Effect of Vitamin D Status during Pregnancy on Infant Neurodevelopment: The ECLIPSES Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Procedure
2.2. Instruments and Data Collection
2.2.1. Biochemical Data
2.2.2. Psychological Data
2.2.3. Sociodemographic Data
2.2.4. Lifestyle Habits
2.2.5. Obstetrical and Birth Data
2.3. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heyden, E.; Wimalawansa, S. Vitamin D: Effects on human reproduction, pregnancy, and fetal well-being. J. Steroid Biochem. Mol. Biol. 2018, 180, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C.; Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid Biochem. Mol. Biol. 2014, 144, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, S.A.; McNeil, R.; Hollis, B.W.; Davis, D.J.; Winkler, J.; Cook, C.; Warner, G.; Bivens, B.; McShane, P.; Wagner, C.L. Profound Vitamin D Deficiency in a Diverse Group of Women during Pregnancy Living in a Sun-Rich Environment at Latitude 32° N. Int. J. Endocrinol. 2010, 2010, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, S.; Paschou, S.A.; Kandaraki, E.; Anagnostis, P.; Annweiler, C.; Tarlatzis, B.C.; Hollis, B.W.; Grant, W.B.; Goulis, D.G. Hypovitaminosis D in pregnancy in the Mediterranean region: A systematic review. Eur. J. Clin. Nutr. 2016, 70, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Janbek, J.; Sarki, M.; Specht, I.O.; Heitmann, B.L. A systematic literature review of the relation between iron status/anemia in pregnancy and offspring neurodevelopment. Eur. J. Clin. Nutr. 2019, 73, 1561–1578. [Google Scholar] [CrossRef]
- Aghajafari, F.; Nagulesapillai, T.; Ronksley, P.E.; Tough, S.C.; O’Beirne, M.; Rabi, D.M. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: Systematic review and meta-analysis of observational studies. BMJ 2013, 346, f1169. [Google Scholar] [CrossRef] [Green Version]
- Chrisostomo, K.R.; Junior, J.K.; Urbanetz, A.; Chrisostomo, E.R.; Nisihara, R.M. Current view of vitamin D in pregnant women: A review. Nascer Crescer-Birth Growth Med. J. 2019, 28, 77–83. [Google Scholar]
- Keshavarz, P.; Jandaghi, P.; Shafiee, M.; Islam, N.; Vatanparast, H. Maternal Vitamin D Status among Different Ethnic Groups and Its Potential Contribution to Adverse Pregnancy and Child Outcomes. Vitamin D Defic. 2020. [Google Scholar] [CrossRef] [Green Version]
- Lundqvist, A.; Sandström, H.; Stenlund, H.; Johansson, I.; Hultdin, J. Vitamin D Status during Pregnancy: A Longitudinal Study in Swedish Women from Early Pregnancy to Seven Months Postpartum. PLoS ONE 2016, 11, e0150385. [Google Scholar] [CrossRef] [Green Version]
- Chawla, D.; Fuemmeler, B.; Benjamin-Neelon, S.E.; Hoyo, C.; Murphy, S.; Daniels, J.L. Early prenatal vitamin D concentrations and social-emotional development in infants. J. Matern. Neonatal Med. 2017, 32, 1441–1448. [Google Scholar] [CrossRef]
- Dhamayanti, M.; Noviandhari, A.; Supriadi, S.; Judistiani, R.T.; Setiabudiawan, B. Association of maternal vitamin D deficiency and infants’ neurodevelopmental status: A cohort study on vitamin D and its impact during pregnancy and childhood in Indonesia. J. Paediatr. Child. Health 2019, 56, 16–21. [Google Scholar] [CrossRef]
