Habitual Nightly Fasting Duration, Eating Timing, and Eating Frequency are Associated with Cardiometabolic Risk in Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Population
2.2. Habitual Nightly Fasting Duration and Eating Timing and Frequency
2.3. Cardiovascular Health and Cardiometabolic Risk Factors
2.4. Socio-Demographic Variables
2.5. Statistical Analysis
3. Results
3.1. Socio-Demographic and Clinical Characteristic of the Study Population
3.2. Associations of Habitual Nightly Fasting Duration with Cardiovascular Health and Cardiometabolic Risk Factors
3.3. Associations of Eating Timing with Cardiovascular Health and Cardiometabolic Risk Factors
3.4. Associations of Eating Frequency with Cardiovascular Health and Cardiometabolic Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- St-Onge, M.; Ard, J.; Baskin, M.L.; Chiuve, S.E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K. Meal timing and frequency: Implications for cardiovascular disease prevention: A Scientific Statement from the American Heart Association. Circulation 2017, 135, e96–e121. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.E.; Sears, D.D. Metabolic effects of intermittent fasting. Annu. Rev. Nutr. 2017, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothschild, J.; Hoddy, K.K.; Jambazian, P.; Varady, K.A. Time-restricted feeding and risk of metabolic disease: A review of human and animal studies. Nutr. Rev. 2014, 72, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef] [Green Version]
- Jon Schoenfeld, B.; Albert Aragon, A.; Krieger, J.W. Effects of meal frequency on weight loss and body composition: A meta-analysis. Nutr. Rev. 2015, 73, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Gabel, K.; Hoddy, K.K.; Haggerty, N.; Song, J.; Kroeger, C.M.; Trepanowski, J.F.; Panda, S.; Varady, K.A. Effects of 8-h time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr. Healthy Aging 2018, 4, 345–353. [Google Scholar] [CrossRef]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: A randomized crossover trial. Obesity 2019, 27, 724–732. [Google Scholar] [CrossRef]
- de Cabo, R.; Mattson, M.P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef]
- Marinac, C.R.; Sears, D.D.; Natarajan, L.; Gallo, L.C.; Breen, C.I.; Patterson, R.E. Frequency and circadian timing of eating may influence biomarkers of inflammation and insulin resistance associated with breast cancer risk. PLoS ONE 2015, 10, e0136240. [Google Scholar] [CrossRef] [Green Version]
- Marinac, C.R.; Natarajan, L.; Sears, D.D.; Gallo, L.C.; Hartman, S.J.; Arredondo, E.; Patterson, R.E. Prolonged nightly fasting and breast cancer risk: Findings from NHANES (2009-2010). Cancer Epidemiol. Biomark. Prev. 2015, 24, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Marinac, C.R.; Nelson, S.H.; Breen, C.I.; Hartman, S.J.; Natarajan, L.; Pierce, J.P.; Flatt, S.W.; Sears, D.D.; Patterson, R.E. Prolonged nightly fasting and breast cancer prognosis. JAMA Oncol. 