The GReat-Child TrialTM: A Quasi-Experimental Dietary Intervention among Overweight and Obese Children
Abstract
:1. Introduction
2. Methodology
2.1. Study Design and Recruitment of Participants
2.2. Whole Grain Intake Outcome
2.3. Dietary Intake Outcomes
2.4. Cut-off Point for Energy Misreporting in Children
2.5. Physical Characteristics
2.6. Statistical Analyses
3. Results
3.1. Baseline Socio-Demographics, Physical Characteristics, Energy Misreporting, and Dietary Intakes among Children Who Completed the 12-Week Trial and 6-Month Follow Up
3.2. The Intervention Effects: Within-Group Differences
3.3. The Intervention Effects: Between-Group Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reynolds, K.; Wu, X.; Xue, X.; Yan, W.; Muntner, P.; Mo, J.; Gu, D.; Whelton, P.; He, J. Prevalence of overweight and obesity in china. J. Hypertens. 2004, 22, S204. [Google Scholar] [CrossRef]
- Institute of Public Health. National Health and Morbidity Survey 2015: Non-Communicable Diseases, Risk Factors and Other Health Problems; Ministry of Health: Putrajaya, Malaysia, 2015; Volume II. [Google Scholar]
- Institute of Public Health. National Health and Morbidity Survey 2019: Technical Report Volume I; Ministry of Health: Putrajaya, Malaysia, 2020. [Google Scholar]
- Weichselbaum, E.; Buttriss, J.L. Diet, nutrition and schoolchildren: An update. Nutr. Bull. 2014, 39, 9–73. [Google Scholar] [CrossRef]
- Mead, E.; Brown, T.; Rees, K.; Azevedo, L.B.; Whittaker, V.; Jones, D.; Olajide, J.; Mainardi, G.M.; Corpeleijn, E.; O’Malley, C.; et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese children from the age of 6 to 11 years. Cochrane Database Syst. Rev. 2017, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.C.; Poh, B.K.; Ruzita, A.T. The GReat-Child™ Trial: A Quasi-Experimental Intervention on Whole Grains with Healthy Balanced Diet to Manage Childhood Obesity in Kuala Lumpur, Malaysia. Nutrients 2018, 10, 156. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-Rodriguez, A.; Morell-Azanza, L.; Campoy, C.; Martínez, J.A.; Ramírez, M.J.; Marti, A. Reduced serotonin levels after a lifestyle intervention in obese children: Association with glucose and anthropometric measurements. Nutr. Hosp. 2018, 35, 279–285. [Google Scholar] [CrossRef]
- Ojeda-Rodríguez, A.; Zazpe, I.; Morell-Azanza, L.; Chueca, M.J.; Campoy, C.; Marti, A. Improved Diet Quality and Nutrient Adequacy in Children and Adolescents with Abdominal Obesity after a Lifestyle Intervention. Nutrients 2018, 10, 1500. [Google Scholar] [CrossRef] [Green Version]
- Adamo, K.B.; Brett, K.E. Parental Perceptions and Childhood Dietary Quality. Matern. Child Health J. 2013, 18, 978–995. [Google Scholar] [CrossRef]
- Chong, K.H.; Wu, S.K.; Noor Hafizah, Y.; Bragt, M.C.; Poh, B.K.; SEANUTS Malaysia Study Group. Eating habits of Malaysian children: Findings of the South East Asian Nutrition Surveys (SEANUTS). Asia Pac. J. Public Health 2016, 28, 59S–73S. [Google Scholar] [CrossRef]
- Ahmad, A.; Zulaily, N.; Shahril, M.R.; Abdullah, E.F.H.S.; Ahmed, A. Association between socioeconomic status and obesity among 12-year-old Malaysian adolescents. PLoS ONE 2018, 13, e0200577. [Google Scholar] [CrossRef] [Green Version]
- Montaño, Z.; Smith, J.D.; Dishion, T.J.; Shaw, D.S.; Wilson, M.N. Longitudinal relations between observed parenting behaviors and dietary quality of meals from ages 2 to 5. Appetite 2014, 87, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Haapala, E.A.; Eloranta, A.M.; Venäläinen, T.; Jalkanen, H.; Poikkeus, A.M.; Ahonen, T.; Lindi, V.; Lakka, T.A. Diet quality and academic achievement: A prospective study among primacy school children. Eur. J. Nutr. 2017, 56, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Finnane, J.M.; Jansen, E.; Mallan, K.M.; Daniels, L.A. Mealtime Structure and Responsive Feeding Practices Are Associated With Less Food Fussiness and More Food Enjoyment in Children. J. Nutr. Educ. Behav. 2017, 49, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Coordinating Committee on Food and Nutrition. Malaysian Dietary Guidelines for Children and Adolescents; Ministry of Health: Putrajaya, Malaysia, 2013. [Google Scholar]
- United State Department of Health and Human Services and United State Department of Agriculture. 2015-2020 Dietary Guidelines for Americans, 8th ed; USDA: Washington, DC, USA. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 26 September 2020).