- Morales, E.; Guxens, M.; Llop, S.; Rodríguez-Bernal, C.L.; Tardón, A.; Riaño, I.; Ibarluzea, J.; Lertxundi, N.; Espada, M.; Rodriguez, A.; et al. Circulating 25-Hydroxyvitamin D3 in Pregnancy and Infant Neuropsychological Development. Pediatrics 2012, 130, e913–e920. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, M.; Tous, M.; Canals, J.M.; Arija, V. Vitamin D during pregnancy and neurodevelopment of the child: Systematic review. An. Psicol. 2019, 35, 389–396. [Google Scholar] [CrossRef]
- Darling, A.L.; Rayman, M.P.; Steer, C.D.; Golding, J.; Lanham-New, S.A.; Bath, S.C. Association between maternal vitamin D status in pregnancy and neurodevelopmental outcomes in childhood: Results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Br. J. Nutr. 2017, 117, 1682–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Serna, A.M.; Morales, E. Neurodevelopmental effects of prenatal vitamin D in humans: Systematic review and meta-analysis. Mol. Psychiatry 2020, 25, 2468–2481. [Google Scholar] [CrossRef]
- Zou, R.; El Marroun, H.; McGrath, J.J.; Muetzel, R.L.; Hillegers, M.; White, T.; Tiemeier, H. A prospective population-based study of gestational vitamin D status and brain morphology in preadolescents. NeuroImage 2020, 209, 116514. [Google Scholar] [CrossRef]
- Arija, V.; Fargas, F.; March, G.; Abajo, S.; Basora, J.; Canals, J.; Ribot, B.; Aparicio, E.; Serrat, N.; Hernández-Martínez, C.; et al. Adapting iron dose supplementation in pregnancy for greater effectiveness on mother and child health: Protocol of the ECLIPSES randomized clinical trial. BMC Pregnancy Childbirth 2014, 14, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F.; Binkley, N.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Bayley, N. Bayley Scales of Infant and Toddler Development, 3rd ed.; Harcourt Assessment: San Antonio, TX, USA, 2006. [Google Scholar]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.E. STAI Cuestionario de Ansiedad Estado Rasgo. (Adaptación española: Nicolás Seisdedos Cubero); TEA Ediciones: Madrid, Spain, 1994. [Google Scholar]
- Abidin, R.R. Parenting Stress Index (PSI) Manual. 3; Pediatric Psychology Press: Charlottesville, USA, 1995. [Google Scholar]
- Institut d’Estadística de Catalunya. Classificació Catalana D’Ocupacions (CCO-2011). Adaptació de la CNO-2011; Generalitat de Catalunya: Barcelona, Spain, 2013. [Google Scholar]
- Hollingshead, A.B. Four factor index of social status. Yale J. Sociol. 2011, 8, 21–52. [Google Scholar]
- Heatherton, T.F.; Kozlowski, L.T.; Frecker, R.C.; Fagerstrom, K.-O. The Fagerstrom Test for Nicotine Dependence: A revision of the Fagerstrom Tolerance Questionnaire. Addiction 1991, 86, 1119–1127. [Google Scholar] [CrossRef]
- Trinidad, I.R.; Fernández, J.B.; Cucó, G.P.; Biarnés, E.J.; Arija, V. Validación de un cuestionario de frecuencia de consumo alimentario corto: Reproducibilidad y validez. Nutr. Hosp. 2008, 23, 242–252. [Google Scholar]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Barrés, S.; Romaguera, D.; Valvi, D.; Martínez, D.; Vioque, J.; Navarrete-Muñoz, E.M.; Amiano, P.; Gonzalez-Palacios, S.; Guxens, M.; Pereda, E.; et al. Mediterranean dietary pattern in pregnant women and offspring risk of overweight and abdominal obesity in early childhood: The INMA birth cohort study. Pediatr. Obes. 2016, 11, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Borsani, E.; Della Vedova, A.M.; Rezzani, R.; Rodella, L.F.; Cristini, C. Correlation between human nervous system development and acquisition of fetal skills: An overview. Brain Dev. 2019, 41, 225–233. [Google Scholar] [CrossRef]