2016, 2, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M. Cardiovascular health and protection against CVD: More than the sum of the parts? Circulation 2014, 130, 1671–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, K.; Song, Y. Associations of meal timing and frequency with obesity and metabolic syndrome among Korean adults. Nutrients 2019, 11, 2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makarem, N.; St-Onge, M.; Liao, M.; Lloyd-Jones, D.M.; Aggarwal, B. Association of sleep characteristics with cardiovascular health among women and differences by race/ethnicity and menopausal status: Findings from the American Heart Association go red for women strategically focused research network. Sleep Health 2019, 5, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Makarem, N.; Paul, J.; Giardina, E.V.; Liao, M.; Aggarwal, B. Evening chronotype is associated with poor cardiovascular health and adverse health behaviors in a diverse population of women. Chronobiol. Int. 2020, 1–13. [Google Scholar] [CrossRef]
- Subar, A.; Kirkpatrick, S.; Zimmerman, T.P.; Thompson, F.; Bingley, C.; Willis, G.; Islam, N.; Baranowski, T.; McNutt, S.; Potischman, N. The automated self-administered 24-h dietary recall (ASA24): A resource for researchers, clinicians, and educators from the national cancer institute. J. Acad. Nutr. Diet 2012, 112, 1134–1138. [Google Scholar] [CrossRef] [Green Version]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the block, Willett, and national cancer institute food frequency questionnaires the eating at America’s table study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef]
- Curi, H.P.; Gomes, V.C. Reliability and validity of the international physical activity questionnaire (IPAQ). Med. Sci. Sports Exerc. 2004, 36, 556. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L.J.; Van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G.F.; et al. American heart association strategic planning task force and statistics committee defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 2010, 121, 586–613. [Google Scholar] [CrossRef] [Green Version]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Himmelfarb, C.D.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 2017, 24430. [Google Scholar] [CrossRef]
- Longo, V.D.; Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016, 23, 1048–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stote, K.S.; Baer, D.J.; Spears, K.; Paul, D.R.; Harris, G.K.; Rumpler, W.V.; Strycula, P.; Najjar, S.S.; Ferrucci, L.; Ingram, D.K.; et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am. J. Clin. Nutr. 2007, 85, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Carlson, O.; Martin, B.; Stote, K.S.; Golden, E.; Maudsley, S.; Najjar, S.S.; Ferrucci, L.; Ingram, D.K.; Longo, D.L.; Rumpler, W.V. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metab. Clin. Exp. 2007, 56, 1729–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCheminant, J.D.; Christenson, E.; Bailey, B.W.; Tucker, L.A. Restricting night-time eating reduces daily energy intake in healthy young men: A short-term cross-over study. Br. J. Nutr. 2013, 110, 2108–2113. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Manoogian, E.N.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020, 31, 92–104.e5. [Google Scholar] [CrossRef]
- Ueda, M.; Inoue, Y.; Hu, H.; Eguchi, M.; Islam, Z.; Miki, T.; Fukunaga, A.; Kochi, T.; Akter, S.; Kabe, I. Nightly fasting duration is not associated with the prevalence of metabolic syndrome among non-shift workers: The Furukawa Nutrition and Health Study. Am. J. Hum. Biol. 2020, e23437. [Google Scholar] [CrossRef]
- Kahleova, H.; Lloren, J.I.; Mashchak, A.; Hill, M.; Fraser, G.E. Meal frequency and timing are associated with changes in body mass index in Adventist Health Study. J. Nutr. 2017, 147, 1722–1728. [Google Scholar] [CrossRef] [Green Version]
