Associations of Ultra-Processed and Unprocessed/Minimally Processed Food Consumption with Peripheral and Central Hemodynamics and Arterial Stiffness in Young Healthy Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Subject Screening
2.3. Testing Visit
2.4. Dietary Intake Assessment
2.5. NOVA Food Classification
2.6. Ambulatory Blood Pressure Monitoring (ABPM)
2.7. Vascular Measures
2.7.1. Augmentation Index (AIx)
2.7.2. Pulse Wave Velocity (PWV)
2.8. Blood Analysis
2.9. Statistical Analysis
3. Results
3.1. Subjects
3.2. Dietary Intake
3.3. Ultra-Processed Food Consumption, BP, and Vascular Health
3.4. Unprocessed/Minimally Processed Food Consumption, BP, and Vascular Health
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schnabel, L.; Kesse-Guyot, E.; Alles, B.; Touvier, M.; Srour, B.; Hercberg, S.; Buscail, C.; Julia, C. Association Between Ultraprocessed Food Consumption and Risk of Mortality Among Middle-aged Adults in France. JAMA Intern. Med. 2019, 179, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Rojo, R.; Sandoval-Insausti, H.; Lopez-Garcia, E.; Graciani, A.; Ordovas, J.M.; Banegas, J.R.; Rodriguez-Artalejo, F.; Guallar-Castillon, P. Consumption of Ultra-Processed Foods and Mortality: A National Prospective Cohort in Spain. Mayo Clin. Proc. 2019, 94, 2178–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonca, R.D.; Lopes, A.C.; Pimenta, A.M.; Gea, A.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Ultra-Processed Food Consumption and the Incidence of Hypertension in a Mediterranean Cohort: The Seguimiento Universidad de Navarra Project. Am. J. Hypertens. 2017, 30, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Alles, B.; Mejean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Sante). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauber, F.; Campagnolo, P.D.; Hoffman, D.J.; Vitolo, M.R. Consumption of ultra-processed food products and its effects on children’s lipid profiles: A longitudinal study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Juul, F.; Hemmingsson, E. Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr. 2015, 18, 3096–3107. [Google Scholar] [CrossRef] [Green Version]
- Louzada, M.L.; Baraldi, L.G.; Steele, E.M.; Martins, A.P.; Canella, D.S.; Moubarac, J.C.; Levy, R.B.; Cannon, G.; Afshin, A.; Imamura, F.; et al. Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev. Med. 2015, 81, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Mendonca, R.D.; Pimenta, A.M.; Gea, A.; de la Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.; Bes-Rastrollo, M. Ultraprocessed food consumption and risk of overweight and obesity: The University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [Google Scholar] [CrossRef]
- Tavares, L.F.; Fonseca, S.C.; Garcia Rosa, M.L.; Yokoo, E.M. Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian Family Doctor Program. Public Health Nutr. 2012, 15, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Alles, B.; Mejean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Sante prospective cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louzada, M.L.; Martins, A.P.; Canella, D.S.; Baraldi, L.G.; Levy, R.B.; Claro, R.M.; Moubarac, J.C.; Cannon, G.; Monteiro, C.A. Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev. Saude Publica 2015, 49, 45. [Google Scholar] [CrossRef] [PubMed]
- Haddad, L.; Hawkes, C.; Waage, J.; Webb, P.; Godfray, C.; Toulmin, C. Food Systems and Diets: Facing the Challenges of the 21st Century; Global Panel on Agriculture and Food Systems for Nutrition: London, UK, 2016. [Google Scholar]
