Alterations in One-Carbon Metabolism in Celiac Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical and Socio-Demographics
2.3. Anthropometric Measures
2.4. Blood Samples
2.5. Targeted Metabolomics
2.5.1. Chemicals
2.5.2. Sample Processing
2.5.3. Analysis Conditions
2.6. Data Analyses
3. Results
3.1. Clinical Characteristics
3.2. Targeted Metabolomic
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farrell, R.J.; Kelly, C.P. Celiac Sprue. N. Engl. J. Med. 2002, 346, 180–188. [Google Scholar] [CrossRef]
- Green, P.H.R.; Jabri, B. Coeliac disease. Lancet 2003, 362, 383–391. [Google Scholar] [CrossRef]
- Schuppan, D. Current concepts of celiac disease pathogenesis. Gastroenterology 2000, 119, 234–242. [Google Scholar] [CrossRef]
- Kagnoff, M.F. Celiac disease: Pathogenesis of a model immunogenetic disease. J. Clin. Investig. 2007, 117, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Corrao, G.; Corazza, G.R.; Bagnardi, V.; Brusco, G.; Ciacci, C.; Cottone, M.; Guidetti, C.S.; Usai, P.; Cesari, P.; Pelli, M.A.; et al. Mortality in patients with coeliac disease and their relatives: A cohort study. Lancet 2001, 358, 356–361. [Google Scholar] [CrossRef]
- Mäki, M.; Mustalahti, K.; Kokkonen, J.; Kulmala, P.; Haapalahti, M.; Karttunen, T.; Ilonen, J.; Laurila, K.; Dahlbom, I.; Hansson, T.; et al. Prevalence of Celiac Disease among Children in Finland. N. Engl. J. Med. 2003, 348, 2517–2524. [Google Scholar] [CrossRef] [Green Version]
- Fasano, A.; Catassi, C. Current approaches to diagnosis and treatment of celiac disease: An evolving spectrum. Gastroenterology 2001, 120, 636–651. [Google Scholar] [CrossRef]
- Kivelä, L.; Kurppa, K. Screening for coeliac disease in children. Acta Paediatr. 2018, 107, 1879–1887. [Google Scholar] [CrossRef] [Green Version]
- Romanos, J.; Van Diemen, C.C.; Nolte, I.M.; Trynka, G.; Zhernakova, A.; Fu, J.; Bardella, M.T.; Barisani, D.; McManus, R.; Van Heel, D.A.; et al. Analysis of HLA and Non-HLA Alleles Can Identify Individuals at High Risk for Celiac Disease. Gastroenterology 2009, 137, 834–840.e3. [Google Scholar] [CrossRef] [Green Version]
- Kårhus, L.L.; Thuesen, B.H.; Skaaby, T.; Rumessen, J.J.; Linneberg, A. The distribution of HLA DQ2 and DQ8 haplotypes and their association with health indicators in a general Danish population. United Eur. Gastroenterol. J. 2018, 6, 866–878. [Google Scholar] [CrossRef]
- Bertini, I.; Calabrò, A.; De Carli, V.; Luchinat, C.; Nepi, S.; Porfirio, B.; Renzi, D.; Saccenti, E.; Tenori, L. The Metabonomic Signature of Celiac Disease. J. Proteome Res. 2009, 8, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Bernini, P.; Bertini, I.; Calabrò, A.; La Marca, G.; Lami, G.; Luchinat, C.; Renzi, D.; Tenori, L. Are Patients with Potential Celiac Disease Really Potential? The Answer of Metabonomics. J. Proteome Res. 2011, 10, 714–721. [Google Scholar] [CrossRef] [Green Version]
