Optimizing Nitrogen Balance Is Associated with Better Outcomes in Neurocritically Ill Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Baseline Characteristics and Clinical Information
2.3. Nutrition Support with Monitoring
2.4. Outcome Assessments
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Availability of Data and Materials
References
- Wilcockson, D.C.; Campbell, S.J.; Anthony, D.C.; Perry, V.H. The systemic and local acute phase response following acute brain injury. J. Cereb. Blood Flow Metab. 2002, 22, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Lew, C.C.H.; Wong, G.J.Y.; Cheung, K.P.; Chua, A.P.; Chong, M.F.F.; Miller, M. Association between Malnutrition and 28-Day Mortality and Intensive Care Length-of-Stay in the Critically ill: A Prospective Cohort Study. Nutrients 2017, 23, 10. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, K.M.; Horkan, C.M.; Purtle, S.W.; Moromizato, T.; Rawn, J.D.; Robinson, M.K.; Christopher, K.B. Malnutrition, critical illness survivors, and postdischarge outcomes: A cohort study. J. Parenter. Enter. Nutr. 2018, 42, 557–565. [Google Scholar] [CrossRef]
- Lee-anne, S.C.; Chapman, M.J.; Lange, K.; Deane, A.M.; Heyland, D.K. Nutrition support practices in critically ill head-injured patients: A global perspective. Crit. Care 2016, 7, 6. [Google Scholar]
- Weijs, P.J.; Stapel, S.N.; De Groot, S.D.W.; Driessen, R.H.; De Jong, E.; Girbes, A.R.J.; Van Schijndel, R.J.M.S.; Beishuizen, A. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: A prospective observational cohort study. J. Parenter. Enter. Nutr. 2012, 36, 60–68. [Google Scholar] [CrossRef]
- Badjatia, N.; Fernandez, L.; Schlossberg, M.J.; Schmidt, J.M.; Claassen, J.; Lee, K.; Connolly, E.S.; Mayer, S.A.; Rosenbaum, M. Relationship between energy balance and complications after subarachnoid hemorrhage. J. Parenter. Enter. Nutr. 2010, 34, 64–69. [Google Scholar] [CrossRef]
- Allingstrup, M.J.; Kondrup, J.; Wiis, J.; Claudius, C.; Pedersen, U.G.; Hein-Rasmussen, R.; Bjerregaard, M.R.; Steensen, M.; Jensen, T.H.; Lange, T.; et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: The single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensive Care Med. 2017, 43, 1637–1647. [Google Scholar] [CrossRef]
- Rice, T.W.; Wheeler, A.P.; Thompson, B.T.; Steingrub, J.; Hite, R.D.; Moss, M.; Morris, A.; Dong, N.; Rock, P. Initial Trophic vs Full Enteral Feeding in Patients With Acute Lung Injury: The EDEN Randomized Trial. JAMA 2012, 307, 795–803. [Google Scholar]
- Doig, G.; Simpson, F.; Bellomo, R.; Heighes, P.T.; Sweetman, E.A.; Chesher, D.; Pollock, C.; Davies, A.; Botha, J.; Harrigan, P.; et al. Intravenous amino acid therapy for kidney function in critically ill patients: A randomized controlled trial. Intensiv. Care Med. 2015, 41, 1197–1208. [Google Scholar] [CrossRef]
- Rooyackers, O.; Rehal, M.S.; Liebau, F.; Norberg, Å.; Wernerman, J. High protein intake without concerns? Crit Care 2017, 21, 106. [Google Scholar] [CrossRef] [Green Version]