- Slavin, J.; Tucker, M.; Harriman, C.; Jonnalagadda, S.S. Whole Grains: Definition, Dietary Recommendations, and Health Benefits. Cereal Foods World 2013, 58, 191–198. [Google Scholar] [CrossRef]
- Mann, K.D.; Pearce, M.S.; McKevith, B.; Thielecke, F.; Seal, C. Whole grain intake and its association with intakes of other foods, nutrients and markers of health in the National Diet and Nutrition Survey rolling programme 2008–2011. Br. J. Nutr. 2015, 113, 1595–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayet-Moore, F.; Cassettari, T.; Tuck, K.; McConnell, A.; Petocz, P. Dietary fiber intake in Australia. Paper II: Comparative examination of food sources of fiber among high and low fiber consumers. Nutrients 2018, 10, 1223. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.C.; Poh, B.K.; Ruzita, A.T. Intervention on whole grain with healthy balanced diet to manage childhood obesity (GReat-Child™trial): Study protocol for a quasi-experimental trial. SpringerPlus 2016, 5, 840. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.C.; Poh, B.K.; Ruzita, A.T. GReat-Child Trial™ based on social cognitive theory improved knowledge, attitudes and practices toward whole grains among Malaysian overweight and obese children. BMC Public Health 2019, 19, 1574. [Google Scholar] [CrossRef]
- McMillan, J.H. Randomized field trials and internal validity: Not so fast my friend. Pract. Assess. Res. Eval. 2007, 12, 15. [Google Scholar]
- World Health Organisation (WHO). Growth Reference 5–19 Years. 2007. Available online: http://www.who.int/growthref/who2007bmiforage/En/index.html (accessed on 26 September 2020).
- Naing, M. Sample size determination in experimental studies. In A Practical Guide on Determination of Sample Size in Health Sciences Research; Pustaka Aman Press Sdn. Bhd.: Kelantan, Malaysia, 2009. [Google Scholar]
- American Association of Cereal Chemists International. Whole grain definition. Cereal Foods World 2000, 45, 79. [Google Scholar]
- Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation; Technical Report Series; World Health Organization: Geneva, Switzerland, 1985; Volume 724, pp. 1–206.
- Torun, B.; Davies, P.S.; Livingstone, M.B.; Paolisso, M.; Sackett, R.; Spurr, G.B. Energy requirements and dietary energy recommendations for children and adolescents 1 to 18 years old. Eur. J. Clin. Nutr. 1996, 50, S37–S81. [Google Scholar]
- Gupta, S.K. Intention-to-treat concept: A review. Perspect. Clin. Res. 2011, 2, 109–112. [Google Scholar] [CrossRef] [PubMed]
- De Boer, M.R.; Waterlander, W.; Kuijper, L.D.J.; Steenhuis, I.H.M.; Twisk, J.W.R. Testing for baseline differences in randomized controlled trials: An unhealthy research behavior that is hard to eradicate. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norimah, A.K.; Koo, H.C.; JM, H.J.; MT, M.N.; Tan, S.Y.; Appukutty, M.; Tee, E.S.; Ong, M.K.; Hopkins, S.; Ning, C.; et al. Whole grain intakes in the diets of Malaysian children and adolescents-findings from the MyBreakfast Study. PLoS ONE 2015, 10, e0138247. [Google Scholar] [CrossRef]
