Fatty Acid Profile of Mature Red Blood Cell Membranes and Dietary Intake as a New Approach to Characterize Children with Overweight and Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometric Measures
2.3. Food Habits and Nutrient Intakes
2.4. Red Blood Cell (RBC) Membrane Fatty Acid Analysis
2.5. Red Blood Cell Membrane Fatty Acid Cluster
2.6. Statistical Analysis
3. Results
3.1. Dietary Intake
3.2. RBC Membrane Fatty Acid Profile
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Arachidonic Acid |
ANCOVA | Analysis of Covariance |
BMI | Body Mass Index |
DGLA | Dihomo-Gamma-Linolenic Acid |
DHA | Docosahexaenoic Acid |
DPA | Docosapentaenoic Acid |
EDTA | Ethylenediaminetetraacetic Acid |
EFA | Essential Fatty Acid |
EPA | Eicosapentaenoic Acid |
FA | Fatty Acid |
FFQ | Food Frequency Questionnaire |
FAME | Fatty Acid Methyl ester |
KMO | Kaiser-Meyer-Olkin |
MeOH | Methyl Alcohol |
MUFA | Monounsaturated Fatty Acids |
KOH | Potassium Hydroxide |
LA | Linoleic Acid |
PUFA | Polyunsaturated Fatty Acid |
RBC | Red Blood Cell |
SFA | Saturated Fatty Acid |
SCD1 | Stearoyl-CoA Desaturase-1 |
SD | Standard Deviation |
TFA | Trans Fatty Acid |
UI | Unsaturation Index |
PI | Peroxidation Index |
PCA | Principal Component Analysis |
References
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Murtagh, E. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar]
- Juonala, M.; Lau, T.; Wake, M.; Grobler, A.; Kerr, J.A.; Magnussen, C.G.; Sabin, M.A.; Burgner, D.P.; Lycett, K. Early clinical markers of overweight/obesity onset and resolution by adolescence. Int. J. Obes. 2020, 44, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Beulen, Y.; Martinez-Gonzalez, M.A.; van de Rest, O.; Salas-Salvado, J.; Sorli, J.V.; Gomez-Gracia, E.; Fiol, M.; Estruch, R.; Santos-Lozano, J.M.; Schröder, H.; et al. Quality of Dietary Fat Intake and Body Weight and Obesity in a Mediterranean Population: Secondary Analyses within the PREDIMED Trial. Nutrients 2018, 10, 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamanian-Azodi, M.; Vafaee, R.; Azodi, T.; Omidi, R.; Gilanchi, S.; Azizi-Jalilian, F.; Khodarahmi, R. Molecular approaches in obesity studies. Gastroenterol. Hepatol. Bed Bench 2013, 6 (Suppl. 1), S23–S31. [Google Scholar]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef]
- Viviani Anselmi, C.; Ferreri, C.; Novelli, V.; Roncarati, R.; Bronzini, R.; Marchese, G.; Somalvico, F.; Condorelli, G.; Montenero, A.S.; Puca, A.A. Fatty acid percentage in erythrocyte membranes of atrial flutter/fibrillation patients and controls. J. Interv. Card. Electrophysiol. 2010, 27, 95–99. [Google Scholar] [CrossRef]
- Ghezzo, A.; Visconti, P.; Abruzzo, P.M.; Bolotta, A.; Ferreri, C.; Gobbi, G.; Malisardi, G.; Manfredini, S.; Marini, M.; Nanetti, L. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features. PLoS ONE 2013, 8, e66418. [Google Scholar] [CrossRef] [Green Version]
- Van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef]
