Nutritional Biomarkers and Associated Factors in Community-Dwelling Older Adults: Findings from the SHIELD Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Study Procedures
2.3. Data Analysis
3. Results
3.1. Baseline Clinical Characteristics and Nutritional Biomarker Levels of Study Participants
3.2. Associations between Nutritional Biomarkers and Various Factors (Pearson Correlation and Analysis of Variance (ANOVA))
3.3. Factors Associated with Nutritional Biomarker Levels in Study Participants (Multivariable Models)
4. Discussion
4.1. Nutritional Biomarkers and Associated Factors in Community-Dwelling Older Adults
4.1.1. Vitamin D
4.1.2. Zinc
4.1.3. Hemoglobin and Ferritin
4.1.4. Other Biomarkers (Calcium, Vitamin B12, Pre-Albumin, Albumin)
4.2. Public Health Measures
4.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ervin, R.B. Healthy Eating Index scores among adults, 60 years of age and over, by sociodemographic and health characteristics: United States, 1999–2002. Adv. Data 2008, 395, 1–16. [Google Scholar]
- Montgomery, S.C.; Streit, S.M.; Beebe, M.L.; Maxwell, P.J. Micronutrient needs of the elderly. Nutr. Clin. Pract. 2014, 29, 435–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ter Borg, S.; Verlaan, S.; Hemsworth, J.; Mijnarends, D.M.; Schols, J.M.; Luiking, Y.C.; de Groot, L.C. Micronutrient intakes and potential inadequacies of community-dwelling older adults: A systematic review. Br. J. Nutr. 2015, 113, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.S.; Charlton, K.E.; Maggio, M.; et al. Frequency of malnutrition in older adults: A multinational perspective using the mini nutritional assessment. J. Am. Geriatr. Soc. 2010, 58, 1734–1738. [Google Scholar] [CrossRef] [PubMed]
- Schilp, J.; Kruizenga, H.M.; Wijnhoven, H.A.; Leistra, E.; Evers, A.M.; van Binsbergen, J.J.; Deeg, D.J.; Visser, M. High prevalence of undernutrition in Dutch community-dwelling older individuals. Nutrition 2012, 28, 1151–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashiguchi, T.; Arai, H.; Claytor, L.H.; Kuzuya, M.; Kotani, J.; Lee, S.D.; Michel, J.P.; Nogami, T.; Peng, N. Taking action against malnutrition in Asian healthcare settings: An initiative of a Northeast Asia Study Group. Asia Pac. J. Clin. Nutr. 2017, 26, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Nyunt, M.S.Z.; Gao, Q.; Wee, S.L.; Ng, T.P. Frailty and malnutrition: Related and distinct syndrome prevalence and association among community-dwelling older adults: Singapore Longitudinal Ageing Studies. J. Am. Med. Dir. Assoc. 2017, 18, 1019–1028. [Google Scholar] [CrossRef]
- Hoffman, R. Micronutrient deficiencies in the elderly—Could ready meals be part of the solution? J. Nutr. Sci. 2017, 6, e2. [Google Scholar] [CrossRef] [Green Version]
- Shlisky, J.; Bloom, D.E.; Beaudreault, A.R.; Tucker, K.L.; Keller, H.H.; Freund-Levi, Y.; Fielding, R.A.; Cheng, F.W.; Jensen, G.L.; Wu, D.; et al. Nutritional considerations for healthy aging and reduction in age-related chronic disease. Adv. Nutr. 2017, 8, 17–26. [Google Scholar] [CrossRef] [Green Version]
- ter Borg, S.; Verlaan, S.; Mijnarends, D.M.; Schols, J.M.; de Groot, L.C.; Luiking, Y.C. Macronutrient intake and inadequacies of community-dwelling older adults, a systematic review. Ann. Nutr. Metab. 2015, 66, 242–255. [Google Scholar] [CrossRef]
- Bernstein, M.; Munoz, N. Position of the Academy of Nutrition and Dietetics: Food and nutrition for older adults: Promoting health and wellness. J. Acad. Nutr. Diet. 2012, 112, 1255–1277. [Google Scholar] [CrossRef] [PubMed]
- Marian, M.; Sacks, G. Micronutrients and older adults. Nutr. Clin. Pract. 2009, 24, 179–195. [Google Scholar] [CrossRef]
- Tucker, K.L. High Risk Nutrients in the Aging Population. In Handbook of Clinical Nutrition and Aging, 3rd ed.; Bales, C.W., Ed.; Springer Science: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014, 111, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Mithal, A.; Wahl, D.A.; Bonjour, J.P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; El-Hajj Fuleihan, G.; Josse, R.G.; Lips, P.; Morales-Torres, J.; et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos. Int. 2009, 20, 1807–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimitphong, H.; Holick, M.F. Vitamin D status and sun exposure in Southeast Asia. Derma. Endocrinol. 2013, 5, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A. Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes. Adv. Exp. Med. Biol. 2014, 810, 500–525. [Google Scholar] [CrossRef] [PubMed]
- Caristia, S.; Filigheddu, N.; Barone-Adesi, F.; Sarro, A.; Testa, T.; Magnani, C.; Aimaretti, G.; Faggiano, F.; Marzullo, P. Vitamin D as a biomarker of ill health among the over-50s: A systematic review of cohort studies. Nutrients 2019, 11, 2384. [Google Scholar] [CrossRef] [Green Version]
- Lips, P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr. Rev. 2001, 22, 477–501. [Google Scholar] [CrossRef]
- Schottker, B.; Haug, U.; Schomburg, L.; Kohrle, J.; Perna, L.; Muller, H.; Holleczek, B.; Brenner, H. Strong associations of 25-hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer, and respiratory disease mortality in a large cohort study. Am. J. Clin. Nutr. 2013, 97, 782–793. [Google Scholar] [CrossRef]
- Cabrera, A.J. Zinc, aging, and immunosenescence: An overview. Pathobiol. Aging Age Relat. Dis. 2015, 5, 25592. [Google Scholar] [CrossRef]
- Mocchegiani, E.; Romeo, J.; Malavolta, M.; Costarelli, L.; Giacconi, R.; Diaz, L.E.; Marcos, A. Zinc: Dietary intake and impact of supplementation on immune function in elderly. Age 2013, 35, 839–860. [Google Scholar] [CrossRef] [Green Version]
- Green, R.; Allen, L.H.; Bjorke-Monsen, A.L.; Brito, A.; Gueant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; et al. Vitamin B12 deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R.; Lester, S.E.; Babatunde, T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: A review of literature. Eur. J. Clin. Nutr. 2014, 68, 541–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Q.; Du, Y.; Hong, W.; Tang, W.; Li, H.; Chen, M.; Zheng, S. Factors associated to serum 25-hydroxyvitamin D levels among older adult populations in urban and suburban communities in Shanghai, China. BMC Geriatr. 2017, 17, 246. [Google Scholar] [CrossRef] [PubMed]