- Al-Wassia, H.; Abo-Ouf, N. Prevalence of vitamin D deficiency in mother–infant pairs in a tertiary hospital in the west coast of Saudi Arabia. J. Clin. Neonatol. 2016, 5, 243. [Google Scholar] [CrossRef]
- Zhu, P.; Tong, S.-L.; Hao, J.-H.; Tao, R.-X.; Huang, K.; Hu, W.; Zhou, Q.-F.; Jiang, X.-M.; Tao, F. Cord Blood Vitamin D and Neurocognitive Development Are Nonlinearly Related in Toddlers. J. Nutr. 2015, 145, 1232–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veena, S.R.; Krishnaveni, G.V.; Srinivasan, K.; Thajna, K.P.; Hegde, B.G.; Gale, C.R.; Fall, C.H. Association between maternal vitamin D status during pregnancy and offspring cognitive function during childhood and adolescence. Asia Pac. J. Clin. Nutr. 2017, 26, 438–449. [Google Scholar]
- Gale, C.R.; The Princess Anne Hospital Study Group; Robinson, S.M.; Harvey, N.; Javaid, M.K.; Jiang, B.; Martyn, C.N.; Godfrey, K.M.; Cooper, C. Maternal vitamin D status during pregnancy and child outcomes. Eur. J. Clin. Nutr. 2007, 62, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Marin, S.; Halldorsson, T.I.; Hansen, S.; Granström, C.; Maslova, E.; Petersen, S.B.; Cohen, A.S.; Olsen, S.F. Vitamin D Measured in Maternal Serum and Offspring Neurodevelopmental Outcomes: A Prospective Study with Long-Term Follow-Up. Ann. Nutr. Metab. 2014, 64, 254–261. [Google Scholar] [CrossRef]
- Whitehouse, A.J.; Holt, B.J.; Serralha, M.; Holt, P.G.; Kusel, M.M.H.; Hart, P.H. Maternal Serum Vitamin D Levels During Pregnancy and Offspring Neurocognitive Development. Pediatrics 2012, 129, 485–493. [Google Scholar] [CrossRef]
- Tylavsky, F.A.; Kocak, M.; Murphy, L.E.; Graff, J.C.; Palmer, F.B.; Völgyi, E.; Diaz-Thomas, A.; Franklin, B.E. Gestational Vitamin 25(OH)D Status as a Risk Factor for Receptive Language Development: A 24-Month, Longitudinal, Observational Study. Nutrients 2015, 7, 9918–9930. [Google Scholar] [CrossRef]
- Bornstein, M.H.; Putnick, D.L.; Bohr, Y.; Abdelmaseh, M.; Lee, C.Y.; Esposito, G. Maternal sensitivity and language in infancy each promotes child core language skill in preschool. Early Child. Res. Q. 2020, 51, 483–489. [Google Scholar] [CrossRef]
- Iglesias, L.; Canals, J.M.; Arija, V. Effects of prenatal iron status on child neurodevelopment and behavior: A systematic review. Crit. Rev. Food Sci. Nutr. 2017, 58, 1604–1614. [Google Scholar] [CrossRef] [PubMed]
- Janbek, J.; Specht, I.O.; Heitmann, B.L. Associations between vitamin D status in pregnancy and offspring neurodevelopment: A systematic literature review. Nutr. Rev. 2019, 77, 330–349. [Google Scholar] [CrossRef] [PubMed]
- Berglund, S.K.; Torres-Espínola, F.J.; García-Valdés, L.; Segura, M.T.; Martínez-Zaldívar, C.; Padilla, C.; Rueda, R.; Everdejo-García, A.; McArdle, H.J.; Campoy, C. The impacts of maternal iron deficiency and being overweight during pregnancy on neurodevelopment of the offspring. Br. J. Nutr. 2017, 118, 533–540. [Google Scholar] [CrossRef]
