Changes in Non-Nutritive Sweetener Consumption Patterns in Response to a Sugar-Sweetened Beverage Reduction Intervention
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Methods
2.3. NNS Consumption Extraction
2.3.1. Analysis of NNS Consumption Patterns
2.3.2. Analysis of NNS Consumer Demographics
- Group 1 (n = 36): decreased SSB consumption (≥1.5 fl oz) with increased NNS consumption (>3.0 total NNS mg)
- Group 2 (n = 43): decreased SSB consumption (≥1.5 fl oz) but no increase in NNS consumption (≤2.99 total NNS mg)
- Group 3 (n = 22): increased/no change in SSB consumption, regardless of NNS consumption
2.4. Statistical Analyses
3. Results
3.1. Changes in Frequency of NNS Consumers and Non-Consumers Over Time
3.2. Changes in Non-Nutritive Sweetener Consumption Over Time
3.3. Changes in Non-Nutritive Sweetener Consumption Sources Over Time
3.4. Differences in Demographics Between SSB-NNS Consumption Change Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bowman, S.A.; Clemens, J.C.; Martin, C.L.; Anand, J.; Steinfeldt, L.C.; Moshfegh, A.J. Added Sugars Intake of Americans: What We Eat in America; NHANES 2013-2014; U.S. Department of Agriculture, Agricultural Research Service: Beltsville, MD, USA, 2017. [CrossRef]
- Rippe, J.M.; Angelopoulos, T.J. Relationship between Added Sugars Consumption and Chronic Disease Risk Factors: Current Understanding. Nutrients 2016, 8, 697. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.M.; Rayburn, J.; Beck, S.E. The State of Obesity 2017: Better Policies for a Healthier America. Available online: http://sf-nutrition.org/wp-content/uploads/2017/12/stateofobesity2017.pdf (accessed on 6 November 2020).
- Sylvetsky, A.C.; Rother, K.I. Trends in the consumption of low-calorie sweeteners. Physiol. Behav. 2016, 164, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, V.E.; Passaro, E.M.; Davy, B.M.; You, W.; Zoellner, J.M. Characterization of Non-Nutritive Sweetener Intake in Rural Southwest Virginian Adults Living in a Health-Disparate Region. Nutrients 2017, 9, 757. [Google Scholar] [CrossRef] [PubMed]
- Sylvetsky, A.C.; Jin, Y.; Clark, E.J.; Welsh, J.A.; Rother, K.I.; Talegawkar, S.A. Consumption of Low-Calorie Sweeteners among Children and Adults in the United States. J. Acad. Nutr. Diet. 2017, 117, 441–448.e2. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Abou-Setta, A.M.; Chauhan, B.F.; Rabbani, R.; Lys, J.; Copstein, L.; Mann, A.; Jeyaraman, M.M.; Reid, A.E.; Fiander, M.; et al. Nonnutritive sweeteners and cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Can. Med. Assoc. J. 2017, 189, E929–E939. [Google Scholar] [CrossRef]
- Blackburn, G.L.; Kanders, B.S.; Lavin, P.T.; Keller, S.D.; Whatley, J. The effect of aspartame as part of a multidisciplinary weight-control program on short- and long-term control of body weight. Am. J. Clin. Nutr. 1997, 65, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Madjd, A.; A Taylor, M.; Delavari, A.; Emalekzadeh, R.; A Macdonald, I.; Farshchi, H.R. Effects on weight loss in adults of replacing diet beverages with water during a hypoenergetic diet: A randomized, 24-wk clinical trial. Am. J. Clin. Nutr. 2015, 102, 1305–1312. [Google Scholar] [CrossRef]