- Di Cagno, R.; De Angelis, M.; De Pasquale, I.; Ndagijimana, M.; Vernocchi, P.; Ricciuti, P.; Gagliardi, F.; Laghi, L.; Crecchio, C.; Guerzoni, M.E.; et al. Duodenal and faecal microbiota of celiac children: Molecular, phenotype and metabolome characterization. BMC Microbiol. 2011, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, M.; Bai, G.; Serena, G.; Fricke, W.F.; Sturgeon, C.; Gajer, P.; White, J.R.; Koenig, S.S.K.; Sakamoto, J.; Boothe, D.; et al. Proof of Concept of Microbiome-Metabolome Analysis and Delayed Gluten Exposure on Celiac Disease Autoimmunity in Genetically At-Risk Infants. PLoS ONE 2012, 7, e33387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchberg, F.F.; Werkstetter, K.J.; Uhl, O.; Auricchio, R.; Castillejo, G.; Korponay-Szabo, I.R.; Polanco, I.; Ribes-Koninckx, C.; Vriezinga, S.L.; Koletzko, B.; et al. Investigating the early metabolic fingerprint of celiac disease—A prospective approach. J. Autoimmun. 2016, 72, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.; Carlsson, C.; Virtanen, S.M.; Simell, S.; Hyöty, H.; Ilonen, J.; Toppari, J.; Veijola, R.; Hyötyläinen, T.; Knip, M.; et al. Persistent Alterations in Plasma Lipid Profiles Before Introduction of Gluten in the Diet Associated With Progression to Celiac Disease. Clin. Transl. Gastroenterol. 2019, 10, e00044-10. [Google Scholar] [CrossRef]
- Bekdash, R.A. Neuroprotective Effects of Choline and Other Methyl Donors. Nutrients 2019, 11, 2995. [Google Scholar] [CrossRef] [Green Version]
- Parkhitko, A.; Jouandin, P.; Mohr, S.E.; Perrimon, N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 2019, 18, e13034. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, S.M.; Gao, X.; Dai, Z.; Locasale, J.W. Methionine metabolism in health and cancer: A nexus of diet and precision medicine. Nat. Rev. Cancer 2019, 19, 625–637. [Google Scholar] [CrossRef]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The Human Serum Metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef] [Green Version]