- Adams, J.; White, M. Characterisation of UK diets according to degree of food processing and associations with socio-demographics and obesity: Cross-sectional analysis of UK National Diet and Nutrition Survey (2008-12). Int. J. Behav. Nutr. Phys. Act. 2015, 12, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cediel, G.; Reyes, M.; da Costa Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A.; Corvalan, C.; Uauy, R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018, 21, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julia, C.; Martinez, L.; Alles, B.; Touvier, M.; Hercberg, S.; Mejean, C.; Kesse-Guyot, E. Contribution of ultra-processed foods in the diet of adults from the French NutriNet-Sante study. Public Health Nutr. 2018, 21, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.; Cannon, G. Increasing consumption of ultra-processed foods and likely impact on human health: Evidence from Brazil. Public Health Nutr. 2011, 14, 5–13. [Google Scholar] [CrossRef]
- Moubarac, J.C.; Batal, M.; Martins, A.P.; Claro, R.; Levy, R.B.; Cannon, G.; Monteiro, C. Processed and ultra-processed food products: Consumption trends in Canada from 1938 to 2011. Can. J. Diet. Pract. Res. 2014, 75, 15–21. [Google Scholar] [CrossRef]
- Martinez Steele, E.; Baraldi, L.G.; Louzada, M.L.; Moubarac, J.C.; Mozaffarian, D.; Monteiro, C.A. Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative cross-sectional study. BMJ Open 2016, 6, e009892. [Google Scholar] [CrossRef] [Green Version]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Wilkins, E.; Wilson, L.; Wickramasinghe, K.; Bhatnagar, P.; Leal, J.; Luengo-Fernandez, R.; Burns, R.; Rayner, M.; Townsend, N. European Cardiovascular Disease Statistics 2017; European Heart Network: Brussels, Belgium, 2018. [Google Scholar]
- Elliott, P.; Stamler, J.; Nichols, R.; Dyer, A.R.; Stamler, R.; Kesteloot, H.; Marmot, M. Intersalt revisited: Further analyses of 24 hour sodium excretion and blood pressure within and across populations. Intersalt Cooperative Research Group. BMJ 1996, 312, 1249–1253. [Google Scholar] [CrossRef]
- Stamler, J.; Chan, Q.; Daviglus, M.L.; Dyer, A.R.; Van Horn, L.; Garside, D.B.; Miura, K.; Wu, Y.; Ueshima, H.; Zhao, L.; et al. Relation of Dietary Sodium (Salt) to Blood Pressure and Its Possible Modulation by Other Dietary Factors: The Intermap Study. Hypertension 2018, 71, 631–637. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Iqbal, K.; Schwedhelm, C.; Boeing, H. Food groups and intermediate disease markers: A systematic review and network meta-analysis of randomized trials. Am. J. Clin. Nutr. 2018, 108, 576–586. [Google Scholar] [CrossRef]
- Howard, G.; Cushman, M.; Moy, C.S.; Oparil, S.; Muntner, P.; Lackland, D.T.; Manly, J.J.; Flaherty, M.L.; Judd, S.E.; Wadley, V.G.; et al. Association of Clinical and Social Factors With Excess Hypertension Risk in Black Compared With White US Adults. JAMA 2018, 320, 1338–1348. [Google Scholar] [CrossRef] [Green Version]
- Hardy, S.T.; Holliday, K.M.; Chakladar, S.; Engeda, J.C.; Allen, N.B.; Heiss, G.; Lloyd-Jones, D.M.; Schreiner, P.J.; Shay, C.M.; Lin, D.; et al. Heterogeneity in Blood Pressure Transitions Over the Life Course: Age-Specific Emergence of Racial/Ethnic and Sex Disparities in the United States. JAMA Cardiol. 2017, 2, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Vlachopoulos, C.; Aznaouridis, K.; O’Rourke, M.F.; Safar, M.E.; Baou, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: A systematic review and meta-analysis. Eur. Heart J. 2010, 31, 1865–1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [Green Version]
