|---|---|---|---|
NR | 33.67 ± 3.09 b | 50.33 ± 2.51 c | 37.23 ± 1.69 b | 6.37 ± 0.93 b | 6.73 ± 0.62 b |
CCl4-R | 37.67 ± 2.22 a | 56.76 ± 0.52 a | 34.03 ± 0.38 c | 15.19 ± 0.26 a | 7.53 ± 0.44 a |
CCl4-R + Si-Vit E | 34.12 ± 0.76 b | 51.64 ± 1.11 b | 38.97 ± 0.86 b | 6.07 ± 0.16 b | 6.60 ± 0.15 b |
CCl4-R + YQ | 33.00 ± 0.77 bc | 55.33 ± 1.12 a | 43.97 ± 0.87 a | 4.77 ± 0.16 c | 6.60 ± 0.16 b |
CCl4-R + RQ | 30.00 ± 2.51 c | 51.67 ± 2.05 b | 40.97 ± 1.68 b | 4.70 ± 0.52 c | 6.00 ± 0.50 b |
Groups | GSH [µmol L−1] | SOD [u L−1] | MDA [n mol mL−1] |
---|---|---|---|
NR | 117.66 ± 2.03 a | 85.53 ± 0.42 a | 9.12 ± 0.18 d |
CCl4-R | 85.10 ± 2.77 e | 60.60 ± 0.80 e | 16.53 ± 0.13 a |
CCl4-R + Si-Vit E | 106.16 ± 1.22 c | 79.11 ± 0.73 c | 8.79 ± 0.05 e |
CCl4-R + YQ | 101.38 ± 0.77 d | 68.28 ± 1.33 d | 10.67 ± 0.08 c |
CCl4-R + RQ | 109.52 ± 1.49 b | 81.50 ± 0.33 b | 11.57 ± 0.11 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Qabba, M.M.; El-Mowafy, M.A.; Althwab, S.A.; Alfheeaid, H.A.; Aljutaily, T.; Barakat, H. Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients 2020, 12, 2904. https://doi.org/10.3390/nu12102904
Al-Qabba MM, El-Mowafy MA, Althwab SA, Alfheeaid HA, Aljutaily T, Barakat H. Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients. 2020; 12(10):2904. https://doi.org/10.3390/nu12102904
Chicago/Turabian StyleAl-Qabba, Maryam M., Maha A. El-Mowafy, Sami A. Althwab, Hani A. Alfheeaid, Thamer Aljutaily, and Hassan Barakat. 2020. "Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats" Nutrients 12, no. 10: 2904. https://doi.org/10.3390/nu12102904
APA StyleAl-Qabba, M. M., El-Mowafy, M. A., Althwab, S. A., Alfheeaid, H. A., Aljutaily, T., & Barakat, H. (2020). Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients, 12(10), 2904. https://doi.org/10.3390/nu12102904