Daily Consumption of Coffee and Eating Bread at Breakfast Time Is Associated with Lower Visceral Adipose Tissue and with Lower Prevalence of Both Visceral Obesity and Metabolic Syndrome in Japanese Populations: A Cross-Sectional Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population and Design
2.2. Data Collection and Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paglia, L. WHO: Healthy diet to prevent chronic diseases and caries. Eur. J. Paediatr. Dent. 2018, 19, 5. [Google Scholar]
- Bowen, K.J.; Sullivan, V.K.; Kris-Etherton, P.M.; Petersen, K.S. Nutrition and Cardiovascular Disease-an Update. Curr. Atheroscler. Rep. 2018, 20, 8. [Google Scholar] [CrossRef]
- Yonekura, Y.; Terauchi, M.; Hirose, A.; Odai, T.; Kato, K.; Miyasaka, N. Daily Coffee and Green Tea Consumption Is Inversely Associated with Body Mass Index, Body Fat Percentage, and Cardio-Ankle Vascular Index in Middle-Aged Japanese Women: A Cross-Sectional Study. Nutrients 2020, 12, 1370. [Google Scholar] [CrossRef]
- Shang, F.; Li, X.; Jiang, X. Coffee consumption and risk of the metabolic syndrome: A meta-analysis. Diabetes Metab. 2016, 42, 80–87. [Google Scholar] [CrossRef]
- Lee, A.; Lim, W.; Kim, S.; Khil, H.; Cheon, E.; An, S.; Hong, S.; Lee, D.H.; Kang, S.S.; Oh, H.; et al. Coffee Intake and Obesity: A Meta-Analysis. Nutrients 2019, 11, 1274. [Google Scholar] [CrossRef] [Green Version]
- Thielecke, F.; Boschmann, M. The potential role of green tea catechins in the prevention of the metabolic syndrome—A review. Phytochemistry 2009, 70, 11–24. [Google Scholar] [CrossRef]
- Dinh, T.C.; Thi Phuong, T.N.; Minh, L.B.; Minh Thuc, V.T.; Bac, N.D.; Van Tien, N.; Pham, V.H.; Show, P.L.; Tao, Y.; Nhu Ngoc, V.T.; et al. The effects of green tea on lipid metabolism and its potential applications for obesity and related metabolic disorders—An existing update. Diabetes Metab. Syndr. 2019, 13, 1667–1673. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Bautista-Castaño, I.; Serra-Majem, L. Relationship between bread consumption, body weight, and abdominal fat distribution: Evidence from epidemiological studies. Nutr. Rev. 2012, 70, 218–233. [Google Scholar] [CrossRef]
- Wakai, K.; Hamajima, N.; Okada, R.; Naito, M.; Morita, E.; Hishida, A.; Kawai, S.; Nishio, K.; Yin, G.; Asai, Y.; et al. Profile of Participants and Genotype Distributions of 108 Polymorphisms in a Cross-Sectional Study of Associations of Genotypes With Lifestyle and Clinical Factors: A Project in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. J. Epidemiol. 2011, 21, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Haraguchi, N.; Koyama, T.; Kuriyama, N.; Ozaki, E.; Matsui, D.; Watanabe, I.; Uehara, R.; Watanabe, Y. Assessment of anthropometric indices other than BMI to evaluate arterial stiffness. Hypertens. Res 2019, 42, 1599–1605. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Higaki, Y.; Taguchi, N.; Shinchi, K.; Morita, E.; Naito, M.; Hamajima, N.; Takashima, N.; Suzuki, S.; Nakamura, A.; et al. Effect of the PPARG2 Pro12Ala polymorphism and clinical risk factors for diabetes mellitus on HbA1c in the Japanese general population. J. Epidemiol. 2012, 22, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Hachiya, T.; Sutoh, Y.; Matsuo, K.; Nishida, Y.; Shimanoe, C.; Tanaka, K.; Shimizu, A.; Ohnaka, K.; Kawaguchi, T.; et al. Genomewide Association Study of Leisure-Time Exercise Behavior in Japanese Adults. Med. Sci. Sports Exerc. 2018, 50, 2433–2441. [Google Scholar] [CrossRef]
- New criteria for ‘obesity disease’ in Japan. Circ. J. Off. J. Jpn. Circ. Soc. 2002, 66, 987–992.