- Conzade, R.; Koenig, W.; Heier, M.; Schneider, A.; Grill, E.; Peters, A.; Thorand, B. Prevalence and predictors of subclinical micronutrient deficiency in German older adults: Results from the population-based KORA-Age study. Nutrients 2017, 9, 1276. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.R.; Granic, A.; Davies, K.; Collerton, J.; Martin-Ruiz, C.; Siervo, M.; Mathers, J.C.; Adamson, A.J.; Francis, R.M.; Pearce, S.H.; et al. Serum 25-hydroxyvitamin D concentration and its determinants in the very old: The Newcastle 85+ Study. Osteoporos. Int. 2016, 27, 1199–1208. [Google Scholar] [CrossRef]
- Hirani, V.; Tull, K.; Ali, A.; Mindell, J. Urgent action needed to improve vitamin D status among older people in England! Age Ageing 2010, 39, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Jungert, A.; Neuhäuser-Berthold, M. Sex-specific determinants of serum 25-hydroxyvitamin D3 concentrations in an elderly German cohort: A cross-sectional study. Nutr. Metab. 2015, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Man, R.E.; Li, L.J.; Cheng, C.Y.; Wong, T.Y.; Lamoureux, E.; Sabanayagam, C. Prevalence and determinants of suboptimal vitamin D levels in a multiethnic Asian population. Nutrients 2017, 9, 313. [Google Scholar] [CrossRef]
- McCarroll, K.; Beirne, A.; Casey, M.; McNulty, H.; Ward, M.; Hoey, L.; Molloy, A.; Laird, E.; Healy, M.; Strain, J.J.; et al. Determinants of 25-hydroxyvitamin D in older Irish adults. Age Ageing 2015, 44, 847–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeill, G.; Vyvyan, J.; Peace, H.; McKie, L.; Seymour, G.; Hendry, J.; MacPherson, I. Predictors of micronutrient status in men and women over 75 years old living in the community. Br. J. Nutr. 2002, 88, 555–561. [Google Scholar] [CrossRef] [PubMed]
- van Dam, R.M.; Snijder, M.B.; Dekker, J.M.; Stehouwer, C.D.; Bouter, L.M.; Heine, R.J.; Lips, P. Potentially modifiable determinants of vitamin D status in an older population in the Netherlands: The Hoorn Study. Am. J. Clin. Nutr. 2007, 85, 755–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guralnik, J.M.; Eisenstaedt, R.S.; Ferrucci, L.; Klein, H.G.; Woodman, R.C. Prevalence of anemia in persons 65 years and older in the United States: Evidence for a high rate of unexplained anemia. Blood 2004, 104, 2263–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, J.K.; Murphy, R.A.; Ciappio, E.D.; McBurney, M.I. Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients 2017, 9, 655. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Ginoya, S.; Tandon, P.; Gohel, T.D.; Guirguis, J.; Vallabh, H.; Jevenn, A.; Hanouneh, I. Malnutrition: Laboratory markers vs. nutritional assessment. Gastroenterol. Rep. 2016, 4, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Keller, U. Nutritional laboratory markers in malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef] [Green Version]
- Beck, F.K.; Rosenthal, T.C. Prealbumin: A marker for nutritional evaluation. Am. Fam. Physician 2002, 65, 1575–1578. [Google Scholar]
- Zhang, Z.; Pereira, S.L.; Luo, M.; Matheson, E.M. Evaluation of blood biomarkers associated with risk of malnutrition in older adults: A systematic review and meta-analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef]
- Stevens, L.A.; Coresh, J.; Greene, T.; Levey, A.S. Assessing kidney function--measured and estimated glomerular filtration rate. N. Engl. J. Med. 2006, 354, 2473–2483. [Google Scholar] [CrossRef] [Green Version]
- Lien, Y.H. Looking for sarcopenia biomarkers. Am. J. Med. 2017, 130, 502–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paddon-Jones, D.; Rasmussen, B.B. Dietary protein recommendations and the prevention of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, T.; Yu, S.; Visvanathan, R. Systematic literature review on the relationship between biomarkers of sarcopenia and quality of life in older people. J. Frailty Aging 2016, 5, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Lian, I.A.; Asberg, A. Should total calcium be adjusted for albumin? A retrospective observational study of laboratory data from central Norway. BMJ Open 2018, 8, e017703. [Google Scholar] [CrossRef]
- Daru, J.; Colman, K.; Stanworth, S.J.; De La Salle, B.; Wood, E.M.; Pasricha, S.R. Serum ferritin as an indicator of iron status: What do we need to know? Am. J. Clin. Nutr. 2017, 106, 1634s–1639s. [Google Scholar] [CrossRef]
- World Health Organization; Centers for Disease Control and Prevention. Assessing the Iron Status of Populations: Including Literature Reviews, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004; pp. 1–108. [Google Scholar]
- Hambidge, M. Biomarkers of trace mineral intake and status. J. Nutr. 2003, 133, 948s–955s. [Google Scholar] [CrossRef] [PubMed]
- Hess, S.Y.; Peerson, J.M.; King, J.C.; Brown, K.H. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr. Bull. 2007, 28, S403–S429. [Google Scholar] [CrossRef]
- Haase, H.; Rink, L. The immune system and the impact of zinc during aging. Immun. Ageing 2009, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.D.; van den Heuvel, E.G.; Schoemaker, R.J.; Preveraud, D.P.; Macdonald, H.M.; Arcot, J. 25-Hydroxyvitamin D as a biomarker of vitamin D status and its modeling to inform strategies for prevention of vitamin D deficiency within the population. Adv. Nutr. 2017, 8, 947–957. [Google Scholar] [CrossRef] [Green Version]
- Boucher, B.J. The problems of vitamin D insufficiency in older people. Aging Dis. 2012, 3, 313–329. [Google Scholar]
- Busse, B.; Bale, H.A.; Zimmermann, E.A.; Panganiban, B.; Barth, H.D.; Carriero, A.; Vettorazzi, E.; Zustin, J.; Hahn, M.; Ager, J.W., 3rd; et al. Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. Sci. Transl. Med. 2013, 5, 193ra88. [Google Scholar] [CrossRef] [PubMed]
- Sohl, E.; van Schoor, N.M.; de Jongh, R.T.; Visser, M.; Deeg, D.J.; Lips, P. Vitamin D status is associated with functional limitations and functional decline in older individuals. J. Clin. Endocrinol. Metab. 2013, 98, E1483–E1490. [Google Scholar] [CrossRef] [PubMed]