- Heyland, D.K.; Cahill, N.; Day, A.G. Optimal amount of calories for critically ill patients: Depends on how you slice the cake! Crit. Care Med. 2011, 39, 2619–2626. [Google Scholar] [CrossRef] [PubMed]
- Allingstrup, M.J.; Esmailzadeh, N.; Knudsen, A.W.; Espersen, K.; Jensen, T.H.; Wiis, J.; Perner, A.; Kondrup, J. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin. Nutr. 2012, 31, 462–468. [Google Scholar] [CrossRef]
- Koekkoek, W.; Van Setten, C.; Olthof, L.E.; Kars, J.; Van Zanten, A. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study. Clin. Nutr. 2019, 38, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Badjatia, N.; Monahan, A.; Carpenter, A.; Zimmerman, J.; Schmidt, J.M.; Claassen, J.; Connolly, E.S.; Mayer, S.A.; Karmally, W.; Seres, D. Inflammation, negative nitrogen balance, and outcome after aneurysmal subarachnoid hemorrhage. Neurology 2015, 84, 680–687. [Google Scholar] [CrossRef] [Green Version]
- Bidkar, P.U. Nutrition in neuro-intensive care and outcomes. J. Neuroanaesth. Crit. Care 2016, 3, S70–S76. [Google Scholar] [CrossRef]
- Tripathy, S. Nutrition in the neurocritical care unit. J. Neuroanaesth. Crit. Care 2015, 2, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Heyland, D.K.; Weijs, P.J.; Coss-Bu, J.A.; Taylor, B.E.; Kristof, A.S.; O’Keefe, G.E.; Martindale, R.G. Protein Delivery in the Intensive Care Unit: Optimal or Suboptimal? Nutr. Clin. Pract. 2017, 32, 58S–71S. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, G.L.; Bistrian, B.R.; Maini, B.S.; Schlamm, H.T.; Smith, M.F. Nutritional and metabolic assessment of the hospitalized patient. J. Parenter. Enter. Nutr. 1977, 1, 11–21. [Google Scholar] [CrossRef]
- Dickerson, R.N.; Tidwell, A.C.; Minard, G.; Croce, M.A.; Brown, R.O. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple-trauma patients receiving specialized nutritional support. Nutrition 2005, 21, 332–338. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S.; Force, A.D.T. Acute Respiratory Distress Syndrome. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Liumbruno, G.; Bennardello, F.; Lattanzio, A.; Piccoli, P.; Rossetti, G. Recommendations for the transfusion of red blood cells. Blood Transfus. 2009, 7, 49–64. [Google Scholar]
- Ehrenfest, D.M.D.; Rasmusson, L.; Albrektsson, T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009, 27, 158–167. [Google Scholar] [CrossRef]
- Ewalenko, P.; DeLoof, T.; Peeters, J. Composition of fresh frozen plasma. Crit. Care Med. 1986, 14, 145–146. [Google Scholar] [CrossRef]
- Capuzzo, M.; Valpondi, V.; Sgarbi, A.; Bortolazzi, S.; Pavoni, V.; Gilli, G.; Candini, G.; Gritti, G.; Alvisi, R. Validation of severity scoring systems SAPS II and APACHE II in a single-center population. Intensiv. Care Med. 2000, 26, 1779–1785. [Google Scholar] [CrossRef]
- Hsu, P.-H.; Lee, C.-H.; Kuo, L.-K.; Kung, Y.-C.; Chen, W.-J.; Tzeng, M.-S. Determination of the energy requirements in mechanically ventilated critically ill elderly patients in different BMI groups using the Harris–Benedict equation. J. Formos. Med. Assoc. 2018, 117, 301–307. [Google Scholar] [CrossRef]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient. J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Heyland, D.K.; Dhaliwal, R.; Jiang, X.; Day, A.G. Identifying critically ill patients who benefit the most from nutrition therapy: The development and initial validation of a novel risk assessment tool. Crit. Care 2011, 15, R268. [Google Scholar] [CrossRef] [Green Version]