- Schwarzenberg, S.J.; Georgieff, M.K.; Committee on Nutrition. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics 2018, 141, e20173716. [Google Scholar] [CrossRef] [Green Version]
- Chabas, J.-F.; Stephan, D.; Marqueste, T.; Garcia, S.; Lavaut, M.-N.; Nguyen, C.; Legré, R.; Khrestchatisky, M.; Decherchi, P.; Féron, F. Cholecalciferol (Vitamin D3) Improves Myelination and Recovery after Nerve Injury. PLoS ONE 2013, 8, e65034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roselli, M.; Ardila, A.; Lopera, F.; Pineda, D. Neuropsicología Infantil; Prensa Creativa: Mede-llín, Colombia, 1997. [Google Scholar]
- Roselli, M. Maduración cerebral y desarrollo cognoscitivo. Rev. Lat. Cienc. Soc. Niñez Juv. 2003, 1, 125–144. [Google Scholar]
- Wang, Y.; Shi, J.-P.; Li, Y.-H.; Yang, W.-H.; Tian, Y.-J.; Gao, J.; Li, S.-J. AIMS baby movement scale application in high-risk infants early intervention analysis. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3447–3451. [Google Scholar]
- Walsh, J.M.; Doyle, L.W.; Anderson, P.J.; Lee, K.J.; Cheong, J.L.Y. Moderate and Late Preterm Birth: Effect on Brain Size and Maturation at Term-Equivalent Age. Radiology 2014, 273, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Keim, S.A.; Bodnar, L.M.; Klebanoff, M.A. Maternal and cord blood 25(OH)-vitamin D concentrations in relation to child development and behaviour. Paediatr. Périnat. Epidemiol. 2014, 28, 434–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassar, N.; Halligan, G.H.; Roberts, C.L.; Morris, J.M.; Ashton, A.W. Systematic review of first-trimester vitamin D normative levels and outcomes of pregnancy. Am. J. Obstet. Gynecol. 2011, 205, 208.e1–208.e7. [Google Scholar] [CrossRef]
- De-Regil, L.M.; Palacios, C.; Lombardo, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2016, 14, CD008873. [Google Scholar]
RECRUITMENT ≤ 12 Weeks | 1st Trimester Visit 12th Week | 3rd Trimester Visit 36th Week | Postnatal Visit 40 Days Postpartum |
---|---|---|---|
N = 793 pregnant women | N = 422 mother–infant | ||
pairs | |||
Sociodemographic data:
| Obstetrical and birth data:
| ||
Lifestyle habits:
| Lifestyle habits:
|
| |
Psychological state:
| Psychological state:
| ||
Blood test:
| Blood test:
|
Mothers | Offspring | ||
---|---|---|---|
Mother’s age, mean (SD) | 30.6 (5.1) | Gender (%) | |
Socioeconomic level (%) | Boys | 49.1 | |
Low | 15.6 | Girls | 50.9 |
Mid | 68.3 | Birth weight, mean (SD) | 3295.9 (448.6) |
High | 16.0 | Birth length, mean (SD) | 49.1 (2.3) |
STAI—State anxiety, mean (SD) | Birth head circumference, mean (SD) | 34.5 (1.5) | |
First trimester | 17.9 (8.8) | Apgar, mean (SD) | 9.6 (0.4) |
Third trimester | 19.3 (8.7) | ||
rMED—Diet quality, mean (SD) | BSID-III, mean (SD) | ||
First trimester | 9.5 (2.6) | Cognitive scale | 101.9 (8.8) |
Third trimester | 9.9 (2.6) | Language scale | 96.2 (8.4) |
Tobacco consumption during pregnancy (%) | Receptive | 10.6 (2.1) | |
Yes | 15.3 | Expressive | 8.1 (1.6) |
No | 84.7 | Motor scale | 107.9 (11.5) |
Gestational age at birth, mean (SD) | 39.7 (1.4) | Fine | 11.5 (1.9) |