- Ferreri, C.; Masi, A.; Sansone, A.; Giacometti, G.; Larocca, A.V.; Menounou, G.; Scanferlato, R.; Tortorella, S.; Rota, D.; Conti, M.; et al. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics. Diagnostics 2016, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, C.; Chatgilialoglu, C. Membrane Lipidomics for Personalized Health; John Wiley and Sons, Incorporated: Hoboken, NJ, USA, 2015; pp. 87–88. [Google Scholar]
- Risé, P.; Eligini, S.; Ghezzi, S.; Colli, S.; Galli, C. Fatty acid composition of plasma, blood cells and whole blood: Relevance for the assessment of the fatty acid status in humans. Prostaglandins Leukot. Essent. Fat. Acids 2007, 76, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ma, J.; Campos, H.; Hankinson, S.E.; Hu, F.B. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am. J. Clin. Nutr. 2007, 86, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Gunes, O.; Tascilar, E.; Sertoglu, E.; Tas, A.; Serdar, M.A.; Kaya, G.; Kayadibi, H.; Ozcan, O. Associations between erythrocyte membrane fatty acid compositions and insulin resistance in obese adolescents. Chem. Phys. Lipids 2014, 184, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Sánchez González, E.; Carrascosa Lezcano, A.; Fernández García, J.M.; Ferrández Longás, A.; López de Lara, D.; López-Siguero, J.P. Estudios españoles de crecimiento: Situación actual, utilidad y recomendaciones de uso. An. Pediatría 2011, 74, 193.e1–193.e16. [Google Scholar] [CrossRef]
- Carrascosa, A.; Fernández, J.M.; Fernández, C.; Ferrández, A.; López-Siguero, J.P.; Sánchez, E.; Yeste, D. Estudios españoles de crecimiento 2008. Nuevos patrones antropométricos. Endocrinol. Nutr. 2008, 55, 484–506. [Google Scholar] [CrossRef]
- Madrigal, C.; Soto-Mendez, M.J.; Hernandez-Ruiz, A.; Ruiz, E.; Valero, T.; Avila, J.M.; Lara-Villoslada, F.; Leis, R.; Martínez de Victoria, E.; Moreno, J.M.; et al. Dietary and Lifestyle Patterns in the Spanish Pediatric Population (One to < 10 Years Old): Design, Protocol, and Methodology of the EsNuPI Study. Nutrients 2019, 11, 3050. [Google Scholar]
- Fernandez-Ballart, J.D.; Pinol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Farinós, N.; Villar-Villalba, C.; López Sobaler, A.M.; Dal Re Saavedra, M.; Aparicio, A.; Santos Sanz, S.; de Dios, T.R.; Castrodeza-Sanz, J.J.; Anta, R.M. The relationship between hours of sleep, screen time and frequency of food and drink consumption in Spain in the 2011 and 2013 ALADINO: A cross-sectional study. BMC Public Health 2017, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Stefan, L.; Prosoli, R.; Juranko, D.; Cule, M.; Milinovic, I.; Novak, D.; Sporiš, G. The Reliability of the Mediterranean Diet Quality Index (KIDMED) Questionnaire. Nutrients 2017, 9, 419. [Google Scholar] [CrossRef] [Green Version]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; Garcia, A.; Perez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Sansone, A.; Tolika, E.; Louka, M.; Sunda, V.; Deplano, S.; Melchiorre, M.; Anagnostopoulos, D.; Chatgilialoglu, C.; Formisano, C.; Di Micco, R.; et al. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles. PLoS ONE 2016, 11, e0152378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacometti, G.; Ferreri, C.; Sansone, A.; Chatgilialoglu, C.; Marzetti, C.; Spyratou, E.; Georgakilas, A.G.; Marini, M.; Abruzzo, P.M.; Bolotta, A.; et al. High predictive values of RBC membrane-based diagnostics by biophotonics in an integrated approach for Autism Spectrum Disorders. Sci. Rep. 2017, 7, 9854. [Google Scholar] [CrossRef] [PubMed]