- Miller, P.E.; Perez, V. Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. Am. J. Clin. Nutr. 2014, 100, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Beck, J.; Cardel, M.; Wyatt, H.R.; Foster, G.D.; Pan, Z.; Wojtanowski, A.C.; Veur, S.S.V.; Herring, S.J.; Brill, C.; et al. The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: A randomized clinical trial. Obesity 2015, 24, 297–304. [Google Scholar] [CrossRef]
- Peters, J.C.; Wyatt, H.R.; Foster, G.D.; Pan, Z.; Wojtanowski, A.C.; Veur, S.S.V.; Herring, S.J.; Brill, C.; Hill, J.O. The effects of water and non-nutritive sweetened beverages on weight loss during a 12-week weight loss treatment program. Obesity 2014, 22, 1415–1421. [Google Scholar] [CrossRef]
- Tate, D.F.; Turner-McGrievy, G.; Lyons, E.; Stevens, J.; Erickson, K.; Polzien, K.; Diamond, M.; Wang, X.; Popkin, B. Replacing caloric beverages with water or diet beverages for weight loss in adults: Main results of the Choose Healthy Options Consciously Everyday (CHOICE) randomized clinical trial. Am. J. Clin. Nutr. 2012, 95, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Madjd, A.; Taylor, M.A.; Delavari, A.; Malekzadeh, R.; Macdonald, I.A.; Farshchi, H.R. Beneficial effects of replacing diet beverages with water on type 2 diabetic obese women following a hypo-energetic diet: A randomized, 24-week clinical trial. Diabetes Obes. Metab. 2016, 19, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Chia, C.W.; Shardell, M.; Tanaka, T.; Liu, D.D.; Gravenstein, K.S.; Simonsick, E.M.; Egan, J.M.; Ferrucci, L. Chronic Low-Calorie Sweetener Use and Risk of Abdominal Obesity among Older Adults: A Cohort Study. PLoS ONE 2016, 11, e0167241. [Google Scholar] [CrossRef]
- Mph, S.P.F.; Ms, K.W.; Hazuda, H.P. Diet Soda Intake Is Associated with Long-Term Increases in Waist Circumference in a Biethnic Cohort of Older Adults: The San Antonio Longitudinal Study of Aging. J. Am. Geriatr. Soc. 2015, 63, 708–715. [Google Scholar] [CrossRef]
- Stellman, S.D.; Garfinkel, L. Artificial sweetener use and one-year weight change among women. Prev. Med. 1986, 15, 195–202. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Lutsey, P.L.; Wang, Y.; Lima, J.A.; Michos, E.D.; Jacobs, D.R. Diet Soda Intake and Risk of Incident Metabolic Syndrome and Type 2 Diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2009, 32, 688–694. [Google Scholar] [CrossRef]
- Palmnäs, M.S.A.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in the Diet-Induced Obese Rat. PLoS ONE 2014, 9, e109841. [Google Scholar] [CrossRef]
- Hess, E.L.; Myers, E.A.; Swithers, S.E.; E Hedrick, V. Associations Between Nonnutritive Sweetener Intake and Metabolic Syndrome in Adults. J. Am. Coll. Nutr. 2018, 37, 487–493. [Google Scholar] [CrossRef]
- Kuk, J.L.; Brown, R.E. Aspartame intake is associated with greater glucose intolerance in individuals with obesity. Appl. Physiol. Nutr. Metab. 2016, 41, 795–798. [Google Scholar] [CrossRef]
- Swithers, S.E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol. Metab. 2013, 24, 431–441. [Google Scholar] [CrossRef]