- Yamagishi, K.; Iso, H. The criteria for metabolic syndrome and the national health screening and education system in Japan. Epidemiol. Health 2017, 39, e2017003. [Google Scholar] [CrossRef] [Green Version]
- Ida, M.; Hirata, M.; Odori, S.; Mori, E.; Kondo, E.; Fujikura, J.; Kusakabe, T.; Ebihara, K.; Hosoda, K.; Nakao, K. Early changes of abdominal adiposity detected with weekly dual bioelectrical impedance analysis during calorie restriction. Obesity (Silver Spring) 2013, 21, E350–E353. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, J.H.; Bhatti, S.K.; Patil, H.R.; DiNicolantonio, J.J.; Lucan, S.C.; Lavie, C.J. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J. Am. Coll. Cardiol. 2013, 62, 1043–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harpaz, E.; Tamir, S.; Weinstein, A.; Weinstein, Y. The effect of caffeine on energy balance. J. Basic Clin. Physiol. Pharmacol. 2017, 28, 1–10. [Google Scholar] [CrossRef]
- Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic Acid on regulating glucose and lipids metabolism: A review. Evid. Based Complement. Alternat. Med. 2013, 2013, 801457. [Google Scholar] [CrossRef]
- Watanabe, T.; Kobayashi, S.; Yamaguchi, T.; Hibi, M.; Fukuhara, I.; Osaki, N. Coffee Abundant in Chlorogenic Acids Reduces Abdominal Fat in Overweight Adults: A Randomized, Double-Blind, Controlled Trial. Nutrients 2019, 11, 1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibi, M.; Takase, H.; Iwasaki, M.; Osaki, N.; Katsuragi, Y. Efficacy of tea catechin-rich beverages to reduce abdominal adiposity and metabolic syndrome risks in obese and overweight subjects: A pooled analysis of 6 human trials. Nutr. Res. 2018, 55, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Shi, D.; Su, B.; Wei, J.; Găman, M.A.; Sedanur Macit, M.; Borges do Nascimento, I.J.; Guimaraes, N.S. The effect of green tea supplementation on obesity: A systematic review and dose-response meta-analysis of randomized controlled trials. Phytother. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Jurgens, T.M.; Whelan, A.M.; Killian, L.; Doucette, S.; Kirk, S.; Foy, E. Green tea for weight loss and weight maintenance in overweight or obese adults. Cochrane Database Syst. Rev. 2012, 12, Cd008650. [Google Scholar] [CrossRef] [PubMed]
- Sae-tan, S.; Grove, K.A.; Lambert, J.D. Weight control and prevention of metabolic syndrome by green tea. Pharmacol. Res. 2011, 64, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Legeay, S.; Rodier, M.; Fillon, L.; Faure, S.; Clere, N. Epigallocatechin Gallate: A Review of Its Beneficial Properties to Prevent Metabolic Syndrome. Nutrients 2015, 7, 5443–5468. [Google Scholar] [CrossRef] [Green Version]
- Hino, A.; Adachi, H.; Enomoto, M.; Furuki, K.; Shigetoh, Y.; Ohtsuka, M.; Kumagae, S.; Hirai, Y.; Jalaldin, A.; Satoh, A.; et al. Habitual coffee but not green tea consumption is inversely associated with metabolic syndrome: An epidemiological study in a general Japanese population. Diabetes Res. Clin. Pract. 2007, 76, 383–389. [Google Scholar] [CrossRef]