- Jové, M.; Maté, I.; Naudí, A.; Mota-Martorell, N.; Portero-Otin, M.; De La Fuente, M.; Pamplona, R. Human Aging Is a Metabolome-related Matter of Gender. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2016, 71, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Burla, B.; Arita, M.; Arita, M.; Bendt, A.K.; Cazenave-Gassiot, A.; Dennis, E.A.; Ekroos, K.; Han, X.; Ikeda, K.; Liebisch, G.; et al. MS-based lipidomics of human blood plasma: A community-initiated position paper to develop accepted guidelines. J. Lipid Res. 2018, 59, 2001–2017. [Google Scholar] [CrossRef] [Green Version]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Mearin, M.L.; Phillips, A.; Shamir, R.; Troncone, R.; Giersiepen, K.; Branski, D.; Catassi, C.; et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Guidelines for the Diagnosis of Coeliac Disease. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 136–160. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240. [Google Scholar] [CrossRef] [Green Version]
- Cabré, R.; Jove, M.; Naudi, A.; Ayala, V.; Piñol-Ripoll, G.; Gil-Villar, M.P.; Dominguez-Gonzalez, M.; Obis, È; Berdun, R.; Mota-Martorell, N.; et al. Specific Metabolomics Adaptations Define a Differential Regional Vulnerability in the Adult Human Cerebral Cortex. Front. Mol. Neurosci. 2016, 9, 138. [Google Scholar] [CrossRef]
- Liu, Y.; Song, D.; Xu, B.; Li, H.; Dai, X.; Chen, B. Development of a matrix-based candidate reference material of total homocysteine in human serum. Anal. Bioanal. Chem. 2017, 409, 3329–3335. [Google Scholar] [CrossRef]
- Sbodio, J.I.; Snyder, S.H.; Paul, B.D. Regulators of the transsulfuration pathway. Br. J. Pharmacol. 2018, 176, 583–593. [Google Scholar] [CrossRef]
- Jonsson, W.; Margolies, N.S.; Anthony, T.G. Dietary Sulfur Amino Acid Restriction and the Integrated Stress Response: Mechanistic Insights. Nutrients 2019, 11, 1349. [Google Scholar] [CrossRef] [Green Version]
- Zuhra, K.; Augsburger, F.; Majtan, T.; Szabó, C. Cystathionine-β-synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020, 10, 697. [Google Scholar] [CrossRef]
- Ueland, P.M.; Ulvik, A.; Rios-Avila, L.; Midttun, Ø; Gregory, J.F. Direct and Functional Biomarkers of Vitamin B6 Status. Annu. Rev. Nutr. 2015, 35, 33–70. [Google Scholar] [CrossRef]
- Gregory, J.F.; Deratt, B.N.; Rios-Avila, L.; Ralat, M.A.; Stacpoole, P.W. Vitamin B6 nutritional status and cellular availability of pyridoxal 5′-phosphate govern the function of the transsulfuration pathway’s canonical reactions and hydrogen sulfide production via side reactions. Biochimie 2016, 126, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Paul, B.D.; Snyder, S.H. Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol. 2018, 149, 101–109. [Google Scholar] [CrossRef]
- Kumar, M. Hydrogen Sulfide in Physiological and Pathological Mechanisms in Brain. CNS Neurol. Disord. Drug Targets 2018, 17, 654–670. [Google Scholar] [CrossRef]