- Gschwind, Y.J.; Bischoff-Ferrari, H.A.; Bridenbaugh, S.A.; Hardi, I.; Kressig, R.W. Association between serum vitamin D status and functional mobility in memory clinic patients aged 65 years and older. Gerontology 2014, 60, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, F.; Allman-Farinelli, M.; Samman, S. Vitamin B12 status, cognitive decline and dementia: A systematic review of prospective cohort studies. Br. J. Nutr. 2012, 108, 1948–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratton, R.J.; Hackston, A.; Longmore, D.; Dixon, R.; Price, S.; Stroud, M.; King, C.; Elia, M. Malnutrition in hospital outpatients and inpatients: Prevalence, concurrent validity and ease of use of the ‘malnutrition universal screening tool’ (‘MUST’) for adults. Br. J. Nutr. 2004, 92, 799–808. [Google Scholar] [CrossRef]
- Phillips, M.B.; Foley, A.L.; Barnard, R.; Isenring, E.A.; Miller, M.D. Nutritional screening in community-dwelling older adults: A systematic literature review. Asia Pac. J. Clin. Nutr. 2010, 19, 440–449. [Google Scholar]
- Skipper, A.; Coltman, A.; Tomesko, J.; Charney, P.; Porcari, J.; Piemonte, T.A.; Handu, D.; Cheng, F.W. Adult malnutrition (undernutrition) screening: An evidence analysis center systematic review. J. Acad. Nutr. Diet. 2020, 120, 669–708. [Google Scholar] [CrossRef]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Washburn, R.A.; McAuley, E.; Katula, J.; Mihalko, S.L.; Boileau, R.A. The Physical Activity Scale for the Elderly (PASE): Evidence for validity. J. Clin. Epidemiol. 1999, 52, 643–651. [Google Scholar] [CrossRef]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The Physical Activity Scale for the Elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Shah, S.; Vanclay, F.; Cooper, B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J. Clin. Epidemiol. 1989, 42, 703–709. [Google Scholar] [CrossRef]
- Brouwer-Brolsma, E.M.; Vaes, A.M.M.; van der Zwaluw, N.L.; van Wijngaarden, J.P.; Swart, K.M.A.; Ham, A.C.; van Dijk, S.C.; Enneman, A.W.; Sohl, E.; van Schoor, N.M.; et al. Relative importance of summer sun exposure, vitamin D intake, and genes to vitamin D status in Dutch older adults: The B-PROOF study. J. Steroid Biochem. Mol. Biol. 2016, 164, 168–176. [Google Scholar] [CrossRef]
- Chen, J.; Yun, C.; He, Y.; Piao, J.; Yang, L.; Yang, X. Vitamin D status among the elderly Chinese population: A cross-sectional analysis of the 2010-2013 China national nutrition and health survey (CNNHS). Nutr. J. 2017, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Mat, S.; Jaafar, M.H.; Sockalingam, S.; Raja, J.; Kamaruzzaman, S.B.; Chin, A.V.; Abbas, A.A.; Chan, C.K.; Hairi, N.N.; Othman, S.; et al. Vitamin D deficiency is associated with ethnicity and knee pain in a multi-ethnic South-East Asian nation: Results from Malaysian Elders Longitudinal Research (MELoR). Int. J. Rheum. Dis. 2018, 21, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Man, Q.; Yuan, L.; Shen, L.; Li, W.; Guo, G.; Li, L.; Jia, S.; Gao, Y.; Song, P.; et al. Serum 25-hydroxyvitamin D and elderly skeletal muscle mass and function in urban north China. Asia Pac. J. Clin. Nutr. 2017, 26, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Huang, Y.A.; Lai, Y.C.; Sun, C.K. Prevalence and predictors of hypovitaminosis D among the elderly in subtropical region. PLoS ONE 2017, 12, e0181063. [Google Scholar] [CrossRef] [Green Version]
- Robien, K.; Butler, L.M.; Wang, R.; Beckman, K.B.; Walek, D.; Koh, W.P.; Yuan, J.M. Genetic and environmental predictors of serum 25-hydroxyvitamin D concentrations among middle-aged and elderly Chinese in Singapore. Br. J. Nutr. 2013, 109, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matchar, D.B.; Chei, C.L.; Yin, Z.X.; Koh, V.; Chakraborty, B.; Shi, X.M.; Zeng, Y. Vitamin D levels and the risk of cognitive decline in Chinese elderly people: The Chinese longitudinal healthy longevity survey. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1363–1368. [Google Scholar] [CrossRef] [Green Version]
- Moy, F.M.; Bulgiba, A. High prevalence of vitamin D insufficiency and its association with obesity and metabolic syndrome among Malay adults in Kuala Lumpur, Malaysia. BMC Public Health 2011, 11, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Ham, J.O.; Lee, B.K. A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin. Nutr. 2014, 33, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Tey, S.L.; Leong, C.; Quek, R.; Henry, C.J. Prevalence of vitamin D deficiency in Singapore: Its implications to cardiovascular risk factors. PLoS ONE 2016, 11, e0147616. [Google Scholar] [CrossRef] [PubMed]
- Alsuwadia, A.O.; Farag, Y.M.; Al Sayyari, A.A.; Mousa, D.H.; Alhejaili, F.F.; Al-Harbi, A.S.; Housawi, A.A.; Mittal, B.V.; Singh, A.K. Prevalence of vitamin D deficiency in Saudi adults. Saudi Med. J. 2013, 34, 814–818. [Google Scholar]
- Shafinaz, I.S.; Moy, F.M. Vitamin D level and its association with adiposity among multi-ethnic adults in Kuala Lumpur, Malaysia: A cross sectional study. BMC Public Health 2016, 16, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wacker, M.; Holick, M.F. Sunlight and Vitamin D: A global perspective for health. Derm. Endocrinol. 2013, 5, 51–108. [Google Scholar] [CrossRef] [Green Version]
- Whiting, S.J.; Bonjour, J.P.; Payen, F.D.; Rousseau, B. Moderate amounts of vitamin D3 in supplements are effective in raising serum 25-hydroxyvitamin D from low baseline levels in adults: A systematic review. Nutrients 2015, 7, 2311–2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvamme, J.M.; Gronli, O.; Jacobsen, B.K.; Florholmen, J. Risk of malnutrition and zinc deficiency in community-living elderly men and women: The Tromso Study. Public Health Nutr. 2015, 18, 1907–1913. [Google Scholar] [CrossRef] [Green Version]
- Marcellini, F.; Giuli, C.; Papa, R.; Gagliardi, C.; Dedoussis, G.; Herbein, G.; Fulop, T.; Monti, D.; Rink, L.; Jajte, J.; et al. Zinc status, psychological and nutritional assessment in old people recruited in five European countries: Zincage study. Biogerontology 2006, 7, 339–345. [Google Scholar] [CrossRef]
