Dietary Protein to Carbohydrate Ratio and Incidence of Metabolic Syndrome in Korean Adults Based on a Long-Term Prospective Community-Based Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Dietary Assessment
2.3. Definition of MS
2.4. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Cox Proportional Hazard Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, Z.; Nan, F.; Wang, L.Y.; Jiang, H.; Chen, W.; Jiang, Y. Effects of high-protein diet on glycemic control, insulin resistance and blood pressure in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2020, 39, 1724–1734. [Google Scholar] [CrossRef]
- Leidy, H.J.; Clifton, P.M.; Astrup, A.; Wycherley, T.P.; Westerterp-Plantenga, M.S.; Luscombe-Marsh, N.D.; Woods, S.C.; Mattes, R.D. The role of protein in weight loss and maintenance. Am. J. Clin. Nutr. 2015, 101, 1320S–1329S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigle, D.S.; Breen, P.A.; Matthys, C.C.; Callahan, H.S.; Meeuws, K.E.; Burden, V.R.; Purnell, J.Q. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am. J. Clin. Nutr. 2005, 82, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ericson, U.; Sonestedt, E.; Gullberg, B.; Hellstrand, S.; Hindy, G.; Wirfält, E.; Orho-Melander, M. High intakes of protein and processed meat associate with increased incidence of type 2 diabetes. Br. J. Nutr. 2012, 109, 1143–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sluijs, I.; Beulens, J.W.; Spijkerman, A.M.; Grobbee, D.E.; Van Der Schouw, Y.T. Dietary Intake of Total, Animal, and Vegetable Protein and Risk of Type 2 Diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL Study. Diabetes Care 2009, 33, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Tinker, L.F.; Sarto, G.E.; Howard, B.V.; Huang, Y.; Neuhouser, M.L.; Mossavar-Rahmani, Y.; Beasley, J.M.; Margolis, K.L.; Eaton, C.B.; Phillips, L.S.; et al. Biomarker-calibrated dietary energy and protein intake associations with diabetes risk among postmenopausal women from the Women’s Health Initiative. Am. J. Clin. Nutr. 2011, 94, 1600–1606. [Google Scholar] [CrossRef]
- Van Nielen, M.; Feskens, E.J.; Mensink, M.; Sluijs, I.; Molina, E.; Amiano, P.; Ardanaz, E.; Balkau, B.; Beulens, J.W.; Boeing, H.; et al. Dietary Protein Intake and Incidence of Type 2 Diabetes in Europe: The EPIC-InterAct Case-Cohort Study. Diabetes Care 2014, 37, 1854–1862. [Google Scholar] [CrossRef] [Green Version]
- Krebs, M.; Krssak, M.; Bernroider, E.; Anderwald, C.; Brehm, A.; Meyerspeer, M.; Nowotny, P.; Roth, E.; Waldhäusl, W.; Roden, M. Mechanism of Amino Acid-Induced Skeletal Muscle Insulin Resistance in Humans. Diabetes 2002, 51, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Linn, T.; Santosa, B.; Grönemeyer, D.; Aygen, S.; Scholz, N.; Busch, M.; Bretzel, R.G. Effect of long-term dietary protein intake on glucose metabolism in humans. Diabetologia 2000, 43, 1257–1265. [Google Scholar] [CrossRef] [Green Version]