- Kolluru, G.K.; Shen, X.; Kevil, C.G. Reactive Sulfur Species: A New Redox Player in Cardiovascular Pathophysiology. Arter. Thromb. Vasc. Biol. 2020, 40, 874–884. [Google Scholar] [CrossRef]
- Fu, M.; Zhang, W.; Wu, L.; Yang, G.; Li, H.; Wang, R. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc. Natl. Acad. Sci. USA 2012, 109, 2943–2948. [Google Scholar] [CrossRef] [Green Version]
- Espe, S. Malacards: The Human Disease Database. J. Med. Libr. Assoc. 2018, 106, 140–141. [Google Scholar] [CrossRef] [Green Version]
- Selimoğlu, M.A.; Ertekin, V.; Altinkaynak, S.; Altınkaynak, S. Hyper-CK-emia in Pediatric Celiac Disease. J. Clin. Gastroenterol. 2007, 41, 667–670. [Google Scholar] [CrossRef]
- Johnson, C.H.; Gonzalez, F.J. Challenges and opportunities of metabolomics. J. Cell. Physiol. 2012, 227, 2975–2981. [Google Scholar] [CrossRef]
- Russo, C.; Wolf, R.L.; Leichter, H.J.; Lee, A.R.; Reilly, N.R.; Zybert, P.; Green, P.H.R.; Lebwohl, B. Impact of a Child’s Celiac Disease Diagnosis and Management on the Family. Dig. Dis. Sci. 2020, 65, 2959–2969. [Google Scholar] [CrossRef]
Compound | Precursor Ion | Product Ion | Fragmentor | CE | CAV | RT | RT Window | Polarity | Extraction | Acquisition Method |
---|---|---|---|---|---|---|---|---|---|---|
Amino acids | ||||||||||
Alanine | 90.06 | 44.2 | 40 | 8 | 7 | 0.376 | 2 | Positive | Methanol | 1 |
Arginine | 175.1 | 70.2 | 60 | 20 | 7 | 0.320 | 2 | Positive | Methanol | 1 |
Arginine | 175.1 | 60.2 | 60 | 15 | 7 | 0.320 | 2 | Positive | Methanol | 1 |
Asparagine | 133 | 74.1 | 60 | 15 | 7 | 0.376 | 2 | Positive | Methanol | 1 |
Aspartate | 134 | 43.2 | 60 | 15 | 7 | 0.362 | 2 | Positive | Methanol | 1 |
Aspartate | 132 | 88.1 | 60 | 15 | 7 | 0.362 | 2 | Negative | Methanol | 1 |
Glutamate | 146 | 102.1 | 60 | 15 | 7 | 0.363 | 2 | Negative | Methanol | 1 |
Glutamate | 146 | 41 | 60 | 15 | 7 | 0.363 | 2 | Negative | Methanol | 1 |
Glycine (ND) | 76.04 | 48 | 40 | 0 | 7 | 0.340 | 2 | Positive | Methanol | 1 |
Glycine (ND) | 76.04 | 30 | 40 | 4 | 7 | 0.340 | 2 | Positive | Methanol | 1 |
Histidine | 156 | 110.1 | 60 | 15 | 7 | 0.320 | 2 | Positive | Methanol | 1 |
Histidine | 156 | 56.2 | 60 | 25 | 7 | 0.320 | 2 | Positive | Methanol | 1 |
Leucine/Isoleucine | 132.1 | 86 | 64 | 8 | 7 | 0.591 | 2 | Positive | Methanol | 1 |
Leucine/Isoleucine | 132.1 | 69 | 64 | 16 | 7 | 0.591 | 2 | Positive | Methanol | 1 |
Phenylalanine | 164 | 147 | 100 | 15 | 7 | 0.841 | 2 | Negative | Methanol | 1 |
Phenylalanine | 164 | 103.1 | 100 | 15 | 7 | 0.841 | 2 | Negative | Methanol | 1 |
Proline | 116 | 70.2 | 60 | 15 | 7 | 0.392 | 2 | Positive | Methanol | 1 |
Serine | 106.05 | 60 | 64 | 8 | 7 | 0.350 | 2 | Positive | Methanol | 1 |