- Tu, Y.-K.; Baelum, V.; Gilthorpe, M.S. A structural equation modelling approach to the analysis of change. Eur. J. Oral Sci. 2008, 116, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Paul, J.; Nantha-Aree, M.; Buckley, N.; Shahzad, U.; Cheng, J.; Debeer, J.; Winemaker, M.; Wismer, D.; Punthakee, D.; et al. Empirical comparison of four baseline covariate adjustment methods in analysis of continuous outcomes in randomized controlled trials. Clin. Epidemiol. 2014, 6, 227–235. [Google Scholar] [CrossRef] [Green Version]
- De Cosmi, V.; Scaglioni, S.; Agostoni, C. Early Taste Experiences and Later Food Choices. Nutrients 2017, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Rioux, C.; Lafraire, J.; Picard, D. Visual exposure and categorization performance positively influence 3- to 6-year-old children’s willingness to taste unfamiliar vegetables. Appetite 2018, 120, 32–42. [Google Scholar] [CrossRef]
- Burgess-Champoux, T.L.; Chan, H.W.; Rosen, R.; Marquart, L.; Reicks, M. Healthy whole-grain choices for children and parents: A multi-component school-based pilot intervention. Public Health Nutr. 2008, 11, 849–859. [Google Scholar] [CrossRef] [Green Version]
- Holley, C.E.; Farrow, C.; Haycraft, E. A Systematic Review of Methods for Increasing Vegetable Consumption in Early Childhood. Curr. Nutr. Rep. 2017, 6, 157–170. [Google Scholar] [CrossRef] [Green Version]
- De Wild, V.W.; De Graaf, K.; Jager, G. Use of Different Vegetable Products to Increase Preschool-Aged Children’s Preference for and Intake of a Target Vegetable: A Randomized Controlled Trial. J. Acad. Nutr. Diet. 2017, 117, 859–866. [Google Scholar] [CrossRef]
- Dazeley, P.; Houston-Price, C. Exposure to foods’ non-taste sensory properties. A nursery intervention to increase children’s willingness to try fruit and vegetables. Appetite 2015, 84, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bellisle, F.; Hébel, P.; Colin, J.; Reyé, B.; Hopkins, S. Consumption of whole grains in French children, adolescents and adults. Br. J. Nutr. 2014, 112, 1674–1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devlin, N.F.C.; McNulty, B.A.; Gibney, M.; Thielecke, F.; Smith, H.; Nugent, A.P. Whole grain intakes in the diets of Irish children and teenagers. Br. J. Nutr. 2012, 110, 354–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horne, P.J.; Tapper, K.; Lowe, C.F.; Hardman, C.A.; Jackson, M.C.; Woolner, J. Increasing children’s fruit and vegetable consumption: A peer-modelling and rewards-based intervention. Eur. J. Clin. Nutr. 2004, 58, 1649–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, W.K.H.; Poh, B.K.; Wee, L.H.; Koo, H.C.; Lau, X.C.; Devanthini, D.G.; Ruzita, A.T. Cross-site anthropometric assessment of school-based obesity interventions: A 12-month follow-up study. In Proceedings of the 1st Southeast Asia Pacific Health Nutrition Conference, Kuala Lumpur, Malaysia, 14–17 May 2017. [Google Scholar]