- Amezaga, J.; Arranz, S.; Urruticoechea, A.; Ugartemendia, G.; Larraioz, A.; Louka, M.; Uriarte, M.; Ferreri, C.; Tueros, I. Altered Red Blood Cell Membrane Fatty Acid Profile in Cancer Patients. Nutrients 2018, 10, 1853. [Google Scholar] [CrossRef] [Green Version]
- Van Der Vegt, S.G.L.; Ruben, A.M.T.; Werre, J.M.; Palsma, D.M.H.; Verhoef, C.W.; de Gier, J.; Staal, G.E. Counterflow centrifugation of red cell populations: A cell age related separation technique. Br. J. Haematol. 1985, 61, 393–403. [Google Scholar] [CrossRef]
- Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid-Liquid-Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef] [Green Version]
- Ferreri, C.; Faraone Mennella, M.R.; Formisano, C.; Landi, L.; Chatgilialoglu, C. Arachidonate geometrical isomers generated by thiyl radicals: The relationship with trans lipids detected in biological samples. Free Radic. Biol. Med. 2002, 33, 1516–1526. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Choi, H.-N.; Yim, J.-E. Effects of Erythrocyte Membrane Polyunsaturated Fatty Acids in Overweight, Obese, and Morbidly Obese Korean Women. J. Cancer Prev. 2017, 22, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Genio, G. Morbid Obesity is Associated to Altered Fatty Acid Profile of Erythrocyte Membranes. J. Diabetes Metab. 2015, 6, 1–4. [Google Scholar]
- Bonafini, S.; Tagetti, A.; Gaudino, R.; Cavarzere, P.; Montagnana, M.; Danese, E.; Benati, M.; Ramaroli, D.A.; Raimondi, S.; Giontella, A.; et al. Individual fatty acids in erythrocyte membranes are associated with several features of the metabolic syndrome in obese children. Eur. J. Nutr. 2019, 58, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Fekete, K.; Györei, E.; Lohner, S.; Verduci, E.; Agostoni, C.; Decsi, T. Long-chain polyunsaturated fatty acid status in obesity: A systematic review and meta-analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2015, 16, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Araya, J.; Rodrigo, R.; Videla, L.A.; Thielemann, L.; Orellana, M.; Pettinelli, P. Increase in long-chain polyunsaturated fatty acid n − 6/n − 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 2004, 106, 635–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savva, S.C.; Chadjigeorgiou, C.; Hatzis, C.; Kyriakakis, M.; Tsimbinos, G.; Tornaritis, M.; Kafatos, A. Association of adipose tissue arachidonic acid content with BMI and overweight status in children from Cyprus and Crete. Br. J. Nutr. 2004, 91, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Pietiläinen, K.H.; Róg, T.; Seppänen-Laakso, T.; Virtue, S.; Gopalacharyulu, P.; Tang, J.; Rodriguez-Cuenca, S.; Maciejewski, A.; Naukkarinen, J.; Ruskeepää, A.L.; et al. Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans. PLoS Biol. 2011, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef]