Serine | 106.05 | 42 | 64 | 24 | 7 | 0.350 | 2 | Positive | Methanol | 1 |
Serine | 104.03 | 74 | 64 | 8 | 7 | 0.350 | 2 | Negative | Methanol | 1 |
Threonine | 120 | 74.2 | 60 | 15 | 7 | 0.358 | 2 | Positive | Methanol | 1 |
Threonine | 120 | 56.2 | 60 | 15 | 7 | 0.358 | 2 | Positive | Methanol | 1 |
Tryptophan | 205 | 188.1 | 60 | 15 | 7 | 1.230 | 2 | Positive | Methanol | 1 |
Tryptophan | 205 | 146.1 | 60 | 15 | 7 | 1.230 | 2 | Positive | Methanol | 1 |
Tyrosine | 180.1 | 163.1 | 100 | 15 | 7 | 0.548 | 2 | Negative | Methanol | 1 |
Tyrosine | 180.1 | 119.1 | 100 | 15 | 7 | 0.548 | 2 | Negative | Methanol | 1 |
Valine | 118.08 | 72 | 64 | 8 | 7 | 0.430 | 2 | Positive | Methanol | 1 |
Valine | 118.08 | 55 | 64 | 20 | 7 | 0.430 | 2 | Positive | Methanol | 1 |
Methionine metabolism | ||||||||||
Betaine | 118.09 | 59.2 | 136 | 16 | 7 | 0.425 | 2 | Positive | Methanol | 1 |
Betaine | 118.09 | 58.2 | 136 | 32 | 7 | 0.425 | 2 | Positive | Methanol | 1 |
Cysteine | 122.02 | 76 | 64 | 12 | 7 | 6.312 | 2 | Positive | ACN-DTT | 2 |
Cysteine | 122.02 | 59 | 64 | 24 | 7 | 6.312 | 2 | Positive | ACN-DTT | 2 |
Cystathionine | 223.07 | 134 | 88 | 8 | 7 | 6.818 | 2 | Positive | ACN-DTT | 2 |
Cystathionine | 223.07 | 88 | 88 | 28 | 7 | 6.818 | 2 | Positive | ACN-DTT | 2 |
Glutathione | 308.09 | 179 | 88 | 8 | 7 | 0.500 | 2 | Positive | ACN-DTT | 1 |
Glutathione | 308.09 | 76 | 88 | 24 | 7 | 0.500 | 2 | Positive | ACN-DTT | 1 |
Homocysteine | 136.18 | 90.1 | 135 | 15 | 7 | 7.225 | 2 | Positive | ACN-DTT | 2 |
Homocysteine | 136.18 | 56.2 | 135 | 15 | 7 | 7.225 | 2 | Positive | ACN-DTT | 2 |
Methionine | 150.05 | 104 | 64 | 4 | 7 | 0.480 | 2 | Positive | ACN-DTT | 1 |
Pyridoxal | 168.05 | 150 | 64 | 8 | 7 | 0.522 | 2 | Positive | Methanol | 1 |
Pyridoxal | 168.05 | 94 | 64 | 24 | 7 | 0.522 | 2 | Positive | Methanol | 1 |
PLP (Pyridoxal-5′-P) | 248.03 | 150 | 112 | 12 | 7 | 0.700 | 2 | Positive | Methanol | 1 |
PLP (Pyridoxal-5′-P) | 248.03 | 67 | 112 | 32 | 7 | 0.700 | 2 | Positive | Methanol | 1 |
Pyridoxamine | 169.09 | 152 | 64 | 8 | 7 | 0.366 | 2 | Positive | Methanol | 1 |
Pyridoxamine | 169.09 | 134 | 64 | 20 | 7 | 0.366 | 2 | Positive | Methanol | 1 |
SAH | 385.1 | 136 | 112 | 20 | 7 | 1.130 | 2 | Positive | Methanol | 1 |
SAH | 385.1 | 88 | 112 | 48 | 7 | 1.130 | 2 | Positive | Methanol | 1 |
SAM | 399.1 | 250 | 112 | 12 | 7 | 0.396 | 2 | Positive | Methanol | 1 |
SAM | 399.1 | 136 | 112 | 28 | 7 | 0.396 | 2 | Positive | Methanol | 1 |
Spermidine | 146.1 | 84 | 88 | 24 | 7 | 0.300 | 2 | Positive | Methanol | 1 |
Spermidine | 146.1 | 72 | 88 | 12 | 7 | 0.300 | 2 | Positive | Methanol | 1 |
Taurine | 126.02 | 108 | 88 | 8 | 7 | 0.380 | 2 | Positive | Methanol | 1 |