- Nichols, W.W.; Singh, B.M. Augmentation index as a measure of peripheral vascular disease state. Curr. Opin. Cardiol. 2002, 17, 543–551. [Google Scholar] [CrossRef]
- Chu, A.H.; Ng, S.H.; Koh, D.; Muller-Riemenschneider, F. Reliability and Validity of the Self- and Interviewer-Administered Versions of the Global Physical Activity Questionnaire (GPAQ). PLoS ONE 2015, 10, e0136944. [Google Scholar] [CrossRef] [PubMed]
- van Horn, L.V.; Stumbo, P.; Moag-Stahlberg, A.; Obarzanek, E.; Hartmuller, V.W.; Farris, R.P.; Kimm, S.Y.; Frederick, M.; Snetselaar, L.; Liu, K. The Dietary Intervention Study in Children (DISC): Dietary assessment methods for 8- to 10-year-olds. J. Am. Diet. Assoc. 1993, 93, 1396–1403. [Google Scholar] [CrossRef]
- Siu, A.L.; Force, U.S.P.S.T. Screening for high blood pressure in adults: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2015, 163, 778–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.C.; Bilous, M.; Winship, S.; Finn, P.; Goodwin, J. Validation of the OSCAR 2 oscillometric 24-hour ambulatory blood pressure monitor according to the International Protocol for the validation of blood pressure measuring devices. Blood Press. Monit. 2004, 9, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Butlin, M.; Qasem, A. Large Artery Stiffness Assessment Using SphygmoCor Technology. Pulse 2017, 4, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapsomaniki, E.; Timmis, A.; George, J.; Pujades-Rodriguez, M.; Shah, A.D.; Denaxas, S.; White, I.R.; Caulfield, M.J.; Deanfield, J.E.; Smeeth, L.; et al. Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 2014, 383, 1899–1911. [Google Scholar] [CrossRef] [Green Version]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef]
- Roman, M.J.; Devereux, R.B.; Kizer, J.R.; Lee, E.T.; Galloway, J.M.; Ali, T.; Umans, J.G.; Howard, B.V. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: The Strong Heart Study. Hypertension 2007, 50, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Fardet, A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. Food Funct. 2016, 7, 2338–2346. [Google Scholar] [CrossRef]
- Mirrahimi, A.; Chiavaroli, L.; Srichaikul, K.; Augustin, L.S.; Sievenpiper, J.L.; Kendall, C.W.; Jenkins, D.J. The role of glycemic index and glycemic load in cardiovascular disease and its risk factors: A review of the recent literature. Curr. Atheroscler. Rep. 2014, 16, 381. [Google Scholar] [CrossRef]
- Torres, S.J.; Nowson, C.A. Relationship between stress, eating behavior, and obesity. Nutrition 2007, 23, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Wansink, B.; Cheney, M.M.; Chan, N. Exploring comfort food preferences across age and gender. Physiol. Behav. 2003, 79, 739–747. [Google Scholar] [CrossRef]
- Leng, B.; Jin, Y.; Li, G.; Chen, L.; Jin, N. Socioeconomic status and hypertension: A meta-analysis. J. Hypertens. 2015, 33, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Mozaffarian, D.; on behalf of the Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Dietary quality among men and women in 187 countries in 1990 and 2010: A systematic assessment. Lancet Glob. Health 2015, 3, e132–e142. [Google Scholar] [CrossRef] [Green Version]
- Archer, E.; Marlow, M.L.; Lavie, C.J. Controversy and debate: Memory-Based Methods Paper 1: The fatal flaws of food frequency questionnaires and other memory-based dietary assessment methods. J. Clin. Epidemiol. 2018, 104, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S. Principles of Nutrition Assessment, 2nd ed.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Poti, J.M.; Mendez, M.A.; Ng, S.W.; Popkin, B.M. Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am. J. Clin. Nutr. 2015, 101, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