- Sonnweber, T.; Pizzini, A.; Nairz, M.; Weiss, G.; Tancevski, I. Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases. Int. J. Mol. Sci. 2018, 19, 3285. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.L.; Nakamura, M.T.; Ma, D.W.L. Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. Prostaglandins Leukot. Essent. Fat. Acids 2018, 135, 1–4. [Google Scholar] [CrossRef]
- Ailhaud, G.; Guesnet, P.; Cunnane, S.C. An emerging risk factor for obesity: Does disequilibrium of polyunsaturated fatty acid metabolism contribute to excessive adipose tissue development? Br. J. Nutr. 2008, 100, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Muhlhausler, B.S.; Ailhaud, G.P. Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Gerhold, K.; Mayers, J.R.; Wiest, M.M.; Watkins, S.M.; Hotamisligil, G.S. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008, 134, 933–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warensjo, E.; Ohrvall, M.; Vessby, B. Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Puri, P.; Wiest, M.M.; Cheung, O.; Mirshahi, F.; Sargeant, C.; Min, H.K.; Contos, M.J.; Sterling, R.K.; Fuchs, M.; Zhou, H.; et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 2009, 50, 1827–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjogren, P.; Sierra-Johnson, J.; Gertow, K.; Rosell, M.; Vessby, B.; de Faire, U.; Hamsten, A.; Hellenius, M.L.; Fisher, R.M. Fatty acid desaturases in human adipose tissue: Relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia 2008, 51, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Warensjo, E.; Riserus, U.; Vessby, B. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia 2005, 48, 1999–2005. [Google Scholar] [CrossRef] [Green Version]
- Notarnicola, M.; Caruso, M.G.; Tutino, V.; Bonfiglio, C.; Cozzolongo, R.; Giannuzzi, V.; De Nunzio, V.; De Leonardis, G.; Abbrescia, D.I.; Franco, I.; et al. Significant decrease of saturation index in erythrocytes membrane from subjects with non-alcoholic fatty liver disease (NAFLD). Lipids Health Dis. 2017, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Weijers, R. Membrane flexibility, free fatty acids, and the onset of vascular and neurological lesions in type 2 diabetes. J. Diabetes Metab. Disord. 2016, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- De Toro-Martín, J.; Arsenault, B.J.; Després, J.P.; Vohl, M.C. Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome. Nutrients 2017, 9, 913. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, N.; Roberts, T.; Hooshmand, S.; Kern, M.; Hong, M.Y. Mixed Nut Consumption May Improve Cardiovascular Disease Risk Factors in Overweight and Obese Adults. Nutrients 2019, 11, 1488. [Google Scholar] [CrossRef] [Green Version]