- Rabbitt, M.P.; Smith, M.D.; Coleman-Jensen, A. Food Security Among Hispanic Adults in the United States, 2011–2014; EIB-153; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2016. [Google Scholar]
- Moreno, G.; Morales, L.S.; Isiordia, M.; de Jaimes, F.N.; Tseng, C.H.; Noguera, C.; Mangione, C.M. Latinos with diabetes and food insecurity in an agricultural community. Med. Care 2015, 53, 423–429. [Google Scholar] [CrossRef] [Green Version]
- McClain, A.C.; Xiao, R.S.; Gao, X.; Tucker, K.L.; Falcon, L.M.; Mattei, J. Food insecurity and odds of high Allostatic load in Puerto Rican adults: The role of participation in the supplemental nutrition assistance program during 5 years of follow-up. Psychosom. Med. 2018, 80, 733–741. [Google Scholar] [CrossRef]
- Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early time-restricted feeding improves 24-h glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Fong, M.; Caterson, I.D.; Madigan, C.D. Are large dinners associated with excess weight, and does eating a smaller dinner achieve greater weight loss? A systematic review and meta-analysis. Br. J. Nutr. 2017, 118, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.; Musso, G.; Beccuti, G.; Fadda, M.; Fedele, D.; Gambino, R.; Gentile, L.; Durazzo, M.; Ghigo, E.; Cassader, M. Consuming more of daily caloric intake at dinner predisposes to obesity. A 6-year population-based prospective cohort study. PLoS ONE 2014, 9, e108467. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Patterson, R.; Ang, A.; Emond, J.; Shetty, N.; Arab, L. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 2014, 27, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Summerbell, C.D.; Moody, R.C.; Shanks, J.; Stock, M.J.; Geissler, C. Relationship between feeding pattern and body mass index in 220 free-living people in four age groups. Eur. J. Clin. Nutr. 1996, 50, 513–519. [Google Scholar] [PubMed]
- Kant, A.K.; Ballard-Barbash, R.; Schatzkin, A. Evening eating and its relation to self-reported body weight and nutrient intake in women, CSFII 1985-86. J. Am. Coll. Nutr. 1995, 14, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Bertone, E.R.; Stanek, E.J., 3rd; Reed, G.W.; Hebert, J.R.; Cohen, N.L.; Merriam, P.A.; Ockene, I.S. Association between eating patterns and obesity in a free-living US adult population. Am. J. Epidemiol. 2003, 158, 85–92. [Google Scholar] [CrossRef]
- Holmbäck, I.; Ericson, U.; Gullberg, B.; Wirfält, E. A high eating frequency is associated with an overall healthy lifestyle in middle-aged men and women and reduced likelihood of general and central obesity in men. Br. J. Nutr. 2010, 104, 1065–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekary, R.A.; Giovannucci, E.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Eating patterns and type 2 diabetes risk in men: Breakfast omission, eating frequency, and snacking. Am. J. Clin. Nutr. 2012, 95, 1182–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witbracht, M.; Keim, N.L.; Forester, S.; Widaman, A.; Laugero, K. Female breakfast skippers display a disrupted cortisol rhythm and elevated blood pressure. Physiol. Behav. 2015, 140, 215–221. [Google Scholar] [CrossRef]
Characteristics (Mean (SD)/% (n)) | Baseline (n = 116) | One-Year (n = 99) | p-Value |
---|---|---|---|