Type of delivery (%) | Gross | 11.1 (2.3) | |
Eutocic | 66.7 | ||
Dystocic | 33.3 | PSI, Mother–child interaction mean (SD) | 50.7 (7.9) |
Preterm birth (%) | |||
Yes | 3.8 | ||
No | 96.2 | ||
Type of feeding (%) | |||
Formula | 18.6 | ||
Breasfeeding | 81.4 |
ANOVA 1 | ANOVA 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
<20 nmol/L a | <30 nmol/L b | 30–50 nmol/L c | >50 nmol/L d | p | Bonferroni | p | Bonferroni | |||||
First trimester of pregnancy vitamin D levels, n(%) | 181 (22.8) | 398 (50.2) | 240 (30.3) | 155 (19.5) | ||||||||
BSID-III (scores) | ||||||||||||
Cognitive scale | 101.1 | (7.6) | 100.9 | (8.1) | 101.8 | (9.8) | 103.9 | (8.3) | 0.029 | 0.024 bd | 0.068 | |
Language scale | 93.5 | (9.3) | 95.2 | (8.4) | 97.2 | (8.2) | 96.9 | (8.5) | 0.079 | 0.019 | 0.015 ac | |
Receptive | 10.1 | (2.3) | 10.4 | (2.1) | 11.0 | (2.0) | 10.6 | (2.2) | 0.056 | 0.030 | 0.018 ac | |
Expressive | 7.7 | (1.5) | 7.9 | (1.5) | 8.1 | (1.7) | 8.4 | (1.5) | 0.095 | 0.049 | 0.031 ad | |
Motor scale | 107.3 | (10.8) | 107.6 | (11.0) | 108.1 | (12.6) | 108.0 | (10.8) | 0.904 | 0.963 | ||
Fine | 11.3 | (1.8) | 11.4 | (1.9) | 11.7 | (2.0) | 11.4 | (1.9) | 0.404 | 0.540 | ||
Gross | 11.1 | (2.6) | 11.1 | (2.4) | 11.2 | (2.0) | 11.2 | (2.5) | 0.827 | 0.919 | ||
Third trimester of pregnancy vitamin D levels, n(%) | 188 (23.7) | 394 (49.7) | 263 (33.2) | 136 (17.2) | ||||||||
BSID-III (scores) | ||||||||||||
Cognitive scale | 101.7 | (7.2) | 101.6 | (8.4) | 101.7 | (9.5) | 102.8 | (8.4) | 0.577 | 0.776 | ||
Language scale | 94.9 | (8.8) | 95.8 | (8.2) | 96.5 | (8.5) | 96.7 | (8.8) | 0.611 | 0.470 | ||
Receptive | 10.2 | (2.2) | 10.5 | (2.1) | 10,8 | (2.0) | 10.6 | (2.3) | 0.537 | 0.258 | ||
Expressive | 8.0 | (1.6) | 8.0 | (1.5) | 8.0 | (1.7) | 8.2 | (1.6) | 0.637 | 0.815 | ||
Motor scale | 105.8 | (14.4) | 107.3 | (12.1) | 108.1 | (10.8) | 108.9 | (11.4) | 0.566 | 0.341 | ||
Fine | 11.2 | (1.9) | 11.4 | (2.0) | 11.6 | (1.9) | 11.5 | (1.9) | 0.592 | 0.407 | ||
Gross | 11.1 | (2.3) | 11.1 | (2.2) | 11.0 | (2.3) | 11.4 | (2.5) | 0.502 | 0.703 |
CRITERIA: Cognitive Scales | |||||
---|---|---|---|---|---|
IOM Levels | First Trimester of Pregnancy | Third Trimester of Pregnancy | <20 nmol/L Levels | First Trimester of Pregnancy | Third Trimester of Pregnancy |
Unadjusted Models | Beta p | Beta p | Beta p | Beta p | |
Vitamin D (<30 vs. 30–50 nmol/L) | 0.045 0.426 | −0.008 0.918 | Vitamin D (<20 vs. 20–50 nmol/L) | 0.001 0.990 | 0.022 0.801 |
Vitamin D (<30 vs. >50 nmol/L) | 0.150 0.008 | −0.015 0.836 | Vitamin D (<20 vs. >50 nmol/L) | 0.134 0.050 | 0.002 0.979 |
R2c*100 = 1.4% | R2c*100 = −0.9% | R2c*100 = 1.2% | R2c*100 = −0.9% | ||
F2.364 = 3.627 | F2.222 = 0.022 | F2.364 = 3.304 | F2.222 = 0.048 | ||
p = 0.028 | p = 0.978 | p = 0.038 | p = 0.953 | ||
Adjusted models | |||||
Vitamin D (<30 vs. 30–50 nmol/L) | 0.051 0.354 | −0.017 0.809 | Vitamin D (<20 vs. 20–50 nmol/L) | −0.001 0.986 | 0.057 0.508 |
Vitamin D (<30 vs. >50 nmol/L) | 0.141 0.011 | −0.001 0.985 | Vitamin D (<20 vs. >50 nmol/L) | 0.121 0.074 | 0.043 0.619 |
Gestational age | 0.175 0.001 | 0.258 0.001 | Gestational age | 0.174 0.001 | 0.262 0.001 |