Taurine | 124 | 80 | 112 | 20 | 7 | 0.380 | 2 | Negative | Methanol | 1 |
TCA cycle intermediates | ||||||||||
α-Ketoglutarate | 145.01 | 101 | 64 | 4 | 7 | 0.435 | 2 | Negative | Methanol | 1 |
α-Ketoglutarate | 145.01 | 57 | 64 | 20 | 7 | 0.435 | 2 | Negative | Methanol | 1 |
Citrate | 191.01 | 111 | 88 | 8 | 7 | 0.637 | 2 | Negative | Methanol | 1 |
Citrate | 191.01 | 87 | 88 | 16 | 7 | 0.637 | 2 | Negative | Methanol | 1 |
Fumarate | 115.01 | 71 | 64 | 4 | 7 | 0.550 | 2 | Negative | Methanol | 1 |
Fumarate | 115.01 | 27 | 64 | 4 | 7 | 0.550 | 2 | Negative | Methanol | 1 |
Isocitrate | 191.01 | 111 | 88 | 8 | 7 | 0.393 | 2 | Negative | Methanol | 1 |
Isocitrate | 191.01 | 87 | 88 | 16 | 7 | 0.393 | 2 | Negative | Methanol | 1 |
Malate | 133.02 | 115 | 64 | 8 | 7 | 0.400 | 2 | Negative | Methanol | 1 |
Malate | 133.02 | 71 | 64 | 12 | 7 | 0.400 | 2 | Negative | Methanol | 1 |
Pyruvate | 87.01 | 43 | 64 | 4 | 7 | 0.413 | 2 | Negative | Methanol | 1 |
Succinate | 117.02 | 73 | 64 | 8 | 7 | 0.570 | 2 | Negative | Methanol | 1 |
Succinate | 117.02 | 55 | 64 | 20 | 7 | 0.570 | 2 | Negative | Methanol | 1 |
Lipid intermediates | ||||||||||
Choline | 104.11 | 60.2 | 112 | 16 | 7 | 0.390 | 2 | Positive | Methanol | 1 |
TMAO | 76.08 | 59.2 | 64 | 8 | 7 | 0.400 | 2 | Positive | Methanol | 1 |
TMAO | 76.08 | 58.2 | 64 | 20 | 7 | 0.400 | 2 | Positive | Methanol | 1 |
ISTD | ||||||||||
PheC13 | 167.09 | 120.1 | 70 | 8 | 7 | 0.870 | 2 | Positive | Methanol/ACN-DTT | 1/2 |
PheC13 | 167.09 | 77 | 70 | 44 | 7 | 0.870 | 2 | Positive | Methanol/ACN-DTT | 1/2 |
PheC13 | 167.09 | 103 | 70 | 28 | 7 | 0.870 | 2 | Positive | Methanol/ACN-DTT | 1/2 |
PheC13 | 167.09 | 51.1 | 70 | 60 | 7 | 0.870 | 2 | Positive | Methanol/ACN-DTT | 1/2 |
Variable | Healthy Siblings (n = 17) | Celiac Children (n = 17) | p-Value |
---|---|---|---|
Age (years) | 11.25 (4.23) | 9.39 (2.77) | 0.145 |
Sex (female, n [%]) | 10 (58.8) | 13 (76.4) | 0.271 |
Weight (kg) | 38.54 (16.9) | 30 (9.63) | 0.082 |
Height (cm) | 140.66 (20.32) | 131.2 (19.56) | 0.178 |
BMI (kg/m2) | 18.5 (3.98) | 17 (1.58) | 0.166 |
Moderate physical activity (min/week) | 69.64 (37) | 81.4 (56.9) | 0.52 |
Mediterranean Diet adherence n (%) | |||
Low | 1 (5.9) | 1 (5.9) | |
Medium | 8 (47.1) | 7 (41.2) | 0.936 |
High | 7 (41.2) | 8 (47.1) | |
Diet | |||
Less than 12 months on a GFD | 5 | ||
More than 12 months on a GFD | 12 | ||
HLA DR-DQ genotype | |||
Negative | 5 | 0 | |
HLA-DQ2+ | 11 | 14 | |
HLA DQ8+ | 0 | 0 | |
HLA-DQ2+DQ8+ | 1 | 3 |
Metabolite | Healthy Siblings | Celiac Children | Paired T-Test |
---|---|---|---|
α-Ketoglutarate | 100 ± 4.2 | 95.7 ± 3.8 | 0.282 |