- Moreira, P.V.; Baraldi, L.G.; Moubarac, J.C.; Monteiro, C.A.; Newton, A.; Capewell, S.; O’Flaherty, M. Comparing different policy scenarios to reduce the consumption of ultra-processed foods in UK: Impact on cardiovascular disease mortality using a modelling approach. PLoS ONE 2015, 10, e0118353. [Google Scholar] [CrossRef]
- Moreira, P.V.; Hyseni, L.; Moubarac, J.C.; Martins, A.P.B.; Baraldi, L.G.; Capewell, S.; O’Flaherty, M.; Guzman-Castillo, M. Effects of reducing processed culinary ingredients and ultra-processed foods in the Brazilian diet: A cardiovascular modelling study. Public Health Nutr. 2018, 21, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Gay, H.C.; Rao, S.G.; Vaccarino, V.; Ali, M.K. Effects of Different Dietary Interventions on Blood Pressure: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Hypertension 2016, 67, 733–739. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e63. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, C.; Kok, F.J. Slow food, fast food and the control of food intake. Nat. Rev. Endocrinol. 2010, 6, 290–293. [Google Scholar] [CrossRef]
- Aguilera, J.M. The food matrix: Implications in processing, nutrition and health. Crit. Rev. Food Sci. Nutr. 2019, 59, 3612–3629. [Google Scholar] [CrossRef]
- Chassaing, B.; Koren, O.; Goodrich, J.K.; Poole, A.C.; Srinivasan, S.; Ley, R.E.; Gewirtz, A.T. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015, 519, 92–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmnas, M.S.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE 2014, 9, e109841. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Howland, G.; West, M.; Hockey, M.; Marx, W.; Loughman, A.; O’Hely, M.; Jacka, F.; Rocks, T. The effect of ultra-processed very low-energy diets on gut microbiota and metabolic outcomes in individuals with obesity: A systematic literature review. Obes. Res. Clin. Pract. 2020, 14, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.; Jeoung, N.H.; Cho, K.H. Modified apolipoprotein (apo) A-I by artificial sweetener causes severe premature cellular senescence and atherosclerosis with impairment of functional and structural properties of apoA-I in lipid-free and lipid-bound state. Mol. Cells 2011, 31, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Ranciere, F.; Lyons, J.G.; Loh, V.H.; Botton, J.; Galloway, T.; Wang, T.; Shaw, J.E.; Magliano, D.J. Bisphenol A and the risk of cardiometabolic disorders: A systematic review with meta-analysis of the epidemiological evidence. Environ. Health 2015, 14, 46. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Ahluwalia, P. Effect of monosodium glutamate on lipid peroxidation and certain antioxidant enzymes in cardiac tissue of alcoholic adult male mice. J. Cardiovasc. Dis. Res. 2012, 3, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Bai, Y.; Yang, Z.; Tian, J.; Meng, Z. The molecular mechanisms of sodium metabisulfite on the expression of K ATP and L-Ca2+ channels in rat hearts. Regul. Toxicol. Pharmacol. 2015, 72, 440–446. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, M.; Zhuang, P.; Jiao, J.; Chen, X.; Wang, J.; Wu, Y. Exposure to acrylamide and the risk of cardiovascular diseases in the National Health and Nutrition Examination Survey 2003–2006. Environ. Int. 2018, 117, 154–163. [Google Scholar] [CrossRef]
All Subjects | Men | Women | p-Value * | |
---|---|---|---|---|
Demographic data | ||||
N | 40 | 15 | 25 | |
Ethnicity (H/NH) | 3/37 | 2/13 | 1/24 | |