- Murakami, K.; Livingstone, M.B.E. Prevalence and characteristics of misreporting of energy intake in US adults: NHANES 2003–2012. Br. J. Nutr. 2015, 114, 1294–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing Current Criticism Regarding the Value of Self-Report Dietary Data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Renjith, V. Blinding in randomized controlled trials: What researchers need to know? Manipal J. Nurs. Health Sci. 2017, 3, 45. [Google Scholar]
Total (n = 63) | Intervention (n = 31) | Control (n = 32) | p-Value | |
---|---|---|---|---|
Age; mean ± SD | 10.6 ± 0.6 | 10.7 ± 0.6 | 10.6 ± 0.6 | 0.882 † |
Sex | 0.262 †† | |||
Boys; n (%) | 33 (52.4) | 18 (58.1) | 15 (46.9) | |
Girls; n (%) | 30 (47.6) | 13 (41.9) | 17 (53.1) | |
Household income; mean ± SD | 4052 ± 1874 | 4507 ± 2385 | 3613 ± 1055 | 0.058 † |
Below MYR2300; n (%) | 6 (9.5) | 3(9.7) | 3 (9.4) | 0.452 †† |
MYR2300-MYR5599; n (%) | 50 (79.4) | 23 (74.2) | 27 (84.4) | |
MYR5600 and above; n (%) | 7 (11.1) | 5 (16.1) | 2 (6.2) | |
Physical characteristics | ||||
Weight (kg); mean ± SD | 47.8 ± 13.0 | 50.4 ± 14.9 | 45.2 ± 10.4 | 0.486 † |
Height (cm); mean ± SD | 139.8 ± 7.5 | 142.1 ± 8.2 | 137.5 ± 6.2 | 0.093 † |
BMI-for-age z-score; mean ± SD | 2.2 ± 0.9 | 2.3 ± 1.0 | 2.1 ± 0.8 | 0.324 † |
Classification of energy-misreporting | 0.368 †† | |||
Under-reporting; n (%) | 2 (3.2) | 1 (3.2) | 1 (3.1) | |
Normal reporting; n (%) | 59 (93.7) | 30 (96.8) | 29 (90.6) | |
Over-reporting; n (%) | 2(3.1) | 0 | 2 (6.3) | |
Dietary intake | ||||
Energy (kcal); mean ± SD | 2561 ± 367 | 2606 ± 363 | 2514 ± 370 | 0.511 † |
Protein (g); mean ± SD | 96.1 ± 19.3 | 98.1 ± 23.7 | 94.1 ± 13.6 | 0.514 † |
Carbohydrate (g); mean ± SD | 344.7 ± 56.1 | 352.5 ± 47.0 | 336.5 ± 64.1 | 0.428 † |
Fat (g); mean ± SD | 88.6 ± 18.9 | 89.1 ± 22.8 | 88.1 ± 13.7 | 0.911 † |
Dietary fiber (g); mean ± SD | 3.7 ± 2.7 | 3.9 ± 3.3 | 3.5 ± 1.9 | 0.386 † |
Thiamin (mg); mean ± SD | 0.8 ± 0.2 | 0.8 ± 0.2 | 0.8 ± 0.2 | 0.325 † |
Riboflavin (mg); mean ± SD | 1.0 ± 0.3 | 1.0 ± 0.2 | 1.1 ± 0.3 | 0.191 † |
Niacin (mg); mean ± SD | 15.1 ± 4.5 | 15.4 ± 5.0 | 14.9 ± 4.0 | 0.940 † |
Calcium (mg); mean ± SD | 402.2 ± 156.2 | 359.9 ± 128.8 | 446.0 ± 171.6 | 0.022 †,* |
Iron (mg); mean ± SD | 31.7 ± 15.6 | 30.2 ± 15.4 | 33.4 ± 15.9 | 0.306 † |
Intervention Group | Control Group | ||||
---|---|---|---|---|---|
Comparison | Mean (95% CI) | p-Value | Mean (95% CI) | p-Value | |
Whole grain (g) | T1-T0 | 20.6 (13.4, 27.9) | <0.001 *** | 0 | - |
T2-T0 | 8.8 (4.2, 13.5) | <0.001 *** | 0 | - | |
T2-T1 | −11.8 (−18.4, −5.3) | <0.001 *** | 0 | - | |
Energy (kcal) | T1-T0 | −63(−182, 55) | 0.553 | 96 (−31, 223) | 0.192 |
T2-T0 | −41 (−136, 55) | 0.851 | 192 (72, 312) | 0.001 ** | |
T2-T1 | 22 (−51, 96) | 1.000 | 96 (−18, 211) | 0.123 | |
Protein (g) | T1-T0 | −3.2 (−9.2, 2.7) | 0.524 | −1.3 (−8.4, 5.8) | 1.000 |
T2-T0 | −12.6 (−20.2, −5.0) | 0.001 ** | −1.0 (−8.3, 6.4) | 1.000 | |
T2-T1 | −9.4 (−17.3, −1.5) | 0.016 * | 0.4 (−6.0, 6.7) | 1.000 | |
Carbohydrate (g) | T1-T0 | −11.0 (−37.0, 15.0) | 0.865 | 19.5 (−2.0, 41.0) | 0.085 |
T2-T0 | 26.9 (5.1, 48.7) | 0.012 * | 40.5 (20.9, 60.1) | <0.001 *** | |
T2-T1 | 37.9 (11.7, 64.2) | 0.003 ** | 21.0 (−3.3, 45.3) | 0.108 | |