Folate | 0.103 0.046 | Folate | 0.102 0.050 | ||
R2c*100 = 4.6% | R2c*100 = 5.3% | R2c*100 = 4.3% | R2c*100 = 5.5% | ||
F4.364 = 5.353 | F3.222 = 5.179 | F4.364 = 5.126 | F3.222 = 5.316 | ||
p = 0.001 | p = 0.002 | p = 0.001 | p = 0.001 |
CRITERIA: Language Receptive Scale | |||||
---|---|---|---|---|---|
IOM Levels | First Trimester of Pregnancy | Third Trimester of Pregnancy | <20 nmol/L Levels | First Trimester of Pregnancy | Third Trimester of Pregnancy |
Unadjusted models | Beta p | Beta p | Beta p | Beta p | |
Vitamin D (<30 vs. 30–50 nmol/L) | 0.120 0.034 | 0.044 0.546 | Vitamin D (<20 vs. 20–50 nmol/L) | 0.164 0.017 | 0.144 0.104 |
Vitamin D (<30 vs. >50 nmol/L) | 0.038 0.498 | −0.003 0.969 | Vitamin D (<20 vs. >50 nmol/L) | 0.100 0.145 | 0.073 0.411 |
R2c*100 = 0.7% | R2c*100 = −0.7% | R2c*100 = 1.0% | R2c*100 = 2.0% | ||
F2.364 = 2.272 | F2.222 = 0.231 | F2.364 = 2.861 | F2.222 = 1.378 | ||
p = 0.105 | p = 0.794 | p = 0.058 | p = 0.254 | ||
Adjusted models | |||||
Vitamin D (<30 vs. 30–50 nmol/L) | 0.122 0.029 | Vitamin D (<20 vs. 20–50 nmol/L) | 0.166 0.015 | 0.163 0.065 | |
Vitamin D (<30 vs. >50 nmol/L) | 0.030 0.595 | Vitamin D (<20 vs. >50 nmol/L) | 0.092 0.176 | 0.095 0.280 | |
Gestational age | 0.136 0.009 | Gestational age | 0.136 0.009 | 0.146 0.030 | |
R2c*100 = 2.3% | R2c*100 = 2.6% | R2c*100 = 2.0% | |||
F3.364 = 3.822 | F3.364 = 4.218 | F3.222 = 2.522 | |||
p = 0.010 | p = 0.006 | p = 0.059 | |||
CRITERIA: Language expressive scale score | |||||
IOM levels | First trimester of pregnancy | Third trimester of pregnancy | <20 nmol/L levels | First trimester of pregnancy | Third trimester of pregnancy |
Unadjusted models | Beta p | Beta p | Beta p | Beta p | |
Vitamin D (<30 vs. 30–50 nmol/L) | 0.021 0.706 | 0.054 0.465 | Vitamin D (<20 vs. 20–50 nmol/L) | 0.103 0.113 | 0.079 0.376 |
Vitamin D (<30 vs. >50 nmol/L) | 0.127 0.025 | 0.031 0.677 | Vitamin D (<20 vs. >50 nmol/L) | 0.186 0.007 | 0.060 0.498 |
R2c*100 = 0.9% | R2c*100 = −0.7% | R2c*100 = 1.5% | R2c*100 = 7.6% | ||
F2.364 = 2.659 | F2.222 = 0.277 | F2.364 = 3.738 | F2.222 = 0.403 | ||
p = 0.071 | p = 0.759 | p = 0.025 | p = 0.669 | ||
Adjusted models | |||||
Vitamin D (<30 vs. 30–50 nmol/L) | 0.011 0.847 | 0.024 0.822 | Vitamin D (<20 vs. 20–50 nmol/L) | 0.097 0.150 | 0.069 0.422 |
Vitamin D (<30 vs. >50 nmol/L) | 0.116 0.036 | 0.009 0.811 | Vitamin D (<20 vs. >50 nmol/L) | 0.175 0.009 | 0.055 0.522 |
PSI Mother–child interaction | 0.191 0.001 | 0.215 0.976 | PSI Mother–child interaction | 0.190 0.001 | 0.203 0.002 |
Ferritin | 0.108 0.037 | 0.158 0.973 | Ferritin | 0.106 0.039 | 0.172 0.010 |
Tobacco use | −0.141 0.972 | Tobacco use | −0.150 0.023 | ||
R2c*100 = 4.8% | R2c*100 = 6.1% | Gestational age | 0.134 0.043 | ||
F4.364 = 5.566 | F5.222 = 3.901 | R2c*100 = 5.3% | R2c*100 = 7.6% | ||
p = 0.001 | p = 0.002 | F4.364 = 6.109 | F6.222 = 4.033 | ||
p = 0.001 | p = 0.001 |
CRITERIA: Fine motor score | |||||
---|---|---|---|---|---|
IOM Levels | First Trimester of Pregnancy | Third Trimester of Pregnancy | <20 nmol/L Levels | First Trimester of Pregnancy | Third Trimester of Pregnancy |
Unadjusted Models | Beta p | Beta p | Beta p | Beta p | |