- Azemati, B.; Rajaram, S.; Jaceldo-Siegl, K.; Sabate, J.; Shavlik, D.J.; Fraser, G.E.; Haddad, E.H. Animal-Protein Intake Is Associated with Insulin Resistance in Adventist Health Study 2 (AHS-2) Calibration Substudy Participants: A Cross-Sectional Analysis. Curr. Dev. Nutr. 2017, 1, e000299. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, F.; Krebs, M.; Dombrowski, L.; Brehm, A.; Bernroider, E.; Roth, E.; Nowotny, P.; Waldhäusl, W.; Marette, A.; Roden, M. Overactivation of S6 Kinase 1 as a Cause of Human Insulin Resistance During Increased Amino Acid Availability. Diabetes 2005, 54, 2674–2684. [Google Scholar] [CrossRef] [Green Version]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.-A.; Lee, J.-H.; Lim, S.-Y.; Ha, H.-S.; Kwon, H.-S.; Park, Y.-M.; Lee, W.-C.; Kang, M.-I.; Yim, H.-W.; Yoon, K.-H.; et al. Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. J. Diabetes Investig. 2013, 4, 334–343. [Google Scholar] [CrossRef]
- Galassi, A.; Reynolds, K.; He, J. Metabolic Syndrome and Risk of Cardiovascular Disease: A Meta-Analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Scott, D.; Hodge, A.; English, D.R.; Giles, G.G.; Ebeling, P.R.; Sanders, K.M. Dietary protein from different food sources, incident metabolic syndrome and changes in its components: An 11-year longitudinal study in healthy community-dwelling adults. Clin. Nutr. 2017, 36, 1540–1548. [Google Scholar] [CrossRef]
- Lee, S.E.; Han, K.; Kang, Y.M.; Kim, S.-O.; Cho, Y.K.; Ko, K.S.; Park, J.-Y.; Lee, K.-U.; Koh, E.H.; Association, Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes Association. Trends in the prevalence of metabolic syndrome and its components in South Korea: Findings from the Korean National Health Insurance Service Database (2009–2013). PLoS ONE 2018, 13, e0194490. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health and Welfare. Korea Centers for Disease Control and Prevention. In Korea Health Statistics 2018: Korea National Health and Nutrition Examination Survey (KNHANES Ⅶ-3); Korea Centers for Disease Control and Prevention: Osong, Korea, 2019. [Google Scholar]
- Su, C.; Zhao, J.; Wu, Y.; Wang, H.; Wang, Z.; Wang, Y.; Zhang, B. Temporal Trends in Dietary Macronutrient Intakes among Adults in Rural China from 1991 to 2011: Findings from the CHNS. Nutrients 2017, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Livingstone, M.B. Energy density of meals and snacks in the British diet in relation to overall diet quality, BMI and waist circumference: Findings from the National Diet and Nutrition Survey. Br. J. Nutr. 2016, 116, 1479–1489. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Agricultural Research Service. Energy Intakes: Percentages of Energy from Protein, Carbohydrate, Fat, and Alcohol, by Gender and Age, What We Eat in America; NHANES 2013–2014; Agricultural Research Service: Beltsville, MD, USA, 2016.