Fat (g) | T1-T0 | −0.3 (−8.6, 8.0) | 1.000 | 2.4 (−6.4, 11.2) | 1.000 |
T2-T0 | −3.2 (−10.7, 4.4) | 0.879 | 3.1 (−3.7, 9.9) | 0.749 | |
T2-T1 | −2.9 (−12.3, 6.5) | 1.000 | 0.7 (−7.6, 9.1) | 1.000 | |
Fiber (g) | T1-T0 | 10.7 (6.1, 15.4) | <0.001 *** | 3.5 (1.0, 5.9) | 0.004 ** |
T2-T0 | 3.7 (1.3, 6.4) | 0.002 ** | 2.6 (0.5, 4.7) | 0.014 * | |
T2-T1 | −7.0 (−11.9, −2.1) | 0.003 ** | 0.9 (−4.6, 2.8) | 1.000 | |
Thiamin (mg) | T1-T0 | 0.8 (0.6, 0.9) | <0.001 *** | 0.2 (0.1, 0.4) | <0.001 *** |
T2-T0 | 0.6 (0.4, 0.8) | <0.001 *** | 0.2 (0.1, 0.3) | <0.001 *** | |
T2-T1 | −0.2 (−0.5, 0.1) | 0.138 | 0.1 (−0.2, 0.1) | 1.000 | |
Riboflavin (mg) | T1-T0 | 1.9 (1.4, 2.4) | <0.001 *** | 0.4 (0.1, 0.7) | 0.004 ** |
T2-T0 | 1.7 (−0.1, 3.5) | 0.056 | 0.4 (0.1, 0.6) | 0.003 ** | |
T2-T1 | −0.2 (−2.1, 1.8) | 1.000 | −0.1 (−0.4, 0.3) | 1.000 | |
Niacin (mg) | T1-T0 | 9.8 (7.6, 12.0) | <0.001 *** | 2.7 (0.5, 4.8) | 0.010 * |
T2-T0 | 5.3 (0.4, 10.2) | 0.029 * | 1.1 (−0.5, 2.6) | 0.255 | |
T2-T1 | 0.3 (−0.6, −0.1) | 0.014 * | −0.1 (−0.4, 0.2) | 0.679 | |
Calcium (g) | T1-T0 | 404.0 (268.4, 539.7) | <0.001 *** | 23.1 (−66.1, 112.2) | 1.000 |
T2-T0 | 199.5 (82.6, 316.4) | 0.001 ** | 2.5 (−55.1, 60.1) | 1.000 | |
T2-T1 | −204.6 (−394.1, −15.0) | 0.031 * | −20.6 (−128.3, 87.1) | 1.000 | |
Iron (g) | T1-T0 | 8.1 (1.0, 15.1) | 1.000 | −0.8 (−6.8, 5.2) | 1.000 |
T2-T0 | 9.7 (1.3, 18.2) | 0.020 * | −0.1 (−5.6, 5.3) | 1.000 | |
T2-T1 | 1.7 (−9.1, 12.5) | 1.000 | 0.7 (−6.7, 8.0) | 1.000 |
Intervention Group—Control Group | |||
---|---|---|---|
Mean (95% CI) | p-Value | F-Stat(df) | |
Whole grain (g) | 9.9 (7.1, 12.8) | <0.001 *** | 50.19(1) |
Energy (kcal) | −126 (−121, −40) | 0.005 ** | 8.69(1) |
Protein (g) | −3.4 (−8.1, 1.3) | 0.156 | 2.07(1) |
Carbohydrate (g) | −12.3 (−27.1, 2.5) | 0.102 | 2.77(1) |
Fat (g) | −5.3 (−10.6, 0.1) | 0.055 | 3.85(1) |
Fiber (g) | 3.1 (1.4, 4.7) | 0.001 ** | 13.60(1) |
Thiamin (mg) | 0.3 (0.2, 0.4) | <0.001 *** | 39.51(1) |
Riboflavin (mg) | 0.8 (0.4, 1.3) | 0.001 ** | 12.71(1) |
Niacin (mg) | 0.4 (1.9, 5.2) | <0.001 *** | 19.01(1) |
Calcium (mg) | 130.3 (74.2, 186.4) | <0.001 *** | 21.64(1) |
Iron (mg) | 2.2 (−1.7, 6.1) | 0.258 | 1.31(1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, H.C.; Poh, B.K.; Talib, R.A. The GReat-Child TrialTM: A Quasi-Experimental Dietary Intervention among Overweight and Obese Children. Nutrients 2020, 12, 2972. https://doi.org/10.3390/nu12102972
Koo HC, Poh BK, Talib RA. The GReat-Child TrialTM: A Quasi-Experimental Dietary Intervention among Overweight and Obese Children. Nutrients. 2020; 12(10):2972. https://doi.org/10.3390/nu12102972
Chicago/Turabian StyleKoo, Hui Chin, Bee Koon Poh, and Ruzita Abd. Talib. 2020. "The GReat-Child TrialTM: A Quasi-Experimental Dietary Intervention among Overweight and Obese Children" Nutrients 12, no. 10: 2972. https://doi.org/10.3390/nu12102972
APA StyleKoo, H. C., Poh, B. K., & Talib, R. A. (2020). The GReat-Child TrialTM: A Quasi-Experimental Dietary Intervention among Overweight and Obese Children. Nutrients, 12(10), 2972. https://doi.org/10.3390/nu12102972