- Takami, H.; Nakamoto, M.; Uemura, H.; Katsuura, S.; Yamaguchi, M.; Hiyoshi, M.; Sawachika, F.; Juta, T.; Arisawa, K. Inverse correlation between coffee consumption and prevalence of metabolic syndrome: Baseline survey of the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study in Tokushima, Japan. J. Epidemiol. 2013, 23, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Oz, H.S. Chronic Inflammatory Diseases and Green Tea Polyphenols. Nutrients 2017, 9, 561. [Google Scholar] [CrossRef]
- Funahashi, T.; Matsuzawa, Y. Adiponectin and the cardiometabolic syndrome: An epidemiological perspective. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 93–106. [Google Scholar] [CrossRef]
- Izadi, V.; Larijani, B.; Azadbakht, L. Is Coffee and Green Tea Consumption Related to Serum Levels of Adiponectin and Leptin? Int. J. Prev. Med. 2018, 9, 106. [Google Scholar] [PubMed]
- Serra-Majem, L.; Bautista-Castaño, I. Relationship between bread and obesity. Br. J. Nutr. 2015, 113 (Suppl. S2), S29–S35. [Google Scholar] [CrossRef] [PubMed]
All = 3539 | Male = 1239 | Female = 2300 | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
Age (year) | 57.6 | 10. | 58.6 | 10.1 | 57.0 | 9.9 | <0.001 |
BMI (kg/m2) | 22.2 | 3.24 | 23.5 | 2.98 | 21.6 | 3.16 | <0.001 |
SBP (mmHg) | 129 | 19.2 | 135 | 18.0 | 126 | 19.0 | <0.001 |
DBP (mmHg) | 79.2 | 11.3 | 83.1 | 10.8 | 77.1 | 11.1 | <0.001 |
TG (mg/dL) | 100 | 72.3 | 122 | 87.7 | 88.4 | 59.1 | <0.001 |
Total cholesterol (mg/dL) | 217 | 36.0 | 205 | 31.9 | 223 | 36.5 | <0.001 |
HDL-C (mg/dL) | 69.9 | 17.1 | 61.1 | 15.0 | 74.6 | 16.2 | <0.001 |
LDL-C (mg/dL) | 126 | 31.0 | 122 | 29.3 | 128 | 31.6 | <0.001 |
HbA1c (%) | 5.58 | 0.46 | 5.64 | 0.55 | 5.55 | 0.41 | <0.001 |
METs (hours/day) | 14.5 | 10.3 | 13.9 | 10.6 | 14.9 | 10.2 | 0.006 |
WC (cm) | 80.9 | 9.26 | 84.9 | 8.35 | 78.7 | 9.00 | <0.001 |
VAT (cm2) | 61.5 | 32.7 | 79.5 | 35.4 | 51.8 | 26.4 | <0.001 |
Brinkman index | 212 | 408 | 489 | 541 | 63.7 | 189 | <0.001 |
Alcohol (g/day) | 11.9 | 20.8 | 22.0 | 27.9 | 6.49 | 12.8 | <0.001 |
Sleep time (hour) | 6.40 | 0.98 | 6.49 | 1.00 | 6.35 | 0.96 | <0.001 |
n | % | n | % | n | % | ||
Obesity (BMI ≥ 25) | 656 | 25.2 | 353 | 28.5 | 303 | 13.2 | <0.001 |
Visceral obesity (VAT ≥ 100) | 436 | 12.3 | 327 | 26.4 | 109 | 4.7 | <0.001 |
Metabolic syndrome | 557 | 15.7 | 398 | 32.1 | 159 | 6.9 | <0.001 |
Medication | n | % | n | % | n | % | |
Hypertension | 590 | 16.7 | 306 | 24.7 | 284 | 12.3 | <0.001 |
Dyslipidemia | 540 | 15.3 | 212 | 17.1 | 328 | 14.3 | 0.014 |
Diabetes | 112 | 3.2 | 73 | 5.9 | 39 | 1.7 | <0.001 |
Coffee consumption | n | % | n | % | n | % | |
Less than daily | 991 | 28.0 | 354 | 28.6 | 637 | 27.7 | <0.001 |
1 time/day | 999 | 28.2 | 315 | 25.4 | 684 | 29.7 | |
2 times/day | 891 | 25.2 | 290 | 23.4 | 601 | 26.1 | |
Over 3 times/day | 658 | 18.6 | 280 | 22.6 | 378 | 16.4 | |
Green tea consumption | n | % | n | % | n | % | |