- Rock, C.L.; Flatt, S.W.; Barkai, H.S.; Pakiz, B.; Heath, D.D. Walnut consumption in a weight reduction intervention: Effects on body weight, biological measures, blood pressure and satiety. Nutr. J. 2017, 16, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razquin, C.; Sanchez-Tainta, A.; Salas-Salvado, J.; Buil-Cosiales, P.; Corella, D.; Fito, M.; Ros, E.; Estruch, R.; Arós, F.; Gómez-Gracia, E.; et al. Dietary energy density and body weight changes after 3 years in the PREDIMED study. Int. J. Food Sci. Nutr. 2017, 68, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions. Nutrients 2017, 9, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iaccarino Idelson, P.; Scalfi, L.; Valerio, G. Adherence to the Mediterranean Diet in children and adolescents: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Welch, A.; van Sluijs, E.M.; Griffin, S.J.; Cassidy, A. Diet quality is independently associated with weight status in children aged 9–10 years. J. Nutr. 2011, 141, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Lydakis, C.; Stefanaki, E.; Stefanaki, S.; Thalassinos, E.; Kavousanaki, M.; Lydaki, D. Correlation of blood pressure, obesity, and adherence to the Mediterranean diet with indices of arterial stiffness in children. Eur. J. Pediatr. 2012, 171, 1373–1382. [Google Scholar] [CrossRef]
- Saravia, L.; Miguel-Berges, M.L.; Iglesia, I.; Nascimento-Ferreira, M.V.; Perdomo, G.; Bove, I.; Slater, B.; Moreno, L.A. Relative validity of FFQ to assess food items, energy, macronutrient and micronutrient intake in children and adolescents: A systematic review with meta-analysis. Br. J. Nutr. 2020, 18, 1–27. [Google Scholar] [CrossRef]
Food Groups (g/day) |
Children with Normal Weight (NO) n = 107 |
Children Who Are Overweight (OV) n = 41 |
Children with Obesity (OB) n = 61 | Kruskal-Wallis H Test (p) |
Post hoc Pairwise Comparison (p *) | ||
---|---|---|---|---|---|---|---|
Med (Q1–Q3) | Med (Q1–Q3) | Med (Q1–Q3) | NO:OV | NO:OB | OV:OB | ||
Fruits | 423 (297–532) | 354 (273–509) | 419 (272–603) | 0.50 | |||
Vegetables | 159 (96–259) | 154 (77–250) | 141 (74–232) | 0.49 | |||
Cereals | 161 (118–210) | 127 (96–171) | 139 (105–188) | 0.01 | 0.01 | 0.11 | 0.95 |
Legumes | 91 (54–102) | 80 (51–102) | 75 (48–96) | 0.52 | |||
Olive oil | 15 (15–37) | 15 (12–15) | 15 (12–37) | 0.26 | |||
Dairy products | 325 (255–512) | 314 (226–329) | 302 (207–358) | 0.10 | |||
Eggs | 15 (15–34) | 15 (15–34) | 15 (15–34) | 0.36 | |||
Red meat | 21 (21–21) | 21 (21–50) | 21 (21–50) | 0.31 | |||
White meat | 50 (21−50) | 50 (36–50) | 50 (21–50) | 0.15 | |||
Dried fruits and nuts | 2.1 (0–6.4) | 1.1 (0–6.4) | 1.1 (0–2.1) | 0.03 | 0.73 | 0.03 | 0.96 |
Lean fish | 27 (27–27) | 27 (27–27) | 27 (13–27) | 0.613 | |||
Oily fish and shellfish | 27 (13–27) | 27 (9–31) | 27 (11–31) | 0.55 | |||
Sugary drinks | 18 (0–45) | 21 (0–54) | 16 (0–54) | 0.95 | |||
Juices | 80 (27–250) | 107 (27–196) | 80 (27–250) | 0.95 | |||
KIDMED score | 8 (7–9) | 7 (6–9) | 7 (6–9) | 0.07 |
Variables |
Children with Normal Weight (NO) n = 107 |
Children Who Are Overweight (OV) n = 41 |
Children with Obesity (OB) n = 61 | Kruskal-Wallis H Test (p) |
Post Hoc Pairwise Comparison (p *) | ||
---|---|---|---|---|---|---|---|