- Yasuda, H.; Tsutsui, T. Infants and elderlies are susceptible to zinc deficiency. Sci. Rep. 2016, 6, 21850. [Google Scholar] [CrossRef] [Green Version]
- Gu, K.; Xiang, W.; Zhang, Y.; Sun, K.; Jiang, X. The association between serum zinc level and overweight/obesity: A meta-analysis. Eur. J. Nutr. 2019, 58, 2971–2982. [Google Scholar] [CrossRef]
- Konukoglu, D.; Turhan, M.S.; Ercan, M.; Serin, O. Relationship between plasma leptin and zinc levels and the effect of insulin and oxidative stress on leptin levels in obese diabetic patients. J. Nutr. Biochem. 2004, 15, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Tungtrongchitr, R.; Pongpaew, P.; Phonrat, B.; Tungtrongchitr, A.; Viroonudomphol, D.; Vudhivai, N.; Schelp, F.P. Serum copper, zinc, ceruloplasmin and superoxide dismutase in Thai overweight and obese. J. Med. Assoc. Thailand 2003, 86, 543–551. [Google Scholar]
- Zaky, D.E.; Dawod, R.; Salim, M.; Sultan, E. Zinc level and obesity. Egypt. J. Intern. Med. 2013, 25, 209–212. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Kudo, H.; Kagawa, Y.; Sakamoto, S. Increased plasma levels of zinc in obese adult females on a weight-loss program based on a hypocaloric balanced diet. In Vivo 2005, 19, 1035–1037. [Google Scholar]
- Costarelli, L.; Muti, E.; Malavolta, M.; Cipriano, C.; Giacconi, R.; Tesei, S.; Piacenza, F.; Pierpaoli, S.; Gasparini, N.; Faloia, E.; et al. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J. Nutr. Biochem. 2010, 21, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, H.; Derry, S.; Andrew Moore, R.; McQuay, H.J. Prevalence of anaemia in older persons: Systematic review. BMC Geriatr. 2008, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Hu, Y.; Mao, D.; Wang, R.; Chen, J.; Li, W.; Yang, X.; Piao, J.; Yang, L. Prevalence of anemia among Chinese rural residents. Nutrients 2017, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Yusof, M.; Awaluddin, S.M.; Omar, M.; Ahmad, N.A.; Abdul Aziz, F.A.; Jamaluddin, R.; Aris, T.; Tan, M.P. Prevalence of anaemia among the elderly in Malaysia and its associated factors: Does ethnicity matter? J. Environ. Public Health 2018, 2018, 1803025. [Google Scholar] [CrossRef]
- Lee, C.H.; Goag, E.K.; Lee, S.H.; Chung, K.S.; Jung, J.Y.; Park, M.S.; Kim, Y.S.; Kim, S.K.; Chang, J.; Song, J.H. Association of serum ferritin levels with smoking and lung function in the Korean adult population: Analysis of the fourth and fifth Korean National Health and Nutrition Examination Survey. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 3001–3006. [Google Scholar] [CrossRef] [Green Version]
- Milman, N.; Pedersen, A.N. Blood haemoglobin concentrations are higher in smokers and heavy alcohol consumers than in non-smokers and abstainers: Should we adjust the reference range? Ann. Hematol. 2009, 88, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Wang, J.; Cao, Y.; Pan, Y.; Lu, X.; Wang, W.; Zhuo, L.; Tian, Q.; Zhan, S. Heavy menstrual bleeding among women aged 18-50 years living in Beijing, China: Prevalence, risk factors, and impact on daily life. BMC Womens Health 2019, 19, 27. [Google Scholar] [CrossRef] [Green Version]
- Fraser, I.S.; Mansour, D.; Breymann, C.; Hoffman, C.; Mezzacasa, A.; Petraglia, F. Prevalence of heavy menstrual bleeding and experiences of affected women in a European patient survey. Int. J. Gynaecol. Obstet. 2015, 128, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, L.A.; Ghant, M.S.; Andrade, C.; Recht, H.; Marsh, E.E. The association between subjective assessment of menstrual bleeding and measures of iron deficiency anemia in premenopausal African-American women: A cross-sectional study. BMC Womens Health 2016, 16, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorde, R.; Sundsfjord, J.; Bønaa, K.H. Determinants of serum calcium in men and women. The Tromsø Study. Eur. J. Epidemiol. 2001, 17, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.H. How common is vitamin B-12 deficiency? Am. J. Clin. Nutr. 2009, 89, 693S–696S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2020. Diabetes Care 2020, 43, S98–S110. [Google Scholar] [CrossRef] [Green Version]
- Garber, A.J.; Handelsman, Y.; Grunberger, G.; Einhorn, D.; Abrahamson, M.J.; Barzilay, J.I.; Blonde, L.; Bush, M.A.; DeFronzo, R.A.; Garber, J.R.; et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2020 executive summary. Endocr. Pract. 2020, 26, 107–139. [Google Scholar] [CrossRef]
- Kawashima, M.; Kubota, M.; Saito, H.; Shinozuka, S. Diversified analysis of nutritional status in community-dwelling older adults in Japan. J. Aging Res. Clin. Pract. 2017, 6, 223–228. [Google Scholar] [CrossRef]
- Koike, T.; Kuzuya, M.; Kanda, S.; Okada, K.; Izawa, S.; Enoki, H.; Iguchi, A. Raised homocysteine and low folate and vitamin B-12 concentrations predict cognitive decline in community-dwelling older Japanese adults. Clin. Nutr. 2008, 27, 865–871. [Google Scholar] [CrossRef]
- Aliani, M.; Udenigwe, C.C.; Girgih, A.T.; Pownall, T.L.; Bugera, J.L.; Eskin, M.N. Zinc deficiency and taste perception in the elderly. Crit. Rev. Food Sci. Nutr. 2013, 53, 245–250. [Google Scholar] [CrossRef]
- Lansdown, A.B.; Mirastschijski, U.; Stubbs, N.; Scanlon, E.; Agren, M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007, 15, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Meunier, N.; O’Connor, J.M.; Maiani, G.; Cashman, K.D.; Secker, D.L.; Ferry, M.; Roussel, A.M.; Coudray, C. Importance of zinc in the elderly: The ZENITH study. Eur. J. Clin. Nutr. 2005, 59, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Population Ageing 2019; United Nations: New York, NY, USA, 2020. [Google Scholar]
- Singapore Health Promotion Board. The Recipe for Healthy Ageing Nutrition Guide; Singapore Health Promotion Board: Singapore, 2016. [Google Scholar]
- Singapore Ministry of Health. Prevalence and Awareness of Vitamin D Deficiency. Available online: https://www.moh.gov.sg/news-highlights/details/prevalence-and-awareness-of-vitamin-d-deficiency (accessed on 31 May 2020).