Race (W/B/A) a | 30/0/8 | 9/0/5 | 21/0/3 | |
Age (year) | 27 ± 1 | 27 ± 1 | 27 ± 1 | 0.870 |
Height (cm) | 168 ± 2 | 176 ± 2 | 164 ± 1 | < 0.001 |
Mass (kg) | 67 ± 2 | 76 ± 3 | 62 ± 1 | < 0.001 |
BMI (kg/m2) | 23.6 ± 0.5 | 24.2 ± 0.8 | 23.2 ± 0.5 | 0.296 |
Systolic BP, screening (mmHg) | 111 ± 2 | 114 ± 2 | 109 ± 3 | 0.158 |
Diastolic BP, screening (mmHg) | 70 ± 2 | 74 ± 2 | 67 ± 2 | 0.019 |
Heart rate, screening (bpm) | 65 ± 2 | 62 ± 2 | 67 ± 2 | 0.099 |
Moderate physical activity (min/week) b,# | 360 ± 73 | 432 ± 171 | 312 ± 48 | 0.432 |
Vigorous physical activity (min/week) b | 91 ± 24 | 116 ± 47 | 74 ± 25 | 0.403 |
Biochemical parameters | ||||
Hemoglobin (g/dL) c | 13.8 ± 0.2 | 14.5 ± 0.3 | 13.3 ± 0.3 | 0.010 |
Hematocrit (%) c | 43.5 ± 0.6 | 44.7 ± 1.2 | 42.7 ± 0.6 | 0.133 |
Serum sodium (mmol/L) d | 140.6 ± 0.6 | 140.8 ± 0.9 | 140.8 ± 0.9 | 0.677 |
Serum potassium (mmol/L) d | 4.0 ± 0.0 | 4.0 ± 0.0 | 3.9 ± 0.1 | 0.956 |
Serum chloride (mmol/L) d | 103.7 ± 0.5 | 103.5 ± 0.7 | 103.8 ± 0.7 | 0.791 |
Cholesterol, total (mg/dL) e | 161 ± 6 | 163 ± 9 | 158 ± 7 | 0.642 |
High density lipoprotein (mg/dL) e | 55 ± 2 | 50 ± 3 | 60 ± 2 | 0.019 |
Low density lipoprotein (mg/dL) e | 89 ± 5 | 96 ± 8 | 84 ± 6 | 0.235 |
Triglycerides (mg/dL) e | 82 ± 8 | 94 ± 16 | 72 ± 5 | 0.217 |
Fasting blood glucose (mg/dL) e | 88 ± 1 | 87 ± 2 | 89 ± 2 | 0.494 |
Blood urea nitrogen (mg/dL) e | 14 ± 1 | 16 ± 1 | 12 ± 1 | 0.022 |
Creatinine (mg/dL) e | 0.9 ± 0.0 | 1.0 ± 0.0 | 0.8 ± 0.0 | < 0.001 |
Estimated glomerular filtration rate (mL/min) e | 100 ± 2 | 102 ± 3 | 98 ± 3 | 0.450 |
All Subjects | Men | Women | p-Value * | |
---|---|---|---|---|
ABPM, peripheral BP | ||||
Systolic BP (mmHg) | ||||
Overall | 114 ± 2 | 117 ± 2 | 112 ± 2 | 0.149 |
Daytime | 118 ± 2 | 121 ± 2 | 115 ± 3 | 0.090 |
Nighttime | 103 ± 2 | 106 ± 3 | 100 ± 2 | 0.103 |
Diastolic BP (mmHg) | ||||
Overall | 67 ± 1 | 68 ± 1 | 67 ± 2 | 0.600 |
Daytime | 70 ± 1 | 72 ± 2 | 70 ± 2 | 0.436 |
Nighttime | 56 ± 1 | 58 ± 2 | 55 ± 2 | 0.271 |
MAP (mmHg) | ||||
Overall | 83 ± 1 | 84 ± 1 | 82 ± 2 | 0.368 |
Daytime | 81 ± 2 | 79 ± 4 | 82 ± 3 | 0.559 |
Nighttime | 72 ± 1 | 74 ± 2 | 70 ± 2 | 0.188 |
Heart rate (bpm) | ||||
Overall | 72 ± 1 | 66 ± 2 | 75 ± 2 | 0.002 |
Daytime | 77 ± 2 | 76 ± 3 | 79 ± 2 | 0.390 |
Nighttime | 63 ± 2 | 58 ± 2 | 68 ± 2 | 0.002 |
Pulse pressure (mmHg) | ||||
Overall | 47 ± 1 | 49 ± 1 | 45 ± 1 | 0.080 |
Daytime | 49 ± 1 | 51 ± 2 | 47 ± 2 | 0.155 |
Nighttime | 46 ± 1 | 48 ± 1 | 45 ± 1 | 0.157 |
ABPM, central BP | ||||
Systolic BP (mmHg) | ||||
Overall | 104 ± 2 | 105 ± 2 | 103 ± 2 | 0.412 |
Daytime | 106 ± 2 | 109 ± 2 | 105 ± 3 | 0.316 |
Nighttime | 94 ± 2 | 96 ± 2 | 93 ± 2 | 0.390 |
Diastolic BP (mmHg) | ||||
Overall | 68 ± 1 | 69 ± 2 | 68 ± 2 | 0.614 |
Daytime | 71 ± 2 | 72 ± 2 | 70 ± 2 | 0.564 |
Nighttime | 57 ± 1 | 59 ± 2 | 56 ± 2 | 0.412 |
Pulse pressure (mmHg) | ||||
Overall | 36 ± 1 | 36 ± 1 | 35 ± 1 | 0.395 |
Daytime | 35 ± 1 | 36 ± 1 | 35 ± 1 | 0.291 |
Nighttime | 37 ± 1 | 37 ± 1 | 37 ± 1 | 0.742 |
Aortic pressure (mmHg) | ||||
Overall | 11 ± 1 | 10 ± 1 | 12 ± 1 | 0.156 |
Daytime | 10 ± 1 | 10 ± 1 | 11 ± 1 | 0.362 |
Nighttime | 12 ± 1 | 10 ± 1 | 13 ± 1 | 0.030 |
Nighttime systolic BP dip (%) | 12 ± 1 | 12 ± 2 | 13 ± 2 | 0.799 |
Nighttime diastolic BP dip (%) | 19 ± 2 | 18 ± 3 | 20 ± 2 | 0.606 |
Wave reflection and arterial stiffness | ||||
Augmentation Index (%) | 6.8 ± 1.8 | 4.6 ± 3.1 | 8.1 ± 2.1 | 0.338 |
Carotid-femoral pulse wave velocity (m/s) | 5.5 ± 0.1 | 5.4 ± 0.1 | 5.6 ± 0.2 | 0.446 |
All subjects | Men | Women | p-Value * | |
---|---|---|---|---|