Med (Q1–Q3) | Med (Q1–Q3) | Med (Q1–Q3) | NO:OV | NO:OB | OV:OB | ||
Macronutrients | |||||||
Calories (Kcal/day) | 2058 (1749–2376) | 1983 (1516–2335) | 1916 (1709–2167) | 0.18 | |||
Proteins (%E) | 16.3 (15.0–17.7) | 16.8 (15.3–18.5) | 16.4 (14.9–17.3) | 0.42 | |||
Carbohidrates (%E) | 46.7 (43.2- 49.9) | 48.1 (43.9–53.3) | 46.7 (43.4–51.1) | 0.19 | |||
Simple sugars (%E) | 20.9 (18.5–23.8) | 20.9 (17.9–24.8) | 21.8 (18.9–25.0) | 0.42 | |||
Lipids (%E) | 33.7 (29.9–37.0) | 31.1 (27.0–35.4) | 32.9 (27.4–38.2) | 0.05 | |||
Individual FA (% E) | |||||||
C14:0 | 1.0 (0.8–1.2) | 0.8 (0.6–1.1) | 0.9 (0.7–1.1) | 0.02 | 0.06 | 0.08 | 1.0 |
C16:0 | 6.3 (5.7–7.1) | 5.8 (5.1–6.7) | 5.8 (5.2–6.7) | 0.01 | 0.04 | 0.03 | 1.0 |
C18:0 | 2.4 (2.1–2.7) | 2.2 (1.9–2.5) | 2.2 (2.0–2.6) | 0.05 | |||
Tot. SFA | 9.7 (8.7–10.9) | 9.0 (7.8–10.1) | 9.0 (7.9–10.4) | 0.004 | 0.02 | 0.04 | 1.0 |
C16:1 | 0.51 (0.46–0.58) | 0.49 (0.42–0.54) | 0.50 (0.42–0.60) | 0.1 | |||
C18:1 | 14.2 (11.4–16.5) | 12.3 (10.1–14.8) | 13.3 (11.0–17.3) | 0.08 | |||
Tot. MUFA | 14.7 (11.9–17.1) | 12.7 (10.5–15.2) | 13.9 (11.4–17.8) | 0.07 | |||
C18:2 | 3.6 (3.2–4.2) | 3.6 (3.1–3.9) | 3.6 (2.9–4.3) | 0.99 | |||
C20:4 | 0.04 (0.03–0.05) | 0.04 (0.03–0.06) | 0.04 (0.03–0.05) | 0.78 | |||
Tot. ω6 | 3.5 (3.0–4.4) | 3.7 (2.8–4.5) | 3.4 (3.1–5.0) | 0.97 | |||
>C18:3 | 0.52 (0.50–0.61) | 0.50 (0.46–0.54) | 0.52 (0.45–0.58) | 0.44 | |||
C20:5 (EPA) | 0.07 (0.04–0.1) | 0.07 (0.02–0.11) | 0.07 (0.04–0.1) | 0.88 | |||
C22:5 (DPA) | 0.017 (0.011–0.024) | 0.017 (0.006–0.025) | 0.016 (0.009–0.025) | 0.59 | |||
22:6 (DHA) | 0.14 (0.09–0.19) | 0.13 (0.05–0.20) | 0.13 (0.09–0.19) | 0.84 | |||
Tot. ω3 | 0.8 (0.7–1.0) | 0.8 (0.6–0.9) | 0.8 (0.6–0.9) | 0.36 | |||
Tot. PUFA | 4.3 (3.8–5.3) | 4.5 (3.5–5.4) | 4.3 (3.6–5.5) | 0.96 | |||
ω-6/ω-3 | 4.6 (4.0–5.4) | 4.8 (3.7–6.8) | 4.9 (4.0–6.7) | 0.25 |
Fatty Acids (%) | Children with Normal Weight (NO) | Children Who Are Overweight (OV) | >Children with Obesity (OB) | ANCOVA | p-Value a | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | p | NO:OV | NO:OB | OV:OB | |
Palmitic acid (C16:0) | 22.44 | 0.10 | 22.54 | 0.16 | 22.49 | 0.13 | 0.86 | 1.00 | 1.00 | 1.00 |
Stearic acid (C18:0) | 17.67 | 0.10 | 17.94 | 0.17 | 18.13 | 0.14 | 0.03 | 0.54 | 0.03 | 1.00 |
TOT. SFA | 40.12 | 0.10 | 40.48 | 0.16 | 40.58 | 0.14 | 0.02 | 0.21 | 0.03 | 1.00 |
Palmitoleic acid (C16:1) | 0.40 | 0.01 | 0.45 | 0.02 | 0.43 | 0.02 | 0.08 | 0.12 | 0.31 | 1.00 |
Oleic acid (9c C18:1) | 17.48 | 0.13 | 16.68 | 0.20 | 16.65 | 0.17 | <0.001 | <0.001 | <0.001 | 1.00 |
cis-Vaccenic acid (11c C18:1) | 1.19 | 0.02 | 1.14 | 0.03 | 1.14 | 0.02 | 0.12 | 0.35 | 0.23 | 1.00 |
TOT. MUFA | 19.09 | 0.13 | 18.27 | 0.22 | 18.27 | 0.18 | <0.001 | 0.01 | 0.001 | 1.00 |
Linoleic acid (C18:2) | 14.28 | 0.13 | 14.30 | 0.21 | 13.71 | 0.17 | 0.02 | 1.00 | 0.03 | 0.09 |
DGLA (C20:3) | 2.01 | 0.04 | 2.30 | 0.06 | 2.23 | 0.05 | <0.001 | <0.001 | 0.002 | 1.00 |
ARA (C20:4) | 18.76 | 0.13 | 19.23 | 0.21 | 19.66 | 0.18 | <0.001 | 0.18 | <0.001 | 0.37 |