Socio-Demographic Characteristics | |||
Age (y) | 33 (12) | 35 (13) | <0.001 |
Less than or Equivalent to College Education (%) | 66.4% (77) | 59.6% (59) | 0.709 |
Health Insurance (%) | 57.8% (67) | 66.7% (66) | 0.230 |
Racial/Ethnic Minority (%) | 77.6% (90) | 75.8% (75) | 0.877 |
Hispanic Ethnicity (%) | 44.8% (52) | 47.5% (47) | 0.802 |
Eating Pattern Characteristics | |||
Average Time of First Meal | 8:32 (1:34) | 9:16 (1:46) | 0.001 |
Average Time of Last Meal | 20:08 (1:45) | 19:58 (1:20) | 0.046 |
Average Nightly Fasting Duration (h) | 12.4 (2.0) | 13.3(2.3) | <0.001 |
Average Number of Eating Occasions | 3.9 (1.1) | 3.7 (1.0) | 0.001 |
Cardiovascular Risk Factors | |||
AHA LS7 | 10.7 (2.0) | 10.2 (2.6) | 0.049 |
Smokers (%) | 6.9% (8) | 5.0% (5) | 0.780 |
Moderate-to-Vigorous Intensity Physical Activity (h/day) | 4.1 (5.3) | 5.7 (7.5) | 0.113 |
BMI (kg/m2) | 25. 7 (5.4) | 25.9 (5.3) | 0.197 |
Overweight and Obesity (%) | 48.3% (56) | 51.5% (51) | 0.736 |
WC (inches) | 35.4 (4.9) | 36.2 (4.7) | 0.004 |
At-Risk WC (>35 inches) | 44.8% (52) | 43.4% (43) | 0.946 |
SBP (mmHg) | 116.0 (12.1) | 115.2 (11.9) | 0.459 |
DBP (mmHg) | 72.7 (10.6) | 72.2 (9.7) | 0.542 |
Fasting glucose (mg/dL) | 84.7 (21.2) | 92.6 (15.8) | <0.001 |
HbA1c (%) | 5.5 (0.7) | 5.5 (1.0) | 0.919 |
Total Cholesterol (mg/dL) | 169.7 (32.5) | 172.5 (29.8) | 0.762 |
LDL (mg/dL) | 96.6 (28.6) | 95.8 (25.4) | 0.270 |
HDL (mg/dL) | 57.5 (11.8) | 60.2 (12.9) | 0.020 |
Triglycerides (mg/dL) | 78.1 (36.2) | 82.1 (42.6) | 0.309 |
Per 1-h Increase in Average Nightly Fasting Duration | ||||||
---|---|---|---|---|---|---|
Cross-Sectional Analysis of Baseline Data (n = 116) b,c | Cross-Sectional Analysis of 1-y Data (n = 99) b,c | Prospective Associations of Baseline Exposures with Outcomes at 1-y (n = 99) b,c | ||||
Β (SE) | p-Value | Β (SE) | p-Value | Β (SE) | p-Value | |
CVH (AHA LS7 score) | −0.09 (0.09) | 0.329 | −0.22 (0.09) | 0.016 | −0.22 (0.11) | 0.050 |
BMI (kg/m2) | −0.02 (0.25) | 0.941 | 0.33 (0.29) | 0.256 | 0.31 (0.34) | 0.357 |
WC (inches) | −0.22 (0.22) | 0.323 | 0.09 (0.25) | 0.721 | 0.20 (0.29) | 0.501 |
SBP (mmHg) | 0.85 (0.56) | 0.130 | 1.00 (0.51) | 0.055 | 0.47 (0.81) | 0.566 |
DBP (mmHg) | 0.44 (0.49) | 0.378 | 1.08 (0.40) | 0.009 | 1.74 (0.63) | 0.007 |
Fasting glucose (mg/dl) | 0.66 (1.05) | 0.532 | −0.26 (0.97) | 0.791 | 1.17 (1.07) | 0.279 |
HbA1c (%) | 0.04 (0.03) | 0.260 | −0.001 (0.06) | 0.983 | 0.05 (0.07) | 0.436 |
Total Cholesterol (mg/dl) | −0.19 (1.43) | 0.895 | 0.04 (1.56) | 0.980 | −2.90 (1.72) | 0.097 |
HDL (mg/dl) | −0.14 (0.58) | 0.807 | −0.57 (0.76) | 0.454 | −0.62 (0.88) | 0.482 |
LDL (mg/dl) | −0.50 (1.28) | 0.696 | 0.75 (1.36) | 0.584 | −2.60 (1.51) | 0.088 |
Triglycerides (mg/dl) | 2.29 (1.77) | 0.198 | −0.84 (2.00) | 0.677 | 1.61 (2.77) | 0.562 |
Per 30-min Delay in Average Timing of First Eating Occasion | ||||||
---|---|---|---|---|---|---|
Cross-Sectional Analysis of Baseline Data (n = 116) b,c | Cross-Sectional Analysis of 1-y Data (n = 99) b,c | Prospective Associations of Baseline Exposures with Outcomes at 1-y (n = 99) b,c | ||||
Β (SE) | p-Value | Β (SE) | p-Value | Β (SE) | p-Value | |
CVH (AHA LS7 score) | −0.07 (0.06) | 0.234 | −0.11 (0.06) | 0.058 | −0.20 (0.08) | 0.013 |
BMI (kg/m2) | −0.04 (0.16) | 0.793 | 0.12 (0.18) | 0.498 | 0.30 (0.23) | 0.184 |
WC (inches) | −0.12 (0.15) | 0.415 | 0.11 (0.15) | 0.482 | 0.30 (0.19) | 0.123 |