- Collison, K.S.; Makhoul, N.J.; Zaidi, M.Z.; Al-Rabiah, R.; Inglis, A.; Andres, B.L.; Ubungen, R.; Shoukri, M.; Al-Mohanna, F.A. Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis. Nutr. Metab. 2012, 9, 58. [Google Scholar] [CrossRef]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nat. Cell Biol. 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Swithers, S.E.; Laboy, A.F.; Clark, K.; Cooper, S.; Davidson, T. Experience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats. Behav. Brain Res. 2012, 233, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Toigo, E.V.P.; Huffell, A.; Mota, C.; Bertolini, D.; Pettenuzzo, L.; Dalmaz, C. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame. Appetite 2015, 87, 168–174. [Google Scholar] [CrossRef]
- Fowler, S.P.; Williams, K.; Resendez, R.G.; Hunt, K.J.; Hazuda, H.P.; Stern, M.P. Fueling the Obesity Epidemic? Artificially Sweetened Beverage Use and Long-term Weight Gain. Obesity 2008, 16, 1894–1900. [Google Scholar] [CrossRef]
- Peters, J.; Beck, J. Low Calorie Sweetener (LCS) use and energy balance. Physiol. Behav. 2016, 164, 524–528. [Google Scholar] [CrossRef]
- Campos, V.; Despland, C.; Brandejsky, V.; Kreis, R.; Schneiter, P.; Boesch, C.H.; Tappy, L. Metabolic Effects of Replacing Sugar-Sweetened Beverages with Artificially-Sweetened Beverages in Overweight Subjects with or without Hepatic Steatosis: A Randomized Control Clinical Trial. Nutrients 2017, 9, 202. [Google Scholar] [CrossRef]
- Zoellner, J.M.; Hedrick, V.E.; You, W.; Chen, Y.; Davy, B.M.; Porter, K.J.; Bailey, A.; Lane, H.; Alexander, R.; Estabrooks, P.A. Effects of a behavioral and health literacy intervention to reduce sugar-sweetened beverages: A randomized-controlled trial. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 38. [Google Scholar] [CrossRef]
- Zoellner, J.; Chen, Y.; Davy, B.; You, W.; Hedrick, V.; Corsi, T.; Estabrooks, P. Talking health, a pragmatic randomized-controlled health literacy trial targeting sugar-sweetened beverage consumption among adults: Rationale, design & methods. Contemp. Clin. Trials 2013, 37, 43–57. [Google Scholar] [CrossRef]
- United States Department of Agriculture Economic Research Service. Rural-Urban Continuum Codes 2013. Available online: http://www.ers.usda.gov/data-products/rural-urban-continuum-codes/.aspx (accessed on 30 March 2020).
- United States Department of Agriculture. Nutritive and Nonnutritive Sweetener Resources. Available online: https://www.nal.usda.gov/fnic/nutritive-and-nonnutritive-sweetener-resources (accessed on 5 March 2020).
- Sylvetsky, A.C.; A Welsh, J.; Brown, R.J.; Vos, M.B. Low-calorie sweetener consumption is increasing in the United States. Am. J. Clin. Nutr. 2012, 96, 640–646. [Google Scholar] [CrossRef] [PubMed]
- A Higgins, K.; Mattes, R.D. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am. J. Clin. Nutr. 2019, 109, 1288–1301. [Google Scholar] [CrossRef]
- Huang, M.; Quddus, A.; Stinson, L.; Shikany, J.M.; Howard, B.V.; Kutob, R.M.; Lu, B.; E Manson, J.; Eaton, C.B. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: The prospective Women’s Health Initiative observational study. Am. J. Clin. Nutr. 2017, 106, 614–622. [Google Scholar] [CrossRef]