Vitamin D (<30 vs. 30–50 nmol/L) | 0.041 0.001 | −0.012 0.869 | Vitamin D (<20 vs. 20–50 nmol/L) | 0.055 0.428 | 0.126 0.155 |
Vitamin D (<30 vs. >50 nmol/L) | −0.016 0.466 | 0.013 0.860 | Vitamin D (<20 vs. >50 nmol/L) | 0.004 0.950 | 0.100 0.259 |
R2c*100 = −0.3% | R2c*100 = −0.9% | R2c*100 = −0.3% | R2c*100 = 0% | ||
F2.364 = 0.444 | F2.222 = 0.049 | F2.364 = 0.493 | F2.222 = 1.054 | ||
p = 0.642 | p = 0.952 | p = 0.611 | p = 0.350 | ||
Adjusted models | |||||
Vitamin D (<30 vs. 30–50 nmol/L) | 0.061 0.276 | −0.034 0.641 | Vitamin D (<20 vs. 20–50 nmol/L) | 0.048 0.481 | |
Vitamin D (<30 vs. >50 nmol/L) | −0.005 0.924 | −0.012 0.869 | Vitamin D (<20 vs. >50 nmol/L) | 0.006 0.927 | |
rMED first trimester | 0.152 0.004 | rMED first trimster | 0.138 0.009 | ||
Gestational age | 0.113 0.029 | Gestational age | 0.117 0.025 | ||
Tobacco use | 0.104 0.045 | R2c*100 = 2.3% | |||
Gender | 0.158 0.020 | F4.364 = 3.124 | |||
Socioeconomic level | −0.145 0.032 | p = 0.015 | |||
R2c*100 = 3.2% | R2c*100 = 2.2% | ||||
F5.364 = 3.436 | F4.222 = 2.263 | ||||
p = 0.005 | p = 0.063 | ||||
CRITERIA: Gross motor score | |||||
IOM levels | First trimester of pregnancy | Third trimester of pregnancy | <20 nmol/L levels | ||
Unadjusted models | Beta p | Beta p | |||
Vitamin D (<30 vs. 30–50 nmol/L) | 0.014 0.802 | −0.029 0.695 | Vitamin D (<20 vs. 20–50 nmol/L) | 0.015 0.827 | 0.129 0.144 |
Vitamin D (<30 vs. >50 nmol/L) | −0.015 0.788 | 0.056 0.448 | Vitamin D (<20 vs. >50 nmol/L) | −0.011 0.877 | 0.151 0.087 |
R2c*100 = −0.5% | R2c*100 = −0.4% | R2c*100 = −0.5% | R2c*100 = 0.5% | ||
F2.364 = 0.107 | F2.222 = 0.582 | F2.364 = 0.100 | F2.222 = 1.581 | ||
p = 0.898 | p = 0.560 | p = 0.905 | p = 0.208 | ||
Adjusted models | |||||
Vitamin D (<30 vs. 30–50 nmol/L) | 0.021 0.711 | Vitamin D (<20 vs. 20–50 nmol/L) | 0.013 0.848 | ||
Vitamin D (<30 vs. >50 nmol/L) | −0.027 0.633 | Vitamin D (<20 vs. >50 nmol/L) | −0.026 0.705 | ||
Gestational age | 0.130 0.013 | Gestational age | 0.130 0.013 | ||
Tobacco use | 0.112 0.033 | Tobacco use | 0.111 0.034 | ||
R2c*100 = 2.0% | R2c*100 = 2.0% | ||||
F4.364 = 2.903 | F4.364 = 2.877 | ||||
p = 0.022 | p = 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voltas, N.; Canals, J.; Hernández-Martínez, C.; Serrat, N.; Basora, J.; Arija, V. Effect of Vitamin D Status during Pregnancy on Infant Neurodevelopment: The ECLIPSES Study. Nutrients 2020, 12, 3196. https://doi.org/10.3390/nu12103196
Voltas N, Canals J, Hernández-Martínez C, Serrat N, Basora J, Arija V. Effect of Vitamin D Status during Pregnancy on Infant Neurodevelopment: The ECLIPSES Study. Nutrients. 2020; 12(10):3196. https://doi.org/10.3390/nu12103196
Chicago/Turabian StyleVoltas, Núria, Josefa Canals, Carmen Hernández-Martínez, Núria Serrat, Josep Basora, and Victoria Arija. 2020. "Effect of Vitamin D Status during Pregnancy on Infant Neurodevelopment: The ECLIPSES Study" Nutrients 12, no. 10: 3196. https://doi.org/10.3390/nu12103196
APA StyleVoltas, N., Canals, J., Hernández-Martínez, C., Serrat, N., Basora, J., & Arija, V. (2020). Effect of Vitamin D Status during Pregnancy on Infant Neurodevelopment: The ECLIPSES Study. Nutrients, 12(10), 3196. https://doi.org/10.3390/nu12103196