- Australian Bureau of Statistics. Australian Health Survey: Usual Nutrient Intakes, 2011–2012; Australian Bureau of Statistics: Belconnen, Australia, 2015. [Google Scholar]
- Tischmann, L.; Drummen, M.; Joris, P.J.; Gatta-Cherifi, B.; Raben, A.; Fogelholm, M.; Matias, I.; Cota, D.; Mensink, R.P.; Westerterp-Plantenga, M.S.; et al. Effects of a High-Protein Diet on Cardiometabolic Health, Vascular Function, and Endocannabinoids—A PREVIEW Study. Nutrients 2020, 12, 1512. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.G. The KoGES Group Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiology 2017, 46, 1350. [Google Scholar] [CrossRef]
- Choi, J.R.; Kim, J.-Y.; Park, I.H.; Huh, J.H.; Kim, K.W.; Cha, S.-K.; Park, K.-S.; Sohn, J.H.; Park, J.T.; Koh, S.B. Serum Fibroblast Growth Factor 21 and New-Onset Metabolic Syndrome: KoGES-ARIRANG Study. Yonsei Med J. 2018, 59, 287–293. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- The Korean Nutrition Society. Computer Aided Nutritional Analysis Program for Professionals 2.0; Korean Nutrition Society Seoul: Seoul, Korea, 2002. [Google Scholar]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.G.; Zhang, Q.L.; Liu, X.L.; Wu, H.; Zheng, J.L.; Xiang, Y.B. Dietary protein intake and risk of type 2 diabetes: A dose—Response meta-analysis of prospective studies. Eur. J. Nutr. 2019, 58, 1351–1367. [Google Scholar] [CrossRef]
- Hruby, A.; Jacques, P.F. Dietary protein and changes in markers of cardiometabolic health across 20 years of follow-up in middle-aged Americans. Public Health Nutr. 2018, 21, 2998–3010. [Google Scholar] [CrossRef] [Green Version]
- Solon-Biet, S.M.; Mitchell, S.J.; Coogan, S.C.; Cogger, V.C.; Gokarn, R.; McMahon, A.C.; Raubenheimer, D.; De Cabo, R.; Simpson, S.J.; Le Couteur, D.G. Dietary Protein to Carbohydrate Ratio and Caloric Restriction: Comparing Metabolic Outcomes in Mice. Cell Rep. 2015, 11, 1529–1534. [Google Scholar] [CrossRef] [Green Version]
- Solon-Biet, S.M.; McMahon, A.C.; Ballard, J.W.O.; Ruohonen, K.; Wu, L.E.; Cogger, V.C.; Warren, A.; Huang, X.; Pichaud, N.; Melvin, R.G.; et al. The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice. Cell Metab. 2014, 19, 418–430. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, J.F.; Klein, S. Lipid metabolism during endurance exercise. Am. J. Clin. Nutr. 2000, 72, 558S–563S. [Google Scholar] [CrossRef] [Green Version]