Less than daily | 1793 | 50.6 | 661 | 53.3 | 1132 | 49.2 | <0.001 |
1 time/day | 536 | 15.1 | 206 | 16.6 | 330 | 14.3 | |
2 times/day | 431 | 12.2 | 146 | 11.8 | 285 | 12.4 | |
Over 3 times/day | 779 | 22.0 | 226 | 18.2 | 553 | 24.0 | |
Breakfast bread consumption | |||||||
every day | 1472 | 41.6 | 479 | 38.7 | 993 | 43.2 | 0.005 |
Coffee | Green Tea | |||
---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |
BMI | 0.023 | 0.172 | −0.011 | 0.499 |
SBP | −0.026 | 0.128 | 0.061 | <0.001 |
DBP | −0.009 | 0.579 | 0.018 | 0.283 |
Triglycerides | −0.006 | 0.001 | 0.034 | 0.043 |
Total cholesterol | 0.002 | 0.925 | 0.037 | 0.029 |
LDL-C | 0.023 | 0.170 | −0.002 | 0.898 |
HDL-C | 0.012 | 0.477 | 0.033 | 0.048 |
HbA1c | −0.020 | 0.239 | 0.065 | <0.001 |
METs | −0.004 | 0.794 | 0.021 | 0.218 |
WC (cm) | −0.014 | 0.422 | 0.000 | 0.983 |
VAT | −0.049 | 0.003 | 0.005 | 0.752 |
Brinkman index | 0.109 | <0.001 | −0.075 | <0.001 |
Alcohol (g/day) | 0.032 | 0.059 | −0.090 | <0.001 |
sleep time | −0.053 | 0.002 | 0.024 | 0.161 |
Coffee | Green Tea | |||
---|---|---|---|---|
Beta | p-Value | Beta | p-Value | |
BMI | −0.004 | 0.928 | 0.029 | 0.489 |
VAT | −1.652 | <0.001 | 0.312 | 0.428 |
Coffee More Than 1 Time/Day | Green Tea More Than 1 Time/Day | Coffee More Than 1 Time/Day and Eating Bread at Breakfast Time (n = 1172) | Green Tea More Than 1 Time/Day and Eating Bread at Breakfast Time (n = 730) | |||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Obesity (BMI ≥ 25) | 0.869 | 0.715–1.055 | 0.983 | 0.821–1.176 | 0.613 | 0.500–0.751 | 0.645 | 0.504–0.825 |
Visceral obesity (VAT ≥ 100) | 0.746 | 0.588–0.947 | 1.105 | 0.885–1.380 | 0.549 | 0.425–0.710 | 0.778 | 0.578–1.047 |
Metabolic syndrome | 0.706 | 0.565–0.882 | 0.980 | 0.796–1.206 | 0.586 | 0.464–0.741 | 0.659 | 0.499–0.870 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koyama, T.; Maekawa, M.; Ozaki, E.; Kuriyama, N.; Uehara, R. Daily Consumption of Coffee and Eating Bread at Breakfast Time Is Associated with Lower Visceral Adipose Tissue and with Lower Prevalence of Both Visceral Obesity and Metabolic Syndrome in Japanese Populations: A Cross-Sectional Study. Nutrients 2020, 12, 3090. https://doi.org/10.3390/nu12103090
Koyama T, Maekawa M, Ozaki E, Kuriyama N, Uehara R. Daily Consumption of Coffee and Eating Bread at Breakfast Time Is Associated with Lower Visceral Adipose Tissue and with Lower Prevalence of Both Visceral Obesity and Metabolic Syndrome in Japanese Populations: A Cross-Sectional Study. Nutrients. 2020; 12(10):3090. https://doi.org/10.3390/nu12103090
Chicago/Turabian StyleKoyama, Teruhide, Mizuho Maekawa, Etsuko Ozaki, Nagato Kuriyama, and Ritei Uehara. 2020. "Daily Consumption of Coffee and Eating Bread at Breakfast Time Is Associated with Lower Visceral Adipose Tissue and with Lower Prevalence of Both Visceral Obesity and Metabolic Syndrome in Japanese Populations: A Cross-Sectional Study" Nutrients 12, no. 10: 3090. https://doi.org/10.3390/nu12103090