NOVA Food Classification | ||||
Unprocessed/minimally processed (%) | 26.7 ± 2.1 | 29.3 ± 4.4 | 25.2 ± 2.2 | 0.363 |
Culinary ingredients (%) | 2.5 ± 0.6 | 1.3 ± 0.6 | 3.2 ± 0.8 | 0.062 |
Processed (%) | 20.8 ± 1.6 | 20.7 ± 3.7 | 20.8 ± 1.5 | 0.967 |
Ultra-processed (%) | 50.0 ± 2.4 | 48.8 ± 5.2 | 50.8 ± 2.4 | 0.728 |
Nutrients | ||||
Energy intake (kcal/day) | 2060 ± 83 | 2359 ± 167 | 1880 ± 69 | 0.004 |
Carbohydrates (%) | 46 ± 1 | 46 ± 3 | 46 ± 1 | 0.880 |
Fiber (g/day) | 11 ± 0 | 10 ± 1 | 11 ± 0 | 0.351 |
Added sugar (%) | 10 ± 1 | 9 ± 1 | 11 ± 1 | 0.405 |
Protein (%) | 17 ± 1 | 19 ± 1 | 16 ± 1 | 0.021 |
Fat (%) | 36 ± 1 | 35 ± 2 | 37 ± 1 | 0.344 |
Saturated fat (%) | 12 ± 1 | 11 ± 1 | 12 ± 1 | 0.295 |
Sodium (mg/day) | 1486 ± 50 | 1494 ± 83 | 1481 ± 64 | 0.910 |
Potassium (mg/day) | 1355 ± 51 | 1343 ± 94 | 1362 ± 61 | 0.856 |
Phosphorus (mg/day) | 638 ± 18 | 661 ± 31 | 624 ± 21 | 0.322 |
Calcium (mg/day) | 469 ± 27 | 470 ± 58 | 468 ± 26 | 0.982 |
Magnesium (mg/day) | 166 ± 10 | 159 ± 16 | 171 ± 13 | 0.563 |
Alcohol (%) | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.233 |
All Subjects | Men | Women | ||||
---|---|---|---|---|---|---|
B (95% CI) | p-Value | B (95% CI) | p-Value | B (95% CI) | p-Value | |
Systolic BP, laboratory (mmHg) | 0.05 (−0.17, 0.28) | 0.641 | −0.11 (−0.32, 0.09) | 0.259 | 0.29 (−0.11, 0.68) | 0.151 |
Diastolic BP, laboratory (mmHg) | 0.01 (−0.19, 0.22) | 0.892 | −0.08 (−0.31, 0.16) | 0.488 | 0.10 (−0.27, 0.47) | 0.573 |
ABPM, peripheral BP | ||||||
Systolic BP (mmHg) | ||||||
Overall | 0.25 (0.03, 0.46) | 0.029 | 0.15 (−0.07, 0.38) | 0.167 | 0.38 (−0.02, 0.78) | 0.062 |
Daytime | 0.32 (0.09, 0.56) | 0.008 | 0.23 (−0.01, 0.47) | 0.057 | 0.49 (0.03, 0.95) | 0.039 |
Nighttime | 0.20 (−0.04, 0.44) | 0.096 | 0.18 (−0.13, 0.49) | 0.221 | 0.22 (−0.26, 0.69) | 0.349 |
Diastolic BP (mmHg) | ||||||
Overall | 0.14 (−0.03, 0.31) | 0.093 | 0.07 (−0.11, 0.26) | 0.392 | 0.22 (−0.09, 0.54) | 0.145 |
Daytime | 0.18 (0.01, 0.36) | 0.049 | 0.08 (−0.12, 0.27) | 0.418 | 0.36 (0.01, 0.71) | 0.044 |
Nighttime | 0.11 (−0.08, 0.30) | 0.240 | 0.08 (−0.19, 0.35) | 0.510 | 0.11 (−0.26, 0.48) | 0.549 |
MAP (mmHg) | ||||||
Overall | 0.18 (−0.01, 0.36) | 0.052 | 0.10 (−0.09, 0.28) | 0.283 | 0.28 (−0.05, 0.61) | 0.090 |
Daytime | −0.03 (−0.41, 0.36) | 0.887 | −0.01 (−0.57, 0.55) | 0.974 | −0.04 (−0.66, 0.59) | 0.906 |
Nighttime | 0.14 (−0.06, 0.33) | 0.158 | 0.11 (−0.15, 0.38) | 0.375 | 0.14 (−0.24, 0.52) | 0.439 |
Heart rate (bpm) | ||||||
Overall | 0.01 (−0.18, 0.20) | 0.913 | 0.06 (−0.19, 0.31) | 0.600 | 0.07 (−0.29, 0.43) | 0.694 |
Daytime | 0.17 (−0.06, 0.39) | 0.147 | 0.20 (−0.14, 0.53) | 0.218 | 0.05 (−0.24, 0.34) | 0.724 |
Nighttime | −0.03 (−0.25, 0.19) | 0.787 | 0.02 (−0.23, 0.26) | 0.882 | −0.14 (−0.57, 0.29) | 0.498 |
Pulse pressure (mmHg) | ||||||
Overall | 0.10 (−0.03, 0.23) | 0.115 | 0.08 (−0.08, 0.23) | 0.283 | 0.14 (−0.08, 0.36) | 0.200 |
Daytime | 0.22 (0.03, 0.41) | 0.027 | 0.09 (−0.12, 0.30) | 0.371 | 0.46 (0.14, 0.78) | 0.008 |
Nighttime | 0.10 (−0.04, 0.23) | 0.170 | 0.10 (−0.07, 0.27) | 0.240 | 0.11 (−0.16, 0.38) | 0.391 |
ABPM, central BP | ||||||
Systolic BP (mmHg) | ||||||
Overall | 0.23 (−0.01, 0.46) | 0.060 | 0.05 (−0.17, 0.26) | 0.629 | 0.39 (−0.01, 0.78) | 0.054 |
Daytime | 0.20 (−0.02, 0.41) | 0.074 | 0.06 (−0.15, 0.28) | 0.521 | 0.56 (0.08, 1.04) | 0.025 |
Nighttime | 0.13 (−0.08, 0.34) | 0.215 | 0.07 (−0.16, 0.30) | 0.512 | 0.23 (−0.25, 0.71) | 0.329 |
Diastolic BP (mmHg) | ||||||
Overall | 0.12 (−0.08, 0.33) | 0.293 | 0.03 (−0.16, 0.22) | 0.712 | 0.26 (−0.13, 0.64) | 0.176 |