SBP (mmHg) | 0.37 (0.37) | 0.313 | 0.58 (0.32) | 0.074 | 0.42 (0.54) | 0.439 |
DBP (mmHg) | 0.46 (0.32) | 0.151 | 0.53 (0.26) | 0.042 | 1.18 (0.42) | 0.006 |
Fasting glucose (mg/dl) | 0.54 (0.69) | 0.434 | −0.01 (0.60) | 0.990 | 1.43 (0.70) | 0.045 |
HbA1c (%) | 0.03 (0.02) | 0.154 | −0.002 (0.04) | 0.954 | 0.05 (0.05) | 0.281 |
Total Cholesterol (mg/dl) | −0.57 (0.94) | 0.547 | 0.35 (0.97) | 0.716 | −1.77 (1.15) | 0.128 |
HDL (mg/dl) | −0.29 (0.38) | 0.450 | −0.29 (0.47) | 0.546 | −0.30 (0.59) | 0.615 |
LDL (mg/dl) | −0.75 (0.83) | 0.370 | 0.59 (0.85) | 0.490 | −1.82 (1.00) | 0.075 |
Triglycerides (mg/dl) | 2.32 (1.15) | 0.045 | 0.15 (1.25) | 0.908 | 1.75 (1.84) | 0.375 |
Per One Additional Eating Occasion Each Day | ||||||
---|---|---|---|---|---|---|
Cross-Sectional Analysis of Baseline Data (n = 116) b,c | Cross-Sectional Analysis of One-Year Data (n = 99) b,c | Prospective Associations of Baseline Exposures with Outcomes at 1-y (n = 99) b,c | ||||
Β (SE) | p-Value | Β (SE) | p-Value | Β (SE) | p-Value | |
CVH (AHA LS7 score) | 0.01 (0.16) | 0.958 | 0.38 (0.21) | 0.073 | 0.22 (0.19) | 0.245 |
BMI (kg/m2) | −0.26 (0.46) | 0.581 | −1.06 (0.65) | 0.109 | −0.79 (0.53) | 0.156 |
WC (inches) | −0.02 (0.42) | 0.962 | −0.58 (0.56) | 0.302 | −0.27 (0.46) | 0.563 |
SBP (mmHg) | −0.95 (1.05) | 0.368 | −0.06 (1.20) | 0.960 | −0.84 (1.27) | 0.509 |
DBP (mmHg) | −1.94 (0.90) | 0.033 | −1.25 (0.95) | 0.193 | −3.37 (0.96) | 0.001 |
Fasting glucose (mg/dl) | −1.50 (1.94) | 0.442 | −1.17 (2.19) | 0.596 | −0.86 (1.68) | 0.611 |
HbA1c (%) | −0.06 (0.06) | 0.349 | −0.05 (0.14) | 0.715 | −0.09 (0.10) | 0.374 |
Total Cholesterol (mg/dl) | 0.15 (0.17) | 0.372 | 0.49 (3.53) | 0.889 | 4.45 (2.69) | 0.102 |
HDL (mg/dl) | 0.26 (1.07) | 0.806 | 0.56 (1.73) | 0.747 | 0.40 (1.38) | 0.772 |
LDL (mg/dl) | 1.53 (2.37) | 0.521 | −0.32 (3.10) | 0.918 | 3.75 (2.36) | 0.116 |
Triglycerides (mg/dl) | 0.58 (3.31) | 0.862 | 1.42 (4.55) | 0.756 | 1.55 (4.33) | 0.721 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarem, N.; Sears, D.D.; St-Onge, M.-P.; Zuraikat, F.M.; Gallo, L.C.; Talavera, G.A.; Castaneda, S.F.; Lai, Y.; Mi, J.; Aggarwal, B. Habitual Nightly Fasting Duration, Eating Timing, and Eating Frequency are Associated with Cardiometabolic Risk in Women. Nutrients 2020, 12, 3043. https://doi.org/10.3390/nu12103043
Makarem N, Sears DD, St-Onge M-P, Zuraikat FM, Gallo LC, Talavera GA, Castaneda SF, Lai Y, Mi J, Aggarwal B. Habitual Nightly Fasting Duration, Eating Timing, and Eating Frequency are Associated with Cardiometabolic Risk in Women. Nutrients. 2020; 12(10):3043. https://doi.org/10.3390/nu12103043
Chicago/Turabian StyleMakarem, Nour, Dorothy D. Sears, Marie-Pierre St-Onge, Faris M. Zuraikat, Linda C. Gallo, Gregory A. Talavera, Sheila F. Castaneda, Yue Lai, Junhui Mi, and Brooke Aggarwal. 2020. "Habitual Nightly Fasting Duration, Eating Timing, and Eating Frequency are Associated with Cardiometabolic Risk in Women" Nutrients 12, no. 10: 3043. https://doi.org/10.3390/nu12103043
APA StyleMakarem, N., Sears, D. D., St-Onge, M. -P., Zuraikat, F. M., Gallo, L. C., Talavera, G. A., Castaneda, S. F., Lai, Y., Mi, J., & Aggarwal, B. (2020). Habitual Nightly Fasting Duration, Eating Timing, and Eating Frequency are Associated with Cardiometabolic Risk in Women. Nutrients, 12(10), 3043. https://doi.org/10.3390/nu12103043