- Lee, R.H.; Weber, T.; Colon-Emeric, C. Comparison of cost-effectiveness of vitamin D screening with that of universal supplementation in preventing falls in community-dwelling older adults. J. Am. Geriatr. Soc. 2013, 61, 707–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarca, K.; Durand-Zaleski, I.; Roux, C.; Souberbielle, J.C.; Schott, A.M.; Thomas, T.; Fardellone, P.; Benhamou, C.L. Cost-effectiveness analysis of hip fracture prevention with vitamin D supplementation: A Markov micro-simulation model applied to the French population over 65 years old without previous hip fracture. Osteoporos. Int. 2014, 25, 1797–1806. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Total (n = 400) | Men (n = 183) | Women (n = 217) | p Value a |
---|---|---|---|---|
Age (years) | 71.21 (0.26) | 71.26 (0.38) | 71.18 (0.37) | 0.8774 |
Height (cm) | 158.68 (0.43) | 165.57 (0.45) | 152.87 (0.36) | <0.0001 |
Body weight (kg) | 61.86 (0.48) | 66.75 (0.68) | 57.74 (0.54) | <0.0001 |
BMI (kg/m2) | 24.53 (0.15) | 24.31 (0.21) | 24.71 (0.22) | 0.1966 |
BMI categories, n (%) | ||||
Normal (18.5–24.9 kg/m2) | 245 (61.25) | 121 (66.12) | 124 (57.14) | 0.0514 |
Overweight (25–29.99 kg/m2) | 134 (33.50) | 57 (31.15) | 77 (35.48) | |
Obese (≥30 kg/m2) | 21 (5.25) | 5 (2.73) | 16 (7.37) | |
Mid upper arm circumference (cm) | 27.73 (0.16) | 27.99 (0.22) | 27.51 (0.24) | 0.1474 |
Calf circumference (cm) | 35.24 (0.16) | 36.02 (0.23) | 34.59 (0.21) | <0.0001 |
Fat mass (kg) | 17.87 (0.32) | 14.79 (0.39) | 20.43 (0.42) | <0.0001 |
Fat (%) | 28.50 (0.45) | 21.60 (0.41) | 34.25 (0.47) | <0.0001 |
Muscle mass (kg) | 41.57 (0.41) | 49.14 (0.42) | 35.25(0.22) | <0.0001 |
Ethnicity, n (%) | ||||
Chinese | 332 (83.0) | 141 (77.0) | 191 (88.0) | 0.0036 |
Non-Chinese | 68 (17.0) | 42 (23.0) | 26 (12.0) | |
Nutrition literacy score, n (%) | <0.0001 | |||
2 or 3 | 5 (1.3) | 2 (1.1) | 3 (1.4) | |
4 or 5 | 180 (45.0) | 104 (56.8) | 76 (35.0) | |
6 or 7 | 215 (53.8) | 77 (42.1) | 138 (63.6) | |
Highest level of education, n (%) | ||||
No formal education or primary level | 62 (15.5) | 18 (9.8) | 44 (20.3) | 0.0001 |
Secondary O/N level or equivalent | 186 (46.5) | 75 (41.0) | 111 (51.2) | |
A level or equivalent | 100 (25.0) | 60 (32.8) | 40 (18.4) | |
University and above | 52 (13.0) | 30 (16.4) | 22 (10.1) | |
Housing type, n (%) | 0.1304 | |||
HDB 1–3 room flats | 74 (18.5) | 39 (21.3) | 35 (16.1) | |
HDB 4–5 room flats | 186 (46.5) | 89 (48.6) | 97 (44.7) | |
Private properties + others | 140 (35.0) | 55 (30.1) | 85 (39.2) | |
Smoking status, n (%) | ||||
Non-smoker | 333 (83.25) | 126 (68.9) | 207 (95.4) | <0.0001 |
Past smoker | 57 (14.25) | 48 (26.2) | 9 (4.1) | |
Daily/occasional smoker | 10 (2.5) | 9 (4.9) | 1 (0.5) | |
Alcohol consumption b, n (%) | ||||
No alcohol | 287 (71.75) | 119 (65.0) | 168 (77.4) | 0.0034 |
<Once a month | 69 (17.25) | 34 (18.6) | 35 (16.1) | |
≥Once a month | 44 (11.00) | 30 (16.4) | 14 (6.5) | |
Physical Activity Scale for the Elderly score | 119.45 (3.17) | 122.86 (5.14) | 116.58 (3.93) | 0.3240 |
Modified Barthel Index score | 99.54 (0.12) | 99.43 (0.21) | 99.64 (0.13) | 0.3831 |
Modified Barthel Index, n (%) | ||||
Moderate dependence (60–79) | 7 (1.8) | 4 (2.2) | 3 (1.4) | 0.6737 |
Slight dependence (80–99) | 21 (5.3) | 11 (6.0) | 10 (4.6) | |
Independent (100) | 372 (93.0) | 168 (91.8) | 204 (94.0) | |
Total Charlson Comorbidity Score | 0.03 (0.01) | 0.04 (0.02) | 0.02 (0.01) | 0.3623 |
Charlson Comorbidity Score, n (%) | ||||
0 | 392 (98.0) | 178 (97.3) | 214 (98.6) | 0.3757 |
1 | 6 (1.5) | 4 (2.2) | 2 (0.9) | |
2 | 1 (0.3) | 0 (0.0) | 1 (0.5) | |
3 | 1 (0.3) | 1 (0.5) | 0 | |
Pre-albumin (mg/dL) | 26.91 (0.26) | 28.34 (0.37) | 25.70 (0.35) | <0.0001 |
Albumin (mg/dL) | 45.9 (0.1) | 46.2 (0.2) | 45.6 (0.2) | 0.0232 |
Total protein (g/L) | 71.5 (0.2) | 71.4 (0.3) | 71.6 (0.3) | 0.4908 |
Creatinine (μmol/L) | 79.6 (1.3) | 96.8 (2.1) | 65.0 (0.8) | <0.0001 |
25(OH)D (μg/L) | 30.42 (0.51) | 31.87 (0.79) | 29.19 (0.65) | 0.0084 |
Vitamin B12 (pmol/L) c | 423.4 (9.7) | 395.2 (12.3) | 447.1 (14.3) | 0.0072 |
Zinc (μg/L) d | 862.4 (7.0) | 865.5 (12.1) | 859.9 (8.2) | 0.6912 |
Corrected calcium (mmol/L) | 2.232 (0.004) | 2.212 (0.006) | 2.249 (0.006) | <0.0001 |
Serum ferritin (μg/L) | 249.20 (7.95) | 283.49 (13.12) | 220.28 (9.19) | <0.0001 |
Hemoglobin (g/dL) | 13.73 (0.07) | 14.34 (0.1) | 13.22 (0.07) | <0.0001 |