- Pai, M.P.; Paloucek, F.P. The origin of the “ideal” body weight equations. Ann. Pharmacother. 2000, 34, 1066–1069. [Google Scholar] [CrossRef]
- Tuck, M.L.; Sowers, J.; Dornfeld, L.; Kledzik, G.; Maxwell, M. The Effect of Weight Reduction on Blood Pressure, Plasma Renin Activity, and Plasma Aldosterone Levels in Obese Patients. N. Engl. J. Med. 1981, 304, 930–933. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, C.K.; Jung, S.; Ko, S.-B.; Lee, D.-S.; Yoon, B.-W. Prognostic importance of weight change on short-term functional outcome in acute ischemic stroke. Int. J. Stroke 2015, 10, 62–68. [Google Scholar] [CrossRef]
- Rangaraju, S.; Haussen, D.; Nogueira, R.G.; Nahab, F.; Frankel, M. Comparison of 3-Month Stroke Disability and Quality of Life across Modified Rankin Scale Categories. Interv. Neurol. 2016, 6, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Banks, J.L.; Marotta, C.A. Outcomes Validity and Reliability of the Modified Rankin Scale: Implications for Stroke Clinical Trials. Stroke 2007, 38, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Lord, A.S.; Gilmore, E.; Choi, H.A.; Mayer, S.A. Time Course and Predictors of Neurological Deterioration After Intracerebral Hemorrhage. Stroke 2015, 46, 647–652. [Google Scholar] [CrossRef] [Green Version]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S.; et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Preiser, J.-C.; Ichai, C.; Orban, J.-C.; Groeneveld, A.B.J. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014, 113, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Cheatham, M.L.; Safcsak, K.; Brzezinski, S.J.; Lube, M.W. Nitrogen balance, protein loss, and the open abdomen. Crit. Care Med. 2007, 35, 127–131. [Google Scholar] [CrossRef]
- Weijs, P.J.M.; Looijaard, W.G.P.M.; Beishuizen, A.; Girbes, A.R.J.; Van Straaten, H.M.O. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit. Care 2014, 18, 701. [Google Scholar] [CrossRef] [Green Version]
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care 2016, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Singer, P.; Anbar, R.; Cohen, J.; Shapiro, H.; Shalita-Chesner, M.; Lev, S.; Grozovski, E.; Theilla, M.; Frishman, S.; Madar, Z. The tight calorie control study (TICACOS): A prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensiv. Care Med. 2011, 37, 601–609. [Google Scholar] [CrossRef]
- Donatelli, F.; Nafi, M.; Di Nicola, M.; MacChitelli, V.; Mirabile, C.; Lorini, L.; Carli, F. Twenty-four hour hyperinsulinemic-euglycemic clamp improves postoperative nitrogen balance only in low insulin sensitivity patients following cardiac surgery. Acta Anaesthesiol. Scand. 2015, 59, 710–722. [Google Scholar] [CrossRef] [PubMed]
