Ten SNPs May Affect Type 2 Diabetes Risk in Interaction with Prenatal Exposure to Chinese Famine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Resources
2.2. Assessments of Variables
2.3. Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grotz, A.K.; Gloyn, A.L.; Thomsen, S.K. Prioritising causal genes at type 2 diabetes risk loci. Curr. Diabetes Rep. 2017, 17, 76. [Google Scholar] [CrossRef] [Green Version]
- Ndiaye, F.K.; Ortalli, A.; Canouil, M.; Huyvaert, M.; Salazar-Cardozo, C.; Lecoeur, C.; Verbanck, M.; Pawlowski, V.; Boutry, R.; Durand, E.; et al. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion. Mol. Metab. 2017, 6, 459–470. [Google Scholar] [CrossRef]
- Yang, D.T. China’s agricultural crisis and famine of 1959–1961: A survey and comparison to soviet famines. Comp. Econ. Stud. 2008, 50, 1–29. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, J.; Han, B.; Li, Q.; Chen, Y.; Xia, F.; Jiang, B.; Jensen, M.D.; Lu, Y. Exposure to severe famine in the prenatal or postnatal period and the development of diabetes in adulthood: An observational study. Diabetologia 2017, 60, 262–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, Y.; Han, X.; Liu, B.; Hu, H.; Wang, F.; Li, X.; Yang, K.; Yuan, J.; Yao, P.; et al. Exposure to the chinese famine in childhood increases type 2 diabetes risk in adults. J. Nutr. 2016, 146, 2289–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Lumey, L.H. Exposure to the chinese famine of 1959-61 in early life and long-term health conditions: A systematic review and meta-analysis. Int. J. Epidemiol. 2017, 46, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, L.; Zhang, Z.; Liu, J. Is natural experiment a cure? Re-examining the long-term health effects of china’s 1959–1961 famine. Soc. Sci. Med. 2016, 148, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, S.; Li, S.; Feng, R.; Na, L.; Chu, X.; Wu, X.; Niu, Y.; Sun, Z.; Han, T.; et al. Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: A population-based cohort study of families in suihua, china. Am. J. Clin. Nutr. 2017, 105, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wang, W.; Sun, J.; Pang, Z. Association of famine exposure during early life with the risk of type 2 diabetes in adulthood: A meta-analysis. Eur. J. Nutr. 2016, 57, 741–749. [Google Scholar] [CrossRef]
- Van Abeelen, A.F.; Elias, S.G.; Bossuyt, P.M.; Grobbee, D.E.; van der Schouw, Y.T.; Roseboom, T.J.; Uiterwaal, C.S. Famine exposure in the young and the risk of type 2 diabetes in adulthood. Diabetes 2012, 61, 2255–2260. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zou, Z.; Yang, Z.; Dong, Y.; Song, J.; Dong, B.; Ma, J.; Arnold, L. The association between fetal-stage exposure to the china famine and risk of diabetes mellitus in adulthood: Results from the china health and retirement longitudinal study. BMC Public Health 2018, 18, 1205. [Google Scholar] [CrossRef] [PubMed]
- Kubaszek, A.; Markkanen, A.; Eriksson, J.G.; Forsen, T.; Osmond, C.; Barker, D.J.; Laakso, M. The association of the k121q polymorphism of the plasma cell glycoprotein-1 gene with type 2 diabetes and hypertension depends