- Karol, P.; Anna, P.; Krzysztof, S.; Wiesław, P.; Józef, L.; Sławomir, L.; Cezary, M.; Miłosz, C.; Michał, Z.; Małgorzata, C. Three-Year Chronic Consumption of Low-Carbohydrate Diet Impairs Exercise Performance and Has a Small Unfavorable Effect on Lipid Profile in Middle-Aged Men. Nutrients 2018, 10, 1914. [Google Scholar] [CrossRef] [Green Version]
- Grieb, P.; Kłapcińska, B.; Smol, E.; Pilis, T.; Pilis, W.; Sadowska-Krępa, E.; Sobczak, A.; Bartoszewicz, Z.; Nauman, J.; Stańczak, K.; et al. Long-term consumption of a carbohydrate-restricted diet does not induce deleterious metabolic effects. Nutr. Res. 2008, 28, 825–833. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Li, Y.-H.; Lin, C.-C.; Chao, T.-H.; Chen, J.-H. Effects of oxidative stress on endothelial function after a high-fat meal. Clin. Sci. 2004, 106, 315–319. [Google Scholar] [CrossRef]
- Ceriello, A.; Taboga, C.; Tonutti, L.; Quagliaro, L.; Piconi, L.; Bais, B.; Da Ros, R.; Motz, E. Evidence for an Independent and Cumulative Effect of Postprandial Hypertriglyceridemia and Hyperglycemia on Endothelial Dysfunction and Oxidative Stress Generation. Circulation 2002, 106, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex Differ. 2015, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, M.G.; Agellon, L.B. Sex differences in lipid metabolism and metabolic disease risk. Biochem. Cell Biol. 2012, 90, 124–141. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef] [Green Version]
- Burgoyne, P.S. A Y-chromosomal effect on blastocyst cell number in mice. Development 1993, 117, 341–345. [Google Scholar]
- Chen, X.; McClusky, R.; Chen, J.; Beaven, S.W.; Tontonoz, P.; Arnold, A.P.; Reue, K. The Number of X Chromosomes Causes Sex Differences in Adiposity in Mice. PLoS Genet. 2012, 8, e1002709. [Google Scholar] [CrossRef] [Green Version]
Men (n = 3320) | Women (n = 3015) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Quintile of Intake (p/c) | 1 (Lowest) | 2 | 3 | 4 | 5 | 1 (Lowest) | 2 | 3 | 4 | 5 |
P/c ratio, median (25–75%) | 0.14 (0.129–0.148) | 0.17 (0.162–0.174) | 0.19 (0.185–0.196) | 0.22 (0.209–0.224) | 0.27 (0.247–0.290) | 0.14 (0.126–0.147) | 0.17 (0.161–0.173) | 0.19 (0.183–0.196) | 0.22 (0.208–0.225) | 0.26 (0.243–0.285) |
Metabolic syndrome (number) | 233 | 243 | 232 | 232 | 258 | 295 | 245 | 229 | 193 | 207 |
Age, years | 54.77 ± 9.32 | 52.09 ± 8.91 | 50.53 ± 8.37 | 49.68 ± 8.06 | 49.04 ± 7.97 | 54.63 ± 9.17 | 50.19 ± 8.36 | 49.77 ± 8.45 | 48.44 ± 7.42 | 47.35 ± 7.08 |
Follow-up, mo | 92.93 ± 45.35 | 91.43 ± 47.19 | 94.36 ± 46.42 | 96.36 ± 46.76 | 92.61 ± 46.00 | 81.23 ± 49.07 | 93.00 ± 49.22 | 95.19 ± 47.55 | 98.91 ± 47.15 | 95.93 ± 46.96 |
Area of residence (%) | ||||||||||
Ansung | 73.34 | 50.00 | 35.39 | 30.42 | 30.57 | 73.30 | 45.77 | 32.67 | 24.21 | 32.84 |
Ansan | 26.66 | 50.00 | 64.61 | 69.58 | 69.43 | 26.70 | 54.23 | 67.33 | 75.79 | 67.16 |