- Sharkey, J.R.; Johnson, C.M.; Dean, W.R. Less-healthy eating behaviors have a greater association with a high level of sugar-sweetened beverage consumption among rural adults than among urban adults. Food Nutr. Res. 2011, 55, 5819. [Google Scholar] [CrossRef]
- Castro-Quezada, I.; Ruano-Rodríguez, C.; Ribas-Barba, L.; Serra-Majem, L. Misreporting in nutritional surveys: Methodological implications. Nutr. Hosp. 2015, 31, 31. [Google Scholar]
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method Accurately Estimates Group Total Energy and Nutrient Intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [CrossRef]
Baseline | 6 Months | ||||
---|---|---|---|---|---|
NNS Consumers n (%) | Non-Consumers n (%) | Became NNS Consumers n (%) | Remained NNS Consumers n (%) | Became Non-Consumers n (%) | Remained Non-Consumers n (%) |
30 (30) | 71 (70) | 25 (25) | 21 (21) | 9 (9) | 46 (45) |
NNS Type | Baseline Mean ± SD | 6 Months Mean ± SD | Mean difference ± SE a |
---|---|---|---|
Aspartame (mg) | 46.6 ± 107.5 | 83.8 ± 158.7 | 37.2 ± 13.9 ** |
Saccharin (mg) | 0.6 ± 5.1 | 5.8 ± 32.9 | 5.2 ± 3.1 |
Sucralose (mg) | 5.0 ± 21.8 | 26.7 ± 108.7 | 21.6 ± 11.1 |
Acesulfame Potassium (mg) | 8.1 ± 26.9 | 7.8 ± 22.1 | −0.3 ± 2.9 |
Total NNS (mg) | 60.3 ± 127.3 | 124.1 ± 201.6 | 63.7 ± 18.5 *** |
Dietary Sources of NNS | Aspartame | Acesulfame Potassium | Sucralose | Saccharin | ||||
---|---|---|---|---|---|---|---|---|
Baseline mg (%) | 6 Months mg (%) | Baseline mg (%) | 6 Months mg (%) | Baseline mg (%) | 6 Months mg (%) | Baseline mg (%) | 6 Months mg (%) | |
Diet soda | 3563 (76) | 7671 (91) | 291 (36) | 593 (76) | 160 (31) | 168 (6) | 15 (23) | 0 (0) |
Diet tea | 596 (13) | 77 (1) | 288 (36) | 22 (3) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Juice or flavored drinks | 208 (4) | 242 (3) | 223 (28) | 132 (17) | 206 (40) | 70 (3) | 0 (0) | 0 (0) |
Yogurt | 124 (3) | 62 (1) | 0 (0) | 0 (0) | 114 (22) | 0 (0) | 0 (0) | 0 (0) |
Tabletop sweetener | 140 (3) | 176 (2) | 0 (0) | 0 (0) | 0 (0) | 2419 (90) | 49 (77) | 586 (100) |
Cereal | 50 (1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Popcorn | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 22 (4) | 0 (0) | 0 (0) | 0 (0) |
Coffee cream substitute | 0 (0) | 0 (0) | 8 (1) | 6 (1) | 8 (2) | 6 (0) | 0 (0) | 0 (0) |
Ice cream | 17 (0) | 85 (1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Hot cocoa mix | 0 (0) | 146 (2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Meal replacement product | 0 (0) | 0 (0) | 0 (0) | 26 (3) | 0 (0) | 26 (1) | 0 (0) | 0 (0) |
Total (mg) | 4698 | 8459 | 810 | 779 | 510 | 2689 | 64 | 586 |
Characteristics | Group 1: Decreased SSB with Increased NNS Consumption | Group 2: Decreased SSB but no Increase in NNS Consumption | Group 3: Increased or no Change in SSB, Regardless of Change in NNS Consumption |
---|---|---|---|
(n = 36) | (n = 43) | (n = 22) | |
n (%) | n (%) | n (%) | |
Sex * | |||
Male | 7 (19) | 11 (26) | 0 (0) |
Female | 29 (81) | 32 (74) | 22 (100) |
Mean age ± SD (years) | 44.3 ± 12.9 | 43.3 ± 13.0 | 43.7 ± 13.2 |
Race/Ethnicity | |||
White | 34 (94) | 42 (98) | 21 (96) |