- Felicetti-Lordani, C.R.; Eckert, R.G.; Valerio, N.M.; Lordani, T.V.; Jorge, A.C.; Duarte, P.A. Nitrogen Balance in Nutritional Monitoring of Critically Ill Adult Patients: A Prospective Observational Study. Med. Surg. Intens. Care Med. 2017, 8, 59–64. [Google Scholar]
- Hoffer, L.J.; Bistrian, B.R. Appropriate protein provision in critical illness: A systematic and narrative review. Am. J. Clin. Nutr. 2012, 96, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.J.; Dumont, N.; Clemente, R.; Allan, K.; Downer, C.; Mitchell, A. Critical care: Meeting protein requirements without overfeeding energy. Clin. Nutr. ESPEN 2016, 11, e55–e62. [Google Scholar] [CrossRef]
- Burgos, R.; Bretón, I.; Cereda, E.; Desport, J.C.; Dziewas, R.; Genton, L.; Gomes, F.; Jésus, P.; Leischker, A.; Muscaritoli, M.; et al. ESPEN guideline clinical nutrition in neurology. Clin. Nutr. 2018, 37, 354–396. [Google Scholar] [CrossRef] [Green Version]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Scheinkestel, C.D.; Adams, F.; Mahony, L.; Bailey, M.; Davies, A.R.; Nyulasi, I.; Tuxen, D.V. Impact of increasing parenteral protein loads on amino acid levels and balance in critically ill anuric patients on continuous renal replacement therapy. Nutrition 2003, 19, 733–740. [Google Scholar] [CrossRef]
- Ziegler, T.R. Parenteral Nutrition in the Critically Ill Patient. N. Engl. J. Med. 2009, 361, 1088–1097. [Google Scholar] [CrossRef] [Green Version]
- Guadagni, M.; Biolo, G. Effects of inflammation and/or inactivity on the need for dietary protein. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 617–622. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Padhke, R.; Dew, T.; Sidhu, P.S.; et al. Acute Skeletal Muscle Wasting in Critical Illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef] [Green Version]
- Carraro, V.; Maurin, A.-C.; Lambert-Langlais, S.; Averous, J.; Chaveroux, C.; Parry, L.; Jousse, C.; Ord, D.; Ord, T.; Fafournoux, P.; et al. Amino acid availability controls TRB3 transcription in liver through the GCN2/eIF2α/ATF4 pathway. PLoS ONE 2010, 5, e15716. [Google Scholar] [CrossRef] [Green Version]
- Gallinetti, J.; Harputlugil, E.; Mitchell, J.R. Amino acid sensing in dietary-restriction-mediated longevity: Roles of signal-transducing kinases GCN2 and TOR. Biochem. J. 2012, 449, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Appenzeller-Herzog, C.; Hall, M.N. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol. 2012, 22, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.; Rooyackers, O.; Ebellander, B.-M.; Wernerman, J. Whole body protein kinetics during hypocaloric and normocaloric feeding in critically ill patients. Crit. Care 2013, 17, R158. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, L.V.; Rolf, J.; Emslie, E.; Shi, Y.-B.; Taylor, P.M.; Cantrell, D.A. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 2013, 14, 500–508. [Google Scholar] [CrossRef] [Green Version]
- Cobbold, S.P.; Adams, E.; Farquhar, C.A.; Nolan, K.F.; Howie, D.; Lui, K.O.; Fairchild, P.J.; Mellor, A.L.; Ron, D.; Waldmann, H. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl. Acad. Sci. USA 2009, 106, 12055–12060. [Google Scholar] [CrossRef] [Green Version]