Monthly household income (%) | ||||||||||
<1000 USD | 49.32 | 32.42 | 23.79 | 16.16 | 14.42 | 59.86 | 33.62 | 30.05 | 21.51 | 18.72 |
1000–1999 USD | 30.14 | 31.52 | 30.91 | 29.61 | 30.80 | 25.56 | 34.30 | 34.56 | 27.56 | 30.02 |
2000–2999 USD | 14.00 | 18.94 | 21.82 | 23.87 | 22.31 | 8.92 | 19.52 | 18.03 | 27.56 | 25.46 |
≥3000 USD | 6.54 | 17.12 | 23.48 | 30.36 | 32.47 | 5.66 | 12.56 | 17.36 | 23.36 | 25.80 |
Education (%) | ||||||||||
≤Elementary school | 35.41 | 22.84 | 15.56 | 12.67 | 11.18 | 60.91 | 39.60 | 30.78 | 21.63 | 19.44 |
Middle-high school | 54.10 | 58.40 | 62.39 | 60.03 | 58.16 | 36.58 | 54.74 | 59.73 | 68.05 | 69.10 |
≥College | 10.49 | 18.76 | 22.05 | 27.30 | 30.66 | 2.52 | 5.66 | 9.48 | 10.32 | 11.46 |
Smoking (%) | ||||||||||
Never | 20.27 | 19.31 | 22.74 | 19.31 | 15.76 | 95.97 | 96.28 | 96.49 | 94.82 | 93.25 |
Ex-smoker | 28.14 | 28.81 | 29.97 | 30.47 | 31.36 | 0.84 | 1.35 | 0.67 | 1.84 | 1.18 |
Current smoker | 51.59 | 51.89 | 47.29 | 50.23 | 52.88 | 3.19 | 2.37 | 2.84 | 3.34 | 5.56 |
Smoking (pack-years) | 20.84 ± 18.79 | 18.76 ± 19.07 | 16.94 ± 16.59 | 18.51 ± 18.08 | 18.83 ± 17.00 | 0.43 ± 3.00 | 0.22 ± 2.31 | 0.20 ± 1.60 | 0.42 ± 2.83 | 0.46 ± 2.83 |
Alcohol consumption (%) | ||||||||||
Never | 25.04 | 19.34 | 21.08 | 14.78 | 12.08 | 75.08 | 69.88 | 64.17 | 67.22 | 61.36 |
Ex-drinker | 14.03 | 9.06 | 8.43 | 7.09 | 7.25 | 1.84 | 2.33 | 3.67 | 1.33 | 3.48 |
Current drinker | 60.94 | 71.6 | 70.48 | 78.13 | 80.66 | 23.08 | 27.79 | 32.17 | 31.45 | 35.16 |
Alcohol consumption (g/d) | 13.25 ± 26.64 | 16.69 ± 26.39 | 15.72 ± 23.68 | 20.85 ± 27.37 | 24.67 ± 32.76 | 0.86 ± 4.30 | 1.07 ± 3.63 | 1.49 ± 5.03 | 1.47 ± 4.91 | 2.66 ± 8.71 |
Physical activity (MET—min/wk) | 11575.32 ± 7076.82 | 10593.24 ± 6683.26 | 9772.38 ± 6398.75 | 9882.10 ± 6096.15 | 9262.22 ± 6146.33 | 9971.77 ± 6852.45 | 9479.45 ± 6285.19 | 8503.67 ± 5371.83 | 8555.62 ± 5239.10 | 8548.53 ± 5237.62 |
Body Mass Index (kg/m2) | 22.97 ± 2.60 | 23.37 ± 2.67 | 23.62 ± 2.69 | 23.66 ± 2.55 | 23.95 ± 2.63 | 23.5 ± 3.35 | 24.07 ± 3.01 | 24.00 ± 2.85 | 23.89 ± 2.73 | 23.89 ± 2.92 |
Waist circumference (cm) | 80.76 ± 6.84 | 81.21 ± 7.03 | 81.41 ± 6.80 | 81.32 ± 6.27 | 82.65 ± 6.33 | 78.76 ± 9.07 | 78.22 ± 8.55 | 77.45 ± 7.90 | 76.24 ± 7.74 | 76.58 ± 8.02 |
Triglycerides (mg/dL) | 148.18 ± 103.66 | 149.25 ± 81.90 | 155.74 ± 104.51 | 150.48 ± 81.94 | 151.81 ± 100.79 | 116.16 ± 44.87 | 118.15 ± 63.41 | 113.74 ± 41.47 | 111.70 ± 42.78 | 114.24 ± 58.24 |
HDL cholesterol (mg/dL) | 45.13 ± 10.01 | 45.58 ± 10.17 | 45.44 ± 9.63 | 46.26 ± 10.23 | 45.79 ± 9.95 | 49.20 ± 10.29 | 48.21 ± 10.06 | 48.36 ± 10.48 | 48.81 ± 9.67 | 49.70 ± 10.41 |
Systolic blood pressure (mmHg) | 120.88 ± 16.49 | 119.35 ± 17.03 | 117.79 ± 15.82 | 118.72 ± 15.81 | 117.67 ± 15.28 | 118.37 ± 17.2 | 113.43 ± 15.93 | 112.34 ± 15.12 | 111.53 ± 16.13 | 111.36 ± 14.86 |