Nutritional Biomarkers | Status | Total (n = 400) | Men (n = 183) | Women (n = 217) | p Value a | Chinese (n = 332) | Non-Chinese (n = 68) | p Value a |
---|---|---|---|---|---|---|---|---|
Pre-albumin (mg/dL) | Low (<20) | 19 (5) | 4 (2) | 15 (7) | 0.0515 | 14 (4) | 5 (7) | 0.3483 |
Normal (20–40) | 373 (93) | 174 (95) | 199 (92) | 312 (94) | 61 (90) | |||
High (>40) | 8 (2) | 5 (3) | 3 (1) | 6 (2) | 2 (3) | |||
Albumin (mg/dL) | Low (<37) | 0 | 0 | 0 | 1.0000 | 0 | 0 | 0.0762 |
Normal (37–51) | 397 (99) | 182 (99) | 215 (99) | 331 (>99) | 66 (97) | |||
High (>51) | 3 (1) | 1 (1) | 2 (1) | 1 (<1) | 2 (3) | |||
Total protein (g/L) | Low (<62) | 2 (1) | 2 (1) | 0 | 0.2087 | 0 | 2 (3) | 0.0285 |
Normal (62–82) | 398 (100) | 181 (99) | 217 (100) | 332 (100) | 66 (97) | |||
High (>82) | 0 | 0 | 0 | 0 | 0 | |||
Creatinine (μmol/L) | Low (F: <50; M: <65) | 13 (3) | 3 (2) | 10 (5) | 0.0353 | 13 (4) | 0 | 0.2583 |
Normal (F: 50–90; M: 65–125) | 368 (92) | 167 (91) | 201 (93) | 303 (91) | 65 (96) | |||
High (F: >90; M: >125) | 19 (5) | 13 (7) | 6 (3) | 16 (5) | 3 (4) | |||
25(OH)-D (μg/L) | Low (<30) | 208 (52) | 88 (48) | 120 (55) | 0.1605 | 162 (49) | 46 (68) | 0.0051 |
Normal (30–100) | 192 (48) | 95 (52) | 97 (45) | 170 (51) | 22 (32) | |||
High (>100) | 0 | 0 | 0 | 0 | 0 | |||
Vitamin B12 (pmol/L) b | Low (<132) | 7 (2) | 2 (1) | 5 (2) | 0.2720 | 6 (2) | 1 (2) | 1.0000 |
Normal (132-835) | 372 (94) | 174 (96) | 198 (92) | 310 (94) | 62 (94) | |||
High (>835) | 17 (4) | 5 (3) | 12 (6) | 14 (4) | 3 (5) | |||
Zinc (μg/L) c | Low (<724) | 34(10) | 16 (11) | 18 (10) | 0.7338 | 23 (8) | 11 (20) | 0.0386 |
Normal (724–1244) | 295 (89) | 131 (88) | 164 (90) | 250 (91) | 45 (80) | |||
High (>1244) | 3 (1) | 2 (1) | 1 (1) | 3 (1) | 0 | |||
Corrected calcium (mmol/L) | Low (<2.10) | 17 (4) | 12 (7) | 5 (2) | 0.0459 | 14 (4) | 3 (4) | 1.0000 |
Normal (2.10-2.60) | 383 (96) | 171 (93) | 212 (98) | 318 (96) | 65 (96) | |||
High (>2.60) | 0 | 0 | 0 | 0 | 0 | |||
Serum ferritin (μg/L) | Low (F: <18.2; M: <32) | 2 (1) | 1(1) | 1 (<1) | <0.0001 | 2 (1) | 0 | 0.2484 |
Normal (F: 18.2–339; M: 32–294) | 292 (73) | 107 (58) | 185 (85) | 237 (71) | 55 (81) | |||
High (F: >339; M: >294) | 106 (27) | 75 (41) | 31 (14) | 93 (28) | 13 (19) | |||
Hemoglobin (g/dL) | Low (<11.5) | 16 (4) | 5 (3) | 11 (5) | <0.0001 | 9 (3) | 7 (10) | 0.0066 |
Normal (11.5–15.0) | 322 (81) | 125 (68) | 197 (91) | 275 (83) | 47 (69) | |||
High (>15.0) | 62 (16) | 53 (29) | 9 (4) | 48 (14) | 14 (21) |
Nutritional Biomarkers | Age | BMI | Calf Circumference | C-Reactive Protein |
---|---|---|---|---|
(year) | (kg/m2) | (cm) | (mg/L) | |
Pre-albumin | ||||
Correlation | −0.136 | −0.017 | −0.017 | −0.219 |
p value | 0.0066 | 0.7363 | 0.7325 | 0.0001 |
Albumin | ||||
Correlation | −0.062 | −0.162 | −0.066 | −0.126 |
p value | 0.2197 | 0.0011 | 0.1906 | 0.0311 |
Total protein | ||||
Correlation | −0.023 | 0.037 | −0.036 | 0.006 |
p value | 0.6425 | 0.4564 | 0.4709 | 0.9185 |
Creatinine | ||||
Correlation | 0.171 | 0.015 | 0.108 | 0.164 |
p value | 0.0006 | 0.7646 | 0.0305 | 0.0047 |
25(OH)D | ||||
Correlation | 0.170 | −0.049 | 0.055 | 0.051 |
p value | 0.0006 | 0.3240 | 0.2766 | 0.3853 |
Vitamin B12 | ||||
Correlation | 0.074 | 0.010 | −0.011 | 0.040 |
p value | 0.1398 | 0.8387 | 0.8320 | 0.4987 |
Zinc | ||||
Correlation | −0.051 | −0.152 | −0.062 | −0.059 |
p value | 0.3518 | 0.0054 | 0.2617 | 0.3644 |
Corrected calcium | ||||
Correlation | 0.040 | 0.120 | −0.048 | 0.072 |
p value | 0.4220 | 0.0167 | 0.3414 | 0.2213 |
Serum ferritin | ||||
Correlation | −0.018 | −0.043 | 0.093 | 0.067 |
p value | 0.7183 | 0.3885 | 0.0622 | 0.2530 |
Hemoglobin | ||||
Correlation | −0.150 | 0.040 | 0.156 | −0.011 |
p value | 0.0027 | 0.4241 | 0.0017 | 0.8576 |
(a) | |||||||
Nutritional Biomarkers | Total | Non-Supplement Users | Supplement Users | p Value a | |||
Corrected calcium (mmol/L) | 2.232 (0.004) | 2.230 (0.004) | 2.240 (0.010) | 0.2965 | |||
25(OH)D (μg/L) | 30.42 (0.51) | 29.49 (0.56) | 34.32 (1.06) | 0.0002 | |||
Vitamin B12 (pmol/L) | 423.4 (9.7) | 393.6 (9.4) | 600.5 (26.8) | <0.0001 | |||
Serum ferritin (μg/L) | 249.20 (7.95) | 249.04 (8.02) | 254.97 (59.15) | 0.9030 | |||
Hemoglobin (g/dL) | 13.73 (0.07) | 13.78 (0.07) | 12.12 (0.46) | <0.0001 | |||
(b) | |||||||
Nutritional Biomarkers | Total | Non-Supplement Users Men | Non-Supplement Users Women | p Value a | Supplement Users Men | Supplement Users Women | p Value a |