African American | 2 (6) | 1 (2) | 1 (4) |
Mean weight ± SD (kg) | 94.8 ± 28.9 | 87.7 ± 21.5 | 93.1 ± 25.5 |
Mean body mass index (BMI) ± SD (kg/m2) | 34.53 ± 9.1 | 31.68 ± 7.8 | 35.1 ± 9.5 |
BMI category | |||
Underweight (<18.5) | 0 (0) | 0 (0) | 0 (0) |
Normal (18.5–24.9) | 4 (11) | 11 (25) | 2 (9) |
Overweight (25–29.9) | 10 (28) | 8 (19) | 5 (23) |
Obese (≥30) | 22 (61) | 24 (56) | 15 (68) |
Education level | |||
High school graduate or less | 12 (33) | 14 (33) | 8 (36) |
Some college or more | 24 (67) | 29 (67) | 14 (64) |
Mean household income ± SD ($) | 21,528 ± 16,347 | 23,547 ± 16,158 | 22,045 ± 16,432 |
Household income level ($) | |||
≤14,999 | 18 (50) | 16 (37) | 10 (45) |
15,000–34,999 | 10 (28) | 16 (37) | 8 (36) |
35,000–39,999 | 0 (0) | 3 (7) | 0 (0) |
40,000–54,999 | 6 (17) | 2 (5) | 2 (9) |
>55,000 | 2 (6) | 6 (14) | 2 (9) |
Characteristic | Group 1: Decreased SSB with Increased NNS Consumption (n = 36) | Group 2: Decreased SSB but no Increase in NNS Consumption (n = 43) | Group 3: Increased or no change in SSB, Regardless of Change in NNS (n = 22) | Significance Between Groups b | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline Mean ± SD | 6 Months Mean ± SD | Mean Difference ± Std. Error a | Baseline Mean ± SD | 6 Months Mean ± SD | Mean difference ± Std. Error a | Baseline Mean ± SD | 6 Months Mean ± SD | Mean Difference ± Std. Error a | ||
SSB (fl oz) | 34.4 ± 23.5 | 7.3 ± 10.7 | −27.0 ± 3.4 *** | 37.1 ± 31.9 | 14.5 ± 13.9 | −22.5 ± 4.0 *** | 12.7 ± 11.8 | 20.2 ± 15.7 | 7.5 ± 1.5 *** | F = 19.419 p = < 0.001 c |
Total NNS (mg) | 63.0 ± 129.9 | 255.4 ± 216.8 | 192.3 ± 29.2 ***1 | 13.2 ± 36.1 | 0.0 ± 0.0 | −13.2 ± 5.5 *2 | 147.9 ± 184.0 | 151.6 ± 230.9 | 3.5 ± 55.0 1 | F = 17.953 p = < 0.001 |
Weight (kg) | 94.2 ± 28.9 | 94.8 ± 28.8 | 0.5 ± 0.4 1 | 89.0 ± 21.1 | 87.7 ± 21.5 | −1.3 ± 0.8 1 | 94.0 ± 25.7 | 93.0 ± 25.5 | −1.0 ± 0.5 1 | F = 2.094 p = 0.129 |
BMI (kg/m2) | 34.5 ± 9.0 | 34.5 ± 9.0 | 0.10 ± 0.2 1 | 32.1 ± 7.8 | 31.6 ± 7.8 | −0.51 ± 0.2 1 | 35.45 ± 9.5 | 35.0 ± 9.5 | −0.3 ± 0.2 1 | F = 1.620 p = 0.203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acero, D.; Zoellner, J.M.; Davy, B.M.; Hedrick, V.E. Changes in Non-Nutritive Sweetener Consumption Patterns in Response to a Sugar-Sweetened Beverage Reduction Intervention. Nutrients 2020, 12, 3428. https://doi.org/10.3390/nu12113428
Acero D, Zoellner JM, Davy BM, Hedrick VE. Changes in Non-Nutritive Sweetener Consumption Patterns in Response to a Sugar-Sweetened Beverage Reduction Intervention. Nutrients. 2020; 12(11):3428. https://doi.org/10.3390/nu12113428
Chicago/Turabian StyleAcero, Darlene, Jamie M. Zoellner, Brenda M. Davy, and Valisa E. Hedrick. 2020. "Changes in Non-Nutritive Sweetener Consumption Patterns in Response to a Sugar-Sweetened Beverage Reduction Intervention" Nutrients 12, no. 11: 3428. https://doi.org/10.3390/nu12113428
APA StyleAcero, D., Zoellner, J. M., Davy, B. M., & Hedrick, V. E. (2020). Changes in Non-Nutritive Sweetener Consumption Patterns in Response to a Sugar-Sweetened Beverage Reduction Intervention. Nutrients, 12(11), 3428. https://doi.org/10.3390/nu12113428