- Fielhaber, J.A.; Carroll, S.F.; Dydensborg, A.B.; Shourian, M.; Triantafillopoulos, A.; Harel, S.; Hussain, S.N.; Bouchard, M.; Qureshi, S.T.; Kristof, A.S. Inhibition of Mammalian Target of Rapamycin Augments Lipopolysaccharide-Induced Lung Injury and Apoptosis. J. Immunol. 2012, 188, 4535–4542. [Google Scholar] [CrossRef] [Green Version]
- Tabas, I.; Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 2011, 13, 184–190. [Google Scholar] [CrossRef]
- Schmitz, F.; Heit, A.; Dreher, S.; Eisenächer, K.; Mages, J.; Haas, T.; Krug, A.; Janssen, K.-P.; Kirschning, C.J.; Wagner, H. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. Eur. J. Immunol. 2008, 38, 2981–2992. [Google Scholar] [CrossRef]
- Scheinkestel, C.D.; Kar, L.; Marshall, K.; Bailey, M.; Davies, A.; Nyulasi, I.; Tuxen, D.V. Prospective randomized trial to assess caloric and protein needs of critically Ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition 2003, 19, 909–916. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Positive Nitrogen Balance (n = 35, 20%) | Negative Nitrogen Balance (n = 140, 80%) | p-Value | |
---|---|---|---|
Age (years), mean ± SD | 56.4 ± 15.7 | 60.3 ± 18.1 | 0.246 |
Male, n (%) | 13 (37.1) | 75 (53.6) | 0.082 |
BMI (kg/m2), mean ± SD | 22.5 ± 3.8 | 23.0 ± 4.0 | 0.478 |
HT, n (%) | 14 (40.0) | 60 (42.9) | 0.760 |
DM, n (%) | 4 (11.4) | 32 (22.9) | 0.135 |
HL, n (%) | 5 (14.3) | 21 (15.0) | 0.915 |
CAD, n (%) | 0 (0.0) | 9 (6.4) | 0.207 |
A. fib, n (%) | 1 (2.9) | 17 (12.1) | 0.129 |
Previous stroke/TIA, n (%) | 4 (11.4) | 22 (15.7) | 0.607 |
Cancer, n (%) | 2 (5.7) | 17 (12.1) | 0.372 |
GI diseases, n (%) | 1 (2.9) | 4 (2.9) | 1.000 |
Initial GCS, median (IQR) | 13 (9–14) | 8 (6–12.75) | <0.001 |
F/U GCS, median (IQR) | 14 (12–15) | 11 (5–13) | <0.001 |
APACHE II score, median (IQR) | 21 (15–24) | 24 (19–28) | 0.025 |
NUTRIC score, median (IQR) | 3 (2–4) | 4 (3–5) | 0.006 |
Protein balance * (g/day), mean ± SD, | 20.2 ± 23.5 | −61.4 ± 39.6 | <0.001 |
% of IBW, mean ± SD | 107.4 ± 20.1 | 109.4 ± 20.4 | 0.614 |
Protein (g/kg/day), mean ± SD | 1.58 ± 0.40 | 0.58 ± 0.48 | <0.001 |
Calories (kcal/kg/day), mean ± SD | 25.6 ± 7.3 | 11.7 ± 9.5 | <0.001 |
Diagnosis, n (%) | 0.056 | ||
IS | 1 (2.9) | 25 (17.9) | |
SAH | 9 (25.7) | 21 (15.0) | |
SDH | 2 (5.7) | 22 (15.7) | |
ICH | 10 (28.6) | 23 (16.4) | |
SE | 2 (5.7) | 5 (3.6) | |
Others | 11 (31.4) | 44 (31.4) | |
Nutrition supplement, n (%) | 0.002 | ||
NPO | 0 (0) | 32 (23.0) | |
EN | 32 (94.1) | 101 (75.9) | |
PN | 2 (5.9) | 6 (4.3) | |
Managements, n (%) | <0.001 | ||
Coma therapy | 0 (0) | 8 (5.7) | |
TTM | 0 (0) | 8 (5.7) | |
Decompressive surgery | 0 (0) | 10 (7.1) | |
Decompressive surgery with TTM | 0 (0.0) | 6 (4.3) | |
Others | 2 (5.7) | 35 (25.0) | |
Blood transfusion, n (%) | 1.000 | ||
Packed red blood cell | 0 (0.0) | 3 (2.1) | |
Platelets | 0 (0.0) | 1 (0.7) | |
NICU admission to UUN day, median (IQR) | 1 (1–2) | 1 (1–2) | 0.935 |
Good outcome at 3 months (mRS = 0–3), n (%) | 23 (65.7) | 47 (33.6) | 0.001 |