Corrected calcium (mmol/L) | 2.232 (0.004) | 2.210 ± 0.006 | 2.249 ± 0.006 | <0.0001 | 2.224 ± 0.014 | 2.249 ± 0.013 | 0.2477 |
Total participants (n) | 400 | 153 | 159 | 30 | 58 | ||
25(OH)D (μg/L) | 30.42 (0.51) | 31.25 ± 0.84 | 27.78 ± 0.73 | 0.0020 | 35.96 ± 2.15 | 33.57 ± 1.19 | 0.2985 |
Total participants (n) | 400 | 159 | 164 | 24 | 53 | ||
Vitamin B12 (pmol/L) | 423.4 (9.7) | 369.8 ± 11.2 | 414.1 ± 14.5 | 0.0192 | 560.8 ± 43.3 | 629.3 ± 33.7 | 0.2103 |
Total participants (n) | 396 | 157 | 182 | 24 | 33 | ||
Serum ferritin (μg/L) | 249.20 (7.95) | 281.27 ± 13.34 | 222.40 ± 9.28 | 0.0002 | 339.17 ± 74.44 | 107.63 ± 36.03 | 0.0532 |
Total participants (n) | 400 | 176 | 213 | 7 | 4 | ||
Hemoglobin (g/dL) | 13.73 (0.07) | 14.41 ± 0.09 | 13.25 ± 0.07 | <0.0001 | 12.40 ± 0.71 | 11.63 ± 0.29 | 0.4492 |
Total participants (n) | 400 | 176 | 213 | 7 | 4 |
(a) | ||||||||||||
Parameters | Pre-Albumin (mg/dL) | Albumin (mg/dL) | Total Protein (g/L) | Creatinine (μmol/L) | ||||||||
Estimate | SE | p Value | Estimate | SE | p Value | Estimate | SE | p Value | Estimate | SE | p Value | |
Intercept | 42.1 | 5.78 | <0.0001 | 50.5 | 2.2 | <0.0001 | 72.2 | 3.1 | <0.0001 | −0.81 | 16.7 | 0.9611 |
Gender | ||||||||||||
Male | 2.82 | 0.63 | <0.0001 | 0.38 | 0.29 | 0.1880 | -0.32 | 0.46 | 0.4909 | 31.2 | 2.5 | <0.0001 |
Female (reference) | Reference | Reference | Reference | Reference | ||||||||
Age (year) | −0.14 | 0.057 | 0.0145 | −0.026 | 0.027 | 0.3329 | −0.0034 | 0.043 | 0.9363 | 0.92 | 0.23 | 0.0001 |
BMI (kg/m2) | 0.18 | 0.12 | 0.1115 | −0.12 | 0.046 | 0.0113 | - | - | - | - | - | - |
Calf circumference (cm) | −0.31 | 0.12 | 0.0106 | - | - | - | - | - | - | - | - | - |
C-reactive protein (mg/L) | −0.17 | 0.047 | 0.0004 | −0.043 | 0.023 | 0.0601 | - | - | - | 0.4 | 0.2 | 0.0423 |
Ethnicity | ||||||||||||
Chinese | - | - | - | - | - | - | - | - | - | - | - | - |
Non-Chinese (reference) | - | - | - | - | - | - | - | - | - | - | - | - |
Nutrition literacy score | ||||||||||||
2 or 3 | - | - | - | - | - | - | - | - | - | - | - | - |
4 or 5 | - | - | - | - | - | - | - | - | - | - | - | - |
6 or 7 (reference) | - | - | - | - | - | - | - | - | - | - | - | - |
Education | ||||||||||||
No formal education or primary level | - | - | - | - | - | - | - | - | - | - | - | - |
Secondary O/N level or equivalent | - | - | - | - | - | - | - | - | - | - | - | - |
A level or equivalent | - | - | - | - | - | - | - | - | - | - | - | - |
University and above (reference) | - | - | - | - | - | - | - | - | - | - | - | - |
Housing type | ||||||||||||
HDB 1–3 room flats | - | - | - | - | - | - | - | - | - | - | - | - |
HDB 4–5 room flats | - | - | - | - | - | - | - | - | - | - | - | - |
Private properties + others | - | - | - | - | - | - | - | - | - | - | - | - |
Vitamin D supplement use | ||||||||||||
No | - | - | - | - | - | - | - | - | - | - | - | - |
Yes (reference) | - | - | - | - | - | - | - | - | - | - | - | - |
Vitamin B12 supplement use | ||||||||||||
No | - | - | - | - | - | - | - | - | - | - | - | - |
Yes (reference) | - | - | - | - | - | - | - | - | - | - | - | - |
Iron supplement use | ||||||||||||
No | - | - | - | - | - | - | - | - | - | - | - | - |
Yes (reference) | - | - | - | - | - | - | - | - | - | - | - | - |
(b) | ||||||||||||
Parameters | 25(OH)D (μg/L) | Vitamin B12 (pmol/L) | Zinc (μg/L) | |||||||||
Estimate | SE | p Value | Estimate | SE | p Value | Estimate | SE | p Value | ||||
Intercept | 5.07 | 7.54 | 0.5020 | 616 | 139.6 | <0.0001 | 1057.3 | 126 | <0.0001 | |||
Gender | ||||||||||||
Male | 2.56 | 1.07 | 0.0179 | −23.2 | 20 | 0.2462 | 2.9 | 16.2 | 0.8600 | |||
Female (reference) | Reference | Reference | Reference | |||||||||
Age (year) | 0.31 | 0.1 | 0.0017 | −0.089 | 1.9 | 0.9619 | −1.3 | 1.4 | 0.3752 | |||
BMI (kg/m2) | - | - | - | - | - | - | −5.6 | 2.6 | 0.0343 | |||
Calf circumference (cm) | - | - | - | - | - | - | - | - | - | |||
C-reactive protein (mg/L) | - | - | - | - | - | - | - | - | - | |||
Ethnicity | ||||||||||||
Chinese | 5.69 | 1.44 | <0.0001 | - | - | - | 38.1 | 21.9 | 0.0829 | |||
Non-Chinese (reference) | Reference | - | - | - | Reference | |||||||
Nutrition literacy score | ||||||||||||
2 or 3 | - | - | - | −164.2 | 83.7 | 0.0509 | - | - | - | |||
4 or 5 | - | - | - | −31.7 | 19.9 | 0.1125 | - | - | - | |||
6 or 7 (reference) | - | - | - | Reference | - | - | - | |||||
Education | ||||||||||||