Citrate | 100 ± 6.7 | 101.4 ± 6.3 | 0.713 |
Fumarate | 100 ± 4.6 | 101.5 ± 3.7 | 0.684 |
Isocitrate | 100 ± 7.5 | 104.4 ± 7.1 | 0.471 |
Malate | 100 ± 6.4 | 101.7 ± 5.7 | 0.776 |
Pyruvate | 100 ± 6.9 | 97.2 ± 10 | 0.720 |
Succinate | 100 ± 5.4 | 99.4 ± 4.3 | 0.909 |
Amino Acid | Healthy Siblings | Celiac Children | Paired T-Test |
---|---|---|---|
Ala | 100 ± 4.2 | 96.6 ± 7.4 | 0.621 |
Arg | 100 ± 6.1 | 92.9 ± 5.5 | 0.385 |
Asn | 100 ± 3.3 | 103.6 ± 3.9 | 0.376 |
Asp | 100 ± 4.8 | 109.9 ± 5.8 | 0.085 |
His | 100 ± 3 | 100.2 ± 2 | 0.938 |
Leu/Ile | 100 ± 5 | 96.1 ± 4.5 | 0.515 |
Phe | 100 ± 3.9 | 96.6 ± 4.1 | 0.334 |
Pro | 100 ± 8.5 | 90.2 ± 6.4 | 0.283 |
Thr | 100 ± 6.5 | 100.1 ± 6 | 0.995 |
Try | 100 ± 4 | 93.4 ± 3.5 | 0.231 |
Tyr | 100 ± 8.8 | 100.3 ± 7.1 | 0.967 |
Val | 100 ± 5.2 | 99.7 ± 3.9 | 0.965 |
Metabolite | Healthy Siblings | Celiac Children | Paired T-Test |
---|---|---|---|
Betaine | 100 ± 6.4 | 93.7 ± 3.8 | 0.249 |
Choline | 100 ± 5.2 | 95.1 ± 6.4 | 0.468 |
Cys | 100 ± 3.5 | 90.3 ± 3.4 | 0.008 |
Cystathionine | 100 ± 10.4 | 67.4 ± 6.2 | 0.024 |
GSH | 100 ± 7.2 | 110.9 ± 10.1 | 0.368 |
Glu | 100 ± 14.3 | 109.7 ± 13.3 | 0.611 |
Gly | 100 ± 43.3 | 101.3 ± 27.8 | 0.982 |
Homocysteine | 100 ± 12.7 | 86.4 ± 9.1 | 0.266 |
Met | 100 ± 4.6 | 94.9 ± 5.6 | 0.360 |
PLP | 100 ± 18.4 | 105.7 ± 18.1 | 0.485 |
Pyridoxal | 100 ± 10.8 | 108.2 ± 11.8 | 0.123 |
Pyridoxamine | 100 ± 5.6 | 94.4 ± 6.3 | 0.244 |
SAH | 100 ± 6.5 | 134.5 ± 22.2 | 0.158 |
SAM | 100 ± 20.1 | 89.1 ± 19.9 | 0.282 |
Ser | 100 ± 4.4 | 103 ± 3.5 | 0.519 |
Spermidine | 100 ± 28.6 | 105.3 ± 28.4 | 0.186 |
Taurine | 100 ± 16.2 | 105.9 ± 17 | 0.576 |
TMAO | 100 ± 30.6 | 66.1 ± 21.7 | 0.329 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Masot, R.; Mota-Martorell, N.; Jové, M.; Maldonado, J.; Pamplona, R.; Nestares, T. Alterations in One-Carbon Metabolism in Celiac Disease. Nutrients 2020, 12, 3723. https://doi.org/10.3390/nu12123723
Martín-Masot R, Mota-Martorell N, Jové M, Maldonado J, Pamplona R, Nestares T. Alterations in One-Carbon Metabolism in Celiac Disease. Nutrients. 2020; 12(12):3723. https://doi.org/10.3390/nu12123723
Chicago/Turabian StyleMartín-Masot, Rafael, Natàlia Mota-Martorell, Mariona Jové, José Maldonado, Reinald Pamplona, and Teresa Nestares. 2020. "Alterations in One-Carbon Metabolism in Celiac Disease" Nutrients 12, no. 12: 3723. https://doi.org/10.3390/nu12123723
APA StyleMartín-Masot, R., Mota-Martorell, N., Jové, M., Maldonado, J., Pamplona, R., & Nestares, T. (2020). Alterations in One-Carbon Metabolism in Celiac Disease. Nutrients, 12(12), 3723. https://doi.org/10.3390/nu12123723