Neurological worsening, n (%) | 2 (5.7) | 34 (24.3) | 0.015 |
In hospital mortality, n (%) | 2 (5.7) | 29 (20.7) | 0.038 |
Hospital length of stay, median (IQR) | 19.0 (12.0–29.0) | 28.0 (18.25–49.50) | 0.002 |
NICU length of stay, median (IQR) | 4.0 (3.0–11.0) | 13.0 (7.0–22.0) | <0.001 |
Improvement of Nitrogen Balance (n = 39, 50.6%) | No Improvement/Aggravation of Nitrogen Balance (n = 38, 49.4%) | p-Value | |
---|---|---|---|
Age (years), mean ± SD | 62.7 ± 15.1 | 58.6 ± 17.5 | 0.273 |
Male, n (%) | 21 (53.8) | 20 (52.6) | 0.915 |
BMI (Kg/m2), mean ± SD | 22.1 ± 4.2 | 23.0 ± 3.9 | 0.375 |
HT, n (%) | 16 (41.0) | 19 (50.0) | 0.429 |
DM, n (%) | 7 (17.9) | 11 (28.9) | 0.254 |
HL, n (%) | 5 (12.8) | 5 (13.2) | 1.000 |
CAD, n (%) | 3 (7.7) | 2 (5.3) | 1.000 |
A. fib, n (%) | 5 (12.8) | 5 (13.2) | 1.000 |
Previous stroke/TIA, n (%) | 12 (30.8) | 3 (7.9) | 0.011 |
Cancer, n (%) | 3 (7.7) | 5 (13.2) | 0.481 |
GI diseases, n (%) | 1 (2.6) | 1 (2.6) | 1.000 |
Initial GCS, median (IQR) | 6.0 (5–11) | 6.5 (5–11.25) | 0.750 |
F/U GCS, median (IQR) | 9.0 (6.0–13.0) | 7.0 (3–12.25) | 0.075 |
APACHE II score, median (IQR) | 25 (21–28) | 26 (21.5–28.5) | 0.478 |
NUTRIC score, median (IQR) | 4 (3–5) | 4 (3–5) | 0.343 |
Nutritional support, n (%) | 39 (97.4) | 34 (89.5) | 0.200 |
Initial protein balance (g/day), mean ± SD | −58.3 ± 40.6 | −55.7 ± 40.7 | 0.782 |
Initial negative nitrogen balance, n (%) | 36 (92.3) | 35 (92.1) | 1.000 |
% of IBW, mean ± SD | 105.7 ± 21.3 | 110.8 ± 21.1 | 0.289 |
Body weight loss, n (%) | 17 (43.6) | 19 (50.0) | 0.573 |
Total I/O, mean ± SD | 1742.3 ± 3630.6 | 1658.8 ± 2384.7 | 0.906 |
Negative I/O, n (%) | 12 (30.8) | 9 (23.7) | 0.485 |
Diagnosis, n (%) | 0.445 | ||
IS | 10 (25.6) | 5 (13.2) | |
SAH | 10 (25.6) | 8 (21.1) | |
SDH | 6 (15.4) | 8 (21.1) | |
ICH | 6 (15.4) | 8 (21.1) | |
SE | 2 (5.1) | 1 (2.6) | |
Others | 5 (12.8) | 11 (28.9) | |
Initial Nutrition supplement, n (%) | 0.077 | ||
NPO | 8 (20.5) | 13 (34.2) | |
EN | 27 (69.2) | 25 (65.8) | |
PN | 4 (10.3) | 0 (0.0) | |
F/U Nutrition supplement, n (%) | 0.341 | ||
EN | 17 (43.6) | 23 (60.5) | |
PN | 3 (7.7) | 3 (7.9) | |
EN with PN | 19 (48.7) | 12 (31.6) | |
Protein intake on admission (g/kg), mean ± SD | 0.66 ± 0.56 | 0.54 ± 0.48 | 0.289 |
Calorie intake on admission (kcal/kg), mean ± SD | 12.0 ± 10.1 | 10.4 ± 9.00 | 0.455 |
Protein intake on follow up (g/kg), mean ± SD | 1.94 ± 0.63 | 1.28 ± 0.54 | <0.001 |
Calorie intake on follow up (kcal/kg), mean ± SD | 25.3 ± 7.5 | 21.5 ± 7.9 | 0.037 |
Initial BUN (mg/dl), mean ± SD | 16.3 ± 8.3 | 16.0 ± 10.1 | 0.885 |
F/U BUN (mg/dl), mean ± SD | 23.9 ± 9.6 | 22.9 ± 11.8 | 0.692 |
Initial Creatinine (mg/dl), mean ± SD | 0.64 ± 0.30 | 0.71 ± 0.43 | 0.389 |
F/U Creatinine (mg/dl), mean ± SD | 0.62 ± 0.39 | 0.68 ± 0.49 | 0.551 |
Event, n (%) | 0.348 | ||
Coma therapy | 2 (5.1) | 3 (7.9) | |
TTM | 2 (5.1) | 3 (7.9) | |
Decompressive surgery | 6 (15.4) | 2 (5.3) | |
Decompressive surgery with TTM | 1 (2.6) | 5 (13.2) | |
Others | 2 (5.1) | 3 (7.9) | |
Blood transfusion, n (%) | 0.115 | ||