No formal education or primary level | - | - | - | - | - | - | - | - | - | |||
Secondary O/N level or equivalent | - | - | - | - | - | - | - | - | - | |||
A level or equivalent | - | - | - | - | - | - | - | - | - | |||
University and above (reference) | - | - | - | - | - | - | - | - | - | |||
Housing type | ||||||||||||
HDB 1–3 room flats | - | - | - | - | - | - | - | - | - | |||
HDB 4–5 room flats | - | - | - | - | - | - | - | - | - | |||
Private properties + others | - | - | - | - | - | - | - | - | - | |||
Vitamin D supplement use | ||||||||||||
No | −3.89 | 1.32 | 0.0036 | - | - | - | - | - | - | |||
Yes (reference) | Reference | - | - | - | - | - | - | |||||
Vitamin B12 supplement use | ||||||||||||
No | - | - | - | −195.7 | 28.8 | <0.0001 | - | - | - | |||
Yes (reference) | - | - | - | Reference | - | - | - | |||||
Iron supplement use | ||||||||||||
No | - | - | - | - | - | - | - | - | - | |||
Yes (reference) | - | - | - | - | - | - | - | - | - | |||
(c) | ||||||||||||
Parameters | Corrected Calcium (mmol/L) | Serum Ferritin (μg/L) | Hemoglobin (g/dL) | |||||||||
Estimate | SE | p Value | Estimate | SE | p Value | Estimate | SE | p Value | ||||
Intercept | 2.089 | 0.074 | <0.0001 | 154.42 | 125.36 | 0.2190 | 11.8 | 1.2 | <0.0001 | |||
Gender | ||||||||||||
Male | −0.043 | 0.0095 | <0.0001 | 85.46 | 18.99 | <0.0001 | 1.2 | 0.14 | <0.0001 | |||
Female (reference) | Reference | Reference | Reference | |||||||||
Age (year) | 0.0016 | 0.00086 | 0.0580 | –0.13 | 1.73 | 0.9382 | −0.03 | 0.013 | 0.0212 | |||
BMI (kg/m2) | 0.0027 | 0.0015 | 0.0718 | - | - | - | 0.048 | 0.022 | 0.0273 | |||
Calf circumference (cm) | - | - | - | - | - | - | - | - | - | |||
C-reactive protein (mg/L) | - | - | - | - | - | - | - | - | - | |||
Ethnicity | ||||||||||||
Chinese | −0.023 | 0.013 | 0.0720 | 78.88 | 24.82 | 0.0016 | 0.41 | 0.19 | 0.0274 | |||
Non-Chinese (reference) | Reference | Reference | Reference | |||||||||
Nutrition literacy score | ||||||||||||
2 or 3 | - | - | - | - | - | - | - | - | - | |||
4 or 5 | - | - | - | - | - | - | - | - | - | |||
6 or 7 (reference) | - | - | - | - | - | - | - | - | - | |||
Education | ||||||||||||
No formal education or primary level | - | - | - | −31.57 | 34.12 | 0.3555 | 0.17 | 0.25 | 0.4943 | |||
Secondary O/N level or equivalent | - | - | - | 27.04 | 28.23 | 0.3391 | −0.11 | 0.21 | 0.6055 | |||
A level or equivalent | - | - | - | −3.87 | 31.13 | 0.9012 | 0.37 | 0.23 | 0.1131 | |||
University and above (reference) | - | - | - | Reference | Reference | |||||||
Housing type | ||||||||||||
HDB 1–3 room flats | - | - | - | - | - | - | - | - | - | |||
HDB 4–5 room flats | - | - | - | - | - | - | - | - | - | |||
Private properties + others | - | - | - | - | - | - | - | - | - | |||
Vitamin D supplement use | ||||||||||||
No | - | - | - | - | - | - | - | - | - | |||
Yes (reference) | - | - | - | - | - | - | - | - | - | |||
Vitamin B12 supplement use | ||||||||||||
No | - | - | - | - | - | - | - | - | - | |||
Yes (reference) | - | - | - | - | - | - | - | - | - | |||
Iron supplement use | ||||||||||||
No | - | - | - | - | - | - | 1.96 | 0.42 | <0.0001 | |||
Yes (reference) | - | - | - | - | - | - | Reference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheong, M.; Chew, S.T.H.; Oliver, J.; Baggs, G.; Low, Y.L.; How, C.H.; Tan, N.C.; Huynh, D.T.T.; Tey, S.L. Nutritional Biomarkers and Associated Factors in Community-Dwelling Older Adults: Findings from the SHIELD Study. Nutrients 2020, 12, 3329. https://doi.org/10.3390/nu12113329
Cheong M, Chew STH, Oliver J, Baggs G, Low YL, How CH, Tan NC, Huynh DTT, Tey SL. Nutritional Biomarkers and Associated Factors in Community-Dwelling Older Adults: Findings from the SHIELD Study. Nutrients. 2020; 12(11):3329. https://doi.org/10.3390/nu12113329
Chicago/Turabian StyleCheong, Magdalin, Samuel Teong Huang Chew, Jeffery Oliver, Geraldine Baggs, Yen Ling Low, Choon How How, Ngiap Chuan Tan, Dieu Thi Thu Huynh, and Siew Ling Tey. 2020. "Nutritional Biomarkers and Associated Factors in Community-Dwelling Older Adults: Findings from the SHIELD Study" Nutrients 12, no. 11: 3329. https://doi.org/10.3390/nu12113329
APA StyleCheong, M., Chew, S. T. H., Oliver, J., Baggs, G., Low, Y. L., How, C. H., Tan, N. C., Huynh, D. T. T., & Tey, S. L. (2020). Nutritional Biomarkers and Associated Factors in Community-Dwelling Older Adults: Findings from the SHIELD Study. Nutrients, 12(11), 3329. https://doi.org/10.3390/nu12113329