Diastolic blood pressure (mmHg) | 80.18 ± 9.83 | 79.62 ± 10.70 | 79.17 ± 10.99 | 80.12 ± 10.22 | 79.90 ± 10.55 | 77.36 ± 9.99 | 74.71 ± 9.80 | 73.78 ± 9.60 | 73.63 ± 10.34 | 73.65 ± 10.27 |
Fasting plasma glucose (mg/dL) | 83.28 ± 11.58 | 85.56 ± 16.55 | 87.67 ± 20.79 | 87.48 ± 14.39 | 89.12 ± 20.10 | 80.88 ± 9.44 | 81.01 ± 11.50 | 81.94 ± 15.13 | 81.23 ± 10.54 | 81.13 ± 8.01 |
Menopausal status (yes%) | - | - | - | - | - | 69.62 | 52.83 | 48.00 | 45.23 | 39.13 |
Daily dietary intake | ||||||||||
Total energy intake (kcal/day) | 1767.95 ± 631.10 | 1870.29 ± 524.25 | 1941.12 ± 525.71 | 2066.23 ± 500.90 | 2223.07 ± 617.24 | 1674.89 ± 622.08 | 1789.61 ± 564.93 | 1872.23 ± 548.54 | 1938.75 ± 572.58 | 2021.96 ± 719.26 |
Energy from protein (%) | 0.11 ± 0.01 | 0.13 ± 0.00 | 0.14 ± 0.01 | 0.15 ± 0.01 | 0.17 ± 0.02 | 0.11 ± 0.01 | 0.12 ± 0.00 | 0.13 ± 0.01 | 0.15 ± 0.01 | 0.17 ± 0.02 |
Energy from fat (%) | 0.10 ± 0.03 | 0.13 ± 0.03 | 0.15 ± 0.03 | 0.18 ± 0.03 | 0.22 ± 0.04 | 0.08 ± 0.03 | 0.12 ± 0.03 | 0.14 ± 0.03 | 0.17 ± 0.03 | 0.21 ± 0.05 |
Energy from carbohydrate (%) | 0.79 ± 0.03 | 0.74 ± 0.03 | 0.71 ± 0.02 | 0.68 ± 0.02 | 0.61 ± 0.05 | 0.81 ± 0.03 | 0.76 ± 0.02 | 0.72 ± 0.03 | 0.69 ± 0.03 | 0.62 ± 0.05 |
Protein intake (g/d) | 48.06 ± 17.11 | 58.36 ± 16.04 | 65.57 ± 17.33 | 75.78 ± 17.93 | 94.47 ± 28.87 | 44.97 ± 17.13 | 55.42 ± 17.5 | 63.09 ± 18.38 | 71.20 ± 20.62 | 85.09 ± 32.21 |
Fat intake (g/d) | 19.83 ± 11.51 | 27.65 ± 11.22 | 33.75 ± 12.59 | 41.11 ± 13.55 | 54.48 ± 20.63 | 15.75 ± 8.55 | 23.83 ± 10.07 | 29.54 ± 11.60 | 35.97 ± 13.64 | 47.45 ± 22.41 |
Carbohydrate intake (g/d) | 349.31 ± 122.59 | 347.01 ± 94.86 | 343.78 ± 89.60 | 348.28 ± 81.32 | 338.72 ± 92.50 | 338.32 ± 124.28 | 338.37 ± 105.15 | 338.51 ± 98.35 | 332.56 ± 96.44 | 313.64 ± 109.96 |
Quintile of Intake (p/c Ratio) | Ptrend2 | ||||||
---|---|---|---|---|---|---|---|
1 (Lowest) 1 | 2 | 3 | 4 | 5 | |||
Men | Model 1 | 1.00 | 1.18 (0.98–1.41) | 1.17 (0.97–1.41) | 1.14 (0.95–1.38) | 1.31 (1.09–1.57) | 0.013 |
Model 2 | 1.00 | 1.25 (1.04–1.51) | 1.31 (1.07–1.61) | 1.34 (1.08–1.67) | 1.73 (1.33–2.24) | 0.000 | |
Model 3 | 1.00 | 1.23 (1.01–1.49) | 1.29 (1.05–1.6) | 1.26 (1.00–1.59) | 1.66 (1.26–2.18) | 0.001 | |
Model 4 | 1.00 | 1.24 (1.02–1.51) | 1.25 (1.01–1.55) | 1.25 (0.99–1.58) | 1.43 (1.09–1.89) | 0.031 | |
Women | Model 1 | 1.00 | 1.04 (0.87–1.24) | 1.04 (0.87–1.24) | 0.96 (0.79–1.17) | 1.00 (0.82–1.2) | 0.739 |
Model 2 | 1.00 | 1.07 (0.89–1.28) | 1.09 (0.9–1.32) | 1.04 (0.83–1.31) | 1.14 (0.87–1.49) | 0.434 | |
Model 3 3 | 1.00 | 1.07 (0.89–1.29) | 1.08 (0.89–1.33) | 1.05 (0.83–1.33) | 1.13 (0.85–1.49) | 0.493 | |