Daytime | 0.16 (−0.05, 0.38) | 0.134 | 0.06 (−0.15, 0.27) | 0.556 | 0.38 (−0.08, 0.83) | 0.098 |
Nighttime | 0.09 (−0.10, 0.28) | 0.326 | 0.06 (−0.16, 0.27) | 0.562 | 0.13 (−0.31, 0.58) | 0.535 |
Pulse pressure (mmHg) | ||||||
Overall | 0.06 (−0.03, 0.16) | 0.192 | 0.02 (−0.09, 0.13) | 0.733 | 0.14 (−0.03, 0.31) | 0.099 |
Daytime | 0.7 (−0.04, 0.18) | 0.215 | 0.02 (−0.11, 0.15) | 0.743 | 0.17 (−0.04, 0.38) | 0.099 |
Nighttime | 0.04 (−0.04, 0.13) | 0.330 | 0.01 (−0.08, 0.11) | 0.744 | 0.12 (−0.06, 0.29) | 0.183 |
Aortic pressure (mmHg) | ||||||
Overall | −0.01 (−0.10, 0.07) | 0.723 | −0.06 (−0.18, 0.06) | 0.286 | −0.00 (−0.16, 0.16) | 0.997 |
Daytime | −0.01 (−0.09, 0.09) | 0.983 | −0.05 (−0.19, 0.08) | 0.384 | 0.08 (−0.12, 0.27) | 0.443 |
Nighttime | −0.05 (−0.13, 0.04) | 0.265 | −0.07 (−0.15, 0.01) | 0.097 | −0.06 (−0.27, 0.15) | 0.549 |
Nighttime SBP dip (%) | −0.02 (−0.19, 0.16) | 0.836 | −0.06 (−0.30, 0.19) | 0.624 | −0.01 (−0.30, 0.27) | 0.938 |
Nighttime DBP dip (%) | 0.02 (−0.22, 0.27) | 0.846 | −0.05 (−0.44, 0.335) | 0.776 | 0.11 (−0.26, 0.48) | 0.537 |
Wave reflection and arterial stiffness | ||||||
Augmentation Index (%) | ||||||
Adjusted for HR | −0.13 (−0.34, 0.07) | 0.199 | −0.26 (−0.53, 0.005) | 0.054 | 0.07 (−0.27, 0.42) | 0.676 |
Adjusted for sex, age, HR a | −0.07 (−0.25, 0.12) | 0.482 | −0.20 (−0.47, 0.07) | 0.126 | 0.15 (−0.13, 0.43) | 0.288 |
Carotid-femoral PWV (m/s) | ||||||
Adjusted for MAP | −0.01 (−0.02, 0.01) | 0.272 | −0.01 (−0.02, 0.007) | 0.243 | −0.01 (−0.04, 0.01) | 0.238 |
Adjusted for sex, BMI, MAP b | −0.01 (−0.02, 0.00) | 0.146 | −0.01 (−0.03, 0.007) | 0.243 | −0.02 (−0.04, 0.01) | 0.180 |
All Subjects | Men | Women | ||||
---|---|---|---|---|---|---|
B (95% CI) | p-Value | B (95% CI) | p-Value | B (95% CI) | p-Value | |
Systolic BP, laboratory (mmHg) | −0.10 (−0.34, 0.14) | 0.405 | 0.14 (−0.08, 0.36) | 0.191 | −0.47 (−0.86, −0.08) | 0.021 |
Diastolic BP, laboratory (mmHg) | −0.03 (−0.26, 0.19) | 0.760 | 0.14 (−0.18, 0.38) | 0.245 | −0.32 (−0.69, 0.05) | 0.088 |
ABPM, peripheral BP | ||||||
Systolic BP (mmHg) | ||||||
Overall | −0.19 (−0.44, 0.06) | 0.123 | −0.06 (−0.32, 0.21) | 0.643 | −0.44 (−0.90, 0.02) | 0.062 |
Daytime | −0.26 (−0.53, 0.01) | 0.055 | −0.11 (−0.41, 0.20) | 0.461 | −0.53 (−1.02, −0.05) | 0.034 |
Nighttime | −0.14 (−0.41, 0.13) | 0.297 | −0.10 (−0.46, 0.25) | 0.540 | −0.27 (−0.77, 0.24) | 0.278 |
Diastolic BP (mmHg) | ||||||
Overall | −0.14 (−0.33, 0.04) | 0.127 | −0.03 (−0.24, 0.17) | 0.737 | −0.37 (−0.71, −0.02) | 0.033 |
Daytime | −0.17 (−0.37, 0.02) | 0.082 | −0.03 (−0.25, 0.19) | 0.765 | −0.46 (−0.81, −0.11) | 0.013 |
Nighttime | −0.08 (−0.30, 0.12) | 0.402 | −0.04 (−0.34, 0.27) | 0.800 | −0.27 (−0.65, 0.10) | 0.142 |
MAP (mmHg) | ||||||
Overall | −0.16 (−0.36, 0.04) | 0.123 | −0.04 (−0.25, 0.18) | 0.720 | −0.39 (−0.76, −0.02) | 0.038 |
Daytime | 0.06 (−0.35, 0.48) | 0.764 | −0.05 (−0.56, 0.66) | 0.860 | −0.01 (−0.65, 0.67) | 0.972 |
Nighttime | −0.10 (−0.32, 0.11) | 0.337 | −0.05 (−0.35, 0.25) | 0.704 | −0.28 (−0.66, 0.11) | 0.150 |
Heart rate (bpm) | ||||||
Overall | −0.01 (−0.22, 0.20) | 0.869 | −0.02 (−0.29, 0.26) | 0.902 | −0.01 (−0.38, 0.37) | 0.966 |
Daytime | −0.08 (−0.33, 0.17) | 0.523 | −0.05 (−0.44, 0.34) | 0.801 | −0.11 (−0.50, 0.27) | 0.543 |
Nighttime | 0.04 (−0.20, 0.27) | 0.731 | 0.07 (−0.20, 0.33) | 0.599 | −0.00 (−0.47, 0.47) | 0.995 |
Pulse pressure (mmHg) | ||||||
Overall | −0.06 (−0.20, 0.09) | 0.427 | −0.04 (−0.21, 0.14) | 0.673 | −0.06 (−0.32, 0.21) | 0.647 |
Daytime | −0.27 (−0.47, −0.07) | 0.011 | −0.13 (−0.35, 0.10) | 0.245 | −0.45 (−0.80, −0.10) | 0.015 |