TOT. ω-6 | 35.06 | 0.15 | 35.83 | 0.25 | 35.65 | 0.21 | 0.12 | 0.03 | 0.08 | 1.00 |
EPA (C20:5) | 0.60 | 0.02 | 0.49 | 0.03 | 0.54 | 0.03 | 0.01 | 0.02 | 0.35 | 0.66 |
DHA (C22:6) | 4.97 | 0.11 | 4.67 | 0.17 | 4.79 | 0.14 | 0.29 | 0.41 | 0.95 | 1.00 |
TOT. ω-3 | 5.57 | 0.12 | 5.16 | 0.19 | 5.34 | 0.16 | 0.16 | 0.21 | 0.73 | 1.00 |
TOT. PUFA | 40.63 | 0.14 | 40.99 | 0.22 | 40.98 | 0.18 | 0.21 | 0.51 | 0.39 | 1.00 |
Trans C18:1 | 0.08 | 0.01 | 0.09 | 0.01 | 0.09 | 0.01 | 0.88 | 1.00 | 1.00 | 1.00 |
>Trans C20:4 | 0.08 | 0.01 | 0.06 | 0.01 | 0.08 | 0.01 | 0.31 | 0.65 | 1.00 | 0.41 |
TOT. TRANS | 0.17 | 0.01 | 0.15 | 0.01 | 0.17 | 0.01 | 0.47 | 0.71 | 1.00 | 0.72 |
Indexes | ||||||||||
ω-6/ω-3 | 6.59 | 0.18 | 7.33 | 0.28 | 7.23 | 0.24 | 0.09 | 0.09 | 0.10 | 1.00 |
Omega 3 Index | 5.57 | 0.12 | 5.16 | 0.19 | 5.34 | 0.16 | 0.16 | 0.21 | 0.73 | 1.00 |
SFA/MUFA | 2.12 | 0.02 | 2.21 | 0.03 | 2.24 | 0.02 | <0.001 | 0.03 | 0.001 | 1.00 |
∆6D + ELO 20:3/18:2 b | 0.142 | 0.003 | 0.158 | 0.004 | 0.164 | 0.004 | <0.001 | |||
∆5D 20:4/20:3 | 9.59 | 0.18 | 8.46 | 0.29 | 8.96 | 0.24 | 0.004 | 0.004 | 0.12 | 0.59 |
∆9D 16:1/16:0 | 0.018 | 0.001 | 0.02 | 0.001 | 0.019 | 0.001 | 0.07 | 0.07 | 0.43 | 1 |
∆9D 18:1/18:0 | 0.994 | 0.01 | 0.928 | 0.017 | 0.916 | 0.014 | <0.001 | 0.004 | <0.001 | 1 |
PUFA BALANCE | 13.71 | 0.28 | 12.58 | 0.45 | 13.00 | 0.37 | 0.08 | 0.11 | 0.40 | 1.00 |
Peroxidation Index | 137.18 | 0.81 | 136.62 | 1.31 | 138.00 | 1.10 | 0.71 | 1.00 | 1.00 | 1.00 |
Unsaturation Index | 161.58 | 0.57 | 161.27 | 0.91 | 162.28 | 0.76 | 0.67 | 1.00 | 1.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jauregibeitia, I.; Portune, K.; Rica, I.; Tueros, I.; Velasco, O.; Grau, G.; Trebolazabala, N.; Castaño, L.; Larocca, A.V.; Ferreri, C.; et al. Fatty Acid Profile of Mature Red Blood Cell Membranes and Dietary Intake as a New Approach to Characterize Children with Overweight and Obesity. Nutrients 2020, 12, 3446. https://doi.org/10.3390/nu12113446
Jauregibeitia I, Portune K, Rica I, Tueros I, Velasco O, Grau G, Trebolazabala N, Castaño L, Larocca AV, Ferreri C, et al. Fatty Acid Profile of Mature Red Blood Cell Membranes and Dietary Intake as a New Approach to Characterize Children with Overweight and Obesity. Nutrients. 2020; 12(11):3446. https://doi.org/10.3390/nu12113446
Chicago/Turabian StyleJauregibeitia, Iker, Kevin Portune, Itxaso Rica, Itziar Tueros, Olaia Velasco, Gema Grau, Nerea Trebolazabala, Luis Castaño, Anna Vita Larocca, Carla Ferreri, and et al. 2020. "Fatty Acid Profile of Mature Red Blood Cell Membranes and Dietary Intake as a New Approach to Characterize Children with Overweight and Obesity" Nutrients 12, no. 11: 3446. https://doi.org/10.3390/nu12113446
APA StyleJauregibeitia, I., Portune, K., Rica, I., Tueros, I., Velasco, O., Grau, G., Trebolazabala, N., Castaño, L., Larocca, A. V., Ferreri, C., & Arranz, S. (2020). Fatty Acid Profile of Mature Red Blood Cell Membranes and Dietary Intake as a New Approach to Characterize Children with Overweight and Obesity. Nutrients, 12(11), 3446. https://doi.org/10.3390/nu12113446