Model 4 3 | 1.00 | 0.91 (0.76–1.1) | 0.95 (0.78–1.16) | 0.94 (0.75–1.19) | 0.97 (0.74–1.28) | 0.912 |
Quintile of Intake (p/c Ratio) | Ptrend2 | |||||||
---|---|---|---|---|---|---|---|---|
Component | 1 (Lowest) 1 | 2 | 3 | 4 | 5 | |||
High Waist Circumference | ||||||||
Men | Model 1 | 1.00 | 1.09 (0.9–1.33) | 1.11 (0.91–1.36) | 1.06 (0.86–1.3) | 1.23 (1.01–1.5) | 0.068 | |
Model 2 | 1.00 | 1.12 (0.91–1.36) | 1.16 (0.93–1.44) | 1.11 (0.88–1.41) | 1.35 (1.02–1.79) | 0.064 | ||
Model 3 | 1.00 | 1.1 (0.89–1.35) | 1.14 (0.9–1.43) | 1.08 (0.84–1.38) | 1.28 (0.95–1.73) | 0.156 | ||
Women | Model 1 | 1.00 | 1.24 (1.02–1.5) | 1.18 (0.96–1.45) | 1.2 (0.98–1.48) | 1.11 (0.91–1.35) | 0.575 | |
Model 2 | 1.00 | 1.28 (1.05–1.57) | 1.27 (1.02–1.58) | 1.34 (1.05–1.7) | 1.30 (0.99–1.71) | 0.105 | ||
Model 3 3 | 1.00 | 1.33 (1.08–1.63) | 1.26 (1.01–1.59) | 1.37 (1.07–1.77) | 1.34 (1.01–1.77) | 0.097 | ||
High triglycerides | ||||||||
Men | Model 1 | 1.00 | 0.97 (0.78–1.21) | 1.04 (0.83–1.31) | 1.08 (0.86–1.35) | 1.15 (0.92–1.43) | 0.114 | |
Model 2 | 1.00 | 1.02 (0.81–1.28) | 1.14 (0.9–1.46) | 1.24 (0.95–1.61) | 1.44 (1.05–1.96) | 0.010 | ||
Model 3 | 1.00 | 0.97 (0.77–1.23) | 1.06 (0.83–1.37) | 1.15 (0.88–1.52) | 1.39 (1–1.93) | 0.021 | ||
Model 4 | 1.00 | 0.98 (0.78–1.24) | 1.07 (0.83–1.38) | 1.16 (0.89–1.53) | 1.36 (0.98–1.89) | 0.031 | ||
Women | Model 1 | 1.00 | 1.03 (0.86–1.24) | 0.92 (0.76–1.11) | 0.93 (0.76–1.13) | 0.84 (0.68–1.02) | 0.043 | |
Model 2 | 1.00 | 1.08 (0.89–1.3) | 0.99 (0.8–1.22) | 1.05 (0.83–1.33) | 1.01 (0.77–1.34) | 0.998 | ||
Model 3 3 | 1.00 | 1.06 (0.87–1.3) | 0.98 (0.79–1.21) | 1.03 (0.81–1.31) | 1.00 (0.75–1.33) | 0.922 | ||
Model 4 3 | 1.00 | 1.00 (0.82–1.22) | 0.94 (0.76–1.16) | 1.00 (0.79–1.27) | 0.93 (0.70–1.25) | 0.682 | ||
Low HDL-cholesterol | ||||||||
Men | Model 1 | 1.00 | 0.95 (0.80–1.14) | 0.96 (0.8–1.15) | 0.89 (0.74–1.07) | 0.89 (0.74–1.08) | 0.186 | |
Model 2 | 1.00 | 0.96 (0.80–1.15) | 0.97 (0.79–1.18) | 0.90 (0.72–1.12) | 0.90 (0.69–1.18) | 0.379 | ||
Model 3 | 1.00 | 0.94 (0.77–1.14) | 0.94 (0.77–1.16) | 0.88 (0.7–1.11) | 0.91 (0.69–1.2) | 0.479 | ||
Model 4 | 1.00 | 0.93 (0.77–1.13) | 0.93 (0.76–1.15) | 0.87 (0.69–1.10) | 0.88 (0.66–1.15) | 0.327 | ||
Women | Model 1 | 1.00 | 0.90 (0.72–1.12) | 0.95 (0.76–1.19) | 0.93 (0.74–1.18) | 0.82 (0.64–1.04) | 0.141 | |
Model 2 | 1.00 | 0.93 (0.74–1.17) | 1.00 (0.78–1.28) | 1.02 (0.77–1.35) | 0.93 (0.67–1.31) | 0.814 | ||
Model 3 3 | 1.00 | 0.94 (0.74–1.19) | 0.99 (0.76–1.28) | 1.02 (0.76–1.37) | 0.93 (0.66–1.33) | 0.825 | ||
Model 4 3 | 1.00 | 0.93 (0.73–1.18) | 0.98 (0.76–1.27) | 1.01 (0.76–1.36) | 0.93 (0.65–1.32) | 0.808 | ||
High blood pressure | ||||||||
Men | Model 1 | 1.00 | 0.96 (0.80–1.10) | 0.95 (0.78–1.16) | 1.10 (0.90–1.34) | 1.03 (0.85–1.24) | 0.483 | |