Nighttime | −0.06 (−0.21, 0.09) | 0.430 | −0.07 (−0.26, 0.13) | 0.448 | −0.00 (−0.30, 0.30) | 0.988 |
ABPM, central BP | ||||||
Systolic BP (mmHg) | ||||||
Overall | −0.27 (−0.51, −0.02) | 0.035 | −0.09 (−0.34, 0.15) | 0.415 | −0.62 (−1.05, −0.18) | 0.008 |
Daytime | −0.31 (−0.58, −0.04) | 0.024 | −0.10 (−0.34, 0.15) | 0.404 | −0.78 (−1.24, −0.32) | 0.002 |
Nighttime | −0.22 (−0.45, 0.01) | 0.058 | −0.15 (−0.40, 0.10) | 0.220 | −0.48 (−0.93, −0.02) | 0.041 |
Diastolic BP (mmHg) | ||||||
Overall | −0.17 (−0.41, 0.07) | 0.151 | −0.04 (−0.26, 0.19) | 0.732 | −0.46 (−0.88, −0.03) | 0.036 |
Daytime | −0.19 (−0.44, 0.06) | 0.133 | −0.03 (−0.28, 0.22) | 0.812 | −0.55 (−1.01, −0.10) | 0.020 |
Nighttime | −0.14 (−0.36, 0.08) | 0.199 | −0.10 (−0.35, 0.14) | 0.365 | −0.34 (−0.78, 0.10) | 0.121 |
Pulse pressure (mmHg) | ||||||
Overall | −0.11 (−0.21, −0.01) | 0.058 | −0.06 (−0.18, 0.07) | 0.311 | −0.18 (−0.38, 0.02) | 0.078 |
Daytime | −0.11 (−0.24, −0.01) | 0.070 | −0.07 (−0.21, 0.08) | 0.330 | −0.20 (−0.43, 0.02) | 0.076 |
Nighttime | −0.10 (−0.19, −0.01) | 0.042 | −0.06 (−0.16, 0.05) | 0.252 | −0.14 (−0.32, 0.05) | 0.137 |
Aortic pressure (mmHg) | ||||||
Overall | −0.06 (−0.16, 0.03) | 0.165 | −0.01 (−0.17, 0.14) | 0.838 | −0.21 (−0.37, −0.05) | 0.015 |
Daytime | −0.08 (−0.18, 0.04) | 0.110 | −0.02 (−0.18, 0.15) | 0.829 | −0.29 (−0.45, −0.13) | 0.001 |
Nighttime | −0.04 (−0.13, 0.06) | 0.465 | 0.00 (−0.11, 0.11) | 0.989 | −0.17 (−0.37, 0.03) | 0.085 |
Nighttime SBP dip (%) | 0.02 (−0.17, 0.22) | 0.802 | 0.06 (−0.20, 0.32) | 0.620 | 0.01 (−0.30, 0.33) | 0.943 |
Nighttime DBP dip (%) | −0.03 (−0.29, 0.24) | 0.852 | 0.02 (−0.39, 0.44) | 0.906 | 0.01 (−0.41, 0.41) | 0.989 |
Wave reflection and arterial stiffness | ||||||
Augmentation Index (%) | ||||||
Adjusted for HR | −0.05 (−0.30, 0.19) | 0.657 | 0.18 (−0.17, 0.53) | 0.284 | −0.36 (−0.71, −0.02) | 0.042 |
Adjusted for sex, age, HR a | −0.03 (−0.24, 0.18) | 0.777 | 0.18 (−0.13, 0.49) | 0.237 | −0.31 (−0.60, −0.03) | 0.034 |
Carotid-femoral PWV (m/s) | ||||||
Adjusted for MAP | 0.00 (−0.01, 0.02) | 0.646 | 0.01 (−0.01, 0.03) | 0.342 | 0.01 (−0.02, 0.04) | 0.544 |
Adjusted for sex, BMI, MAP b | 0.01 (−0.01, 0.02) | 0.481 | 0.01 (−0.01, 0.03) | 0.364 | 0.01 (−0.02, 0.04) | 0.519 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smiljanec, K.; Mbakwe, A.U.; Ramos-Gonzalez, M.; Mesbah, C.; Lennon, S.L. Associations of Ultra-Processed and Unprocessed/Minimally Processed Food Consumption with Peripheral and Central Hemodynamics and Arterial Stiffness in Young Healthy Adults. Nutrients 2020, 12, 3229. https://doi.org/10.3390/nu12113229
Smiljanec K, Mbakwe AU, Ramos-Gonzalez M, Mesbah C, Lennon SL. Associations of Ultra-Processed and Unprocessed/Minimally Processed Food Consumption with Peripheral and Central Hemodynamics and Arterial Stiffness in Young Healthy Adults. Nutrients. 2020; 12(11):3229. https://doi.org/10.3390/nu12113229
Chicago/Turabian StyleSmiljanec, Katarina, Alexis U. Mbakwe, Macarena Ramos-Gonzalez, Christina Mesbah, and Shannon L. Lennon. 2020. "Associations of Ultra-Processed and Unprocessed/Minimally Processed Food Consumption with Peripheral and Central Hemodynamics and Arterial Stiffness in Young Healthy Adults" Nutrients 12, no. 11: 3229. https://doi.org/10.3390/nu12113229
APA StyleSmiljanec, K., Mbakwe, A. U., Ramos-Gonzalez, M., Mesbah, C., & Lennon, S. L. (2020). Associations of Ultra-Processed and Unprocessed/Minimally Processed Food Consumption with Peripheral and Central Hemodynamics and Arterial Stiffness in Young Healthy Adults. Nutrients, 12(11), 3229. https://doi.org/10.3390/nu12113229