Packed red blood cell | 0 (0.0) | 3 (7.9) | |
Sepsis during ICU care, n (%) | 5 (12.8) | 3 (7.9) | 0.711 |
ARDS during ICU care, n (%) | 5 (12.8) | 2 (5.3) | 0.431 |
Development of AKI, n (%) | 3 (7.7) | 2 (5.3) | 1.000 |
NICU admission to initial UUN day, median (IQR) | 1 (1–2.3) | 1.5 (1–2) | 0.805 |
NICU admission to F/U UUN day, median (IQR) | 6 (5–9) | 7 (4–8) | 0.692 |
Good outcome at 3 months (mRS = 0–3), n (%) | 16 (41.0) | 7 (18.4) | 0.046 |
Neurological worsening, n (%) | 6 (15.4) | 14 (36.8) | 0.032 |
In-hospital mortality, n (%) | 5 (12.8) | 12 (31.6) | 0.047 |
Hospital length of stay (days), median (IQR) | 38.0 (25.0–75.0) | 33.5 (23.0–67.25) | 0.610 |
NICU length of stay (days), median (IQR) | 18.0 (10.0–32.0) | 20.50 (13.75–33.25) | 0.815 |
Crude Odds Ratio | 95% CI | p-Value | Adjusted Odds Ratio | 95% CI | p-Value | |
---|---|---|---|---|---|---|
Poor outcome at three months | ||||||
Age | 1.014 | 0.984–1.044 | 0.374 | 1.007 | 0.958–1.059 | 0.793 |
Initial GCS | 0.871 | 0.761–0.996 | 0.044 | 0.825 | 0.696–0.977 | 0.026 |
Initial positive nitrogen balance | 0.392 | 0.073–2.108 | 0.275 | 0.314 | 0.042–2.369 | 0.261 |
Improvement of nitrogen balance | 0.325 | 0.115–0.918 | 0.034 | 0.247 | 0.066–0.925 | 0.038 |
In-hospital mortality | ||||||
Age | 1.011 | 0.977–1.047 | 0.524 | 1.048 | 0.986–1.113 | 0.134 |
Initial GCS | 1.088 | 0.942–1.256 | 0.252 | 1.086 | 0.913–1.292 | 0.350 |
Initial positive nitrogen balance | 0.688 | 0.075–6.318 | 0.741 | 0.565 | 0.053–5.999 | 0.636 |
Improvement of nitrogen balance | 0.319 | 0.100–1.018 | 0.054 | 0.202 | 0.048–0.858 | 0.030 |
Neurological worsening | ||||||
Age | 1.000 | 0.970–1.032 | 0.978 | 1.027 | 0.975–1.082 | 0.314 |
Initial GCS | 1.073 | 0.936–1.230 | 0.310 | 1.076 | 0.911–1.269 | 0.389 |
Initial positive nitrogen balance | 0.547 | 0.060–4.992 | 0.593 | 0.459 | 0.042–4.966 | 0.522 |
Improvement of nitrogen balance | 0.312 | 0.105–0.928 | 0.036 | 0.177 | 0.043–0.721 | 0.016 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.J.; Park, S.-H.; Jeong, H.-B.; Ha, E.J.; Cho, W.S.; Kang, H.-S.; Kim, J.E.; Ko, S.-B. Optimizing Nitrogen Balance Is Associated with Better Outcomes in Neurocritically Ill Patients. Nutrients 2020, 12, 3137. https://doi.org/10.3390/nu12103137
Kim TJ, Park S-H, Jeong H-B, Ha EJ, Cho WS, Kang H-S, Kim JE, Ko S-B. Optimizing Nitrogen Balance Is Associated with Better Outcomes in Neurocritically Ill Patients. Nutrients. 2020; 12(10):3137. https://doi.org/10.3390/nu12103137
Chicago/Turabian StyleKim, Tae Jung, Soo-Hyun Park, Hae-Bong Jeong, Eun Jin Ha, Won Sang Cho, Hyun-Seung Kang, Jeong Eun Kim, and Sang-Bae Ko. 2020. "Optimizing Nitrogen Balance Is Associated with Better Outcomes in Neurocritically Ill Patients" Nutrients 12, no. 10: 3137. https://doi.org/10.3390/nu12103137
APA StyleKim, T. J., Park, S. -H., Jeong, H. -B., Ha, E. J., Cho, W. S., Kang, H. -S., Kim, J. E., & Ko, S. -B. (2020). Optimizing Nitrogen Balance Is Associated with Better Outcomes in Neurocritically Ill Patients. Nutrients, 12(10), 3137. https://doi.org/10.3390/nu12103137