Model 2 | 1.00 | 0.98 (0.8–1.19) | 0.98 (0.79–1.21) | 1.14 (0.91–1.43) | 1.09 (0.83–1.44) | 0.330 | ||
Model 3 | 1.00 | 0.99 (0.8–1.21) | 0.98 (0.79–1.22) | 1.12 (0.88–1.43) | 1.04 (0.78–1.39) | 0.604 | ||
Model 4 | 1.00 | 0.98 (0.8–1.2) | 0.96 (0.77–1.2) | 1.13 (0.89–1.43) | 0.99 (0.74–1.32) | 0.871 | ||
Women | Model 1 | 1.00 | 1.08 (0.9–1.29) | 1.00 (0.83–1.21) | 1.16 (0.95–1.41) | 1.08 (0.89–1.32) | 0.369 | |
Model 2 | 1.00 | 1.09 (0.91–1.31) | 1.01 (0.83–1.24) | 1.18 (0.94–1.49) | 1.12 (0.85–1.47) | 0.362 | ||
Model 3 3 | 1.00 | 1.06 (0.87–1.29) | 1.02 (0.83–1.25) | 1.2 (0.94–1.52) | 1.1 (0.83–1.47) | 0.395 | ||
Model 4 3 | 1.00 | 0.98 (0.81–1.19) | 0.99 (0.80–1.21) | 1.19 (0.93–1.50) | 1.03 (0.77–1.37) | 0.540 | ||
High fasting glucose | ||||||||
Men | Model 1 | 1.00 | 1.03 (0.88–1.21) | 1.16 (0.98–1.36) | 1.22 (1.04–1.44) | 1.21 (1.03–1.42) | 0.050 | |
Model 2 | 1.00 | 1.07 (0.90–1.26) | 1.23 (1.03–1.47) | 1.34 (1.11–1.62) | 1.42 (1.13–1.78) | 0.012 | ||
Model 3 | 1.00 | 1.09 (0.92–1.30) | 1.30 (1.08–1.56) | 1.34 (1.10–1.64) | 1.41 (1.11–1.81) | 0.019 | ||
Model 4 | 1.00 | 1.09 (0.92–1.30) | 1.27 (1.05–1.53) | 1.28 (1.05–1.57) | 1.28 (1.00–1.63) | 0.084 | ||
Women | Model 1 | 1.00 | 1.06 (0.90–1.26) | 0.97 (0.81–1.15) | 1.16 (0.97–1.39) | 1.10 (0.92–1.32) | 0.282 | |
Model 2 | 1.00 | 1.06 (0.90–1.26) | 0.97 (0.81–1.17) | 1.16 (0.95–1.43) | 1.11 (0.86–1.42) | 0.375 | ||
Model 3 3 | 1.00 | 1.04 (0.87–1.24) | 1.00 (0.83–1.21) | 1.23 (0.99–1.52) | 1.14 (0.88–1.48) | 0.268 | ||
Model 4 3 | 1.00 | 0.97 (0.81–1.16) | 0.92 (0.76–1.11) | 1.14 (0.92–1.41) | 1.07 (0.83–1.39) | 0.239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paik, J.K.; Park, M.; Shin, J.E.; Jang, S.-Y.; Shin, J.-Y. Dietary Protein to Carbohydrate Ratio and Incidence of Metabolic Syndrome in Korean Adults Based on a Long-Term Prospective Community-Based Cohort. Nutrients 2020, 12, 3274. https://doi.org/10.3390/nu12113274
Paik JK, Park M, Shin JE, Jang S-Y, Shin J-Y. Dietary Protein to Carbohydrate Ratio and Incidence of Metabolic Syndrome in Korean Adults Based on a Long-Term Prospective Community-Based Cohort. Nutrients. 2020; 12(11):3274. https://doi.org/10.3390/nu12113274
Chicago/Turabian StylePaik, Jean Kyung, Mira Park, Ji Eun Shin, Suk-Yong Jang, and Ji-Yeon Shin. 2020. "Dietary Protein to Carbohydrate Ratio and Incidence of Metabolic Syndrome in Korean Adults Based on a Long-Term Prospective Community-Based Cohort" Nutrients 12, no. 11: 3274. https://doi.org/10.3390/nu12113274
APA StylePaik, J. K., Park, M., Shin, J. E., Jang, S.-Y., & Shin, J.-Y. (2020). Dietary Protein to Carbohydrate Ratio and Incidence of Metabolic Syndrome in Korean Adults Based on a Long-Term Prospective Community-Based Cohort. Nutrients, 12(11), 3274. https://doi.org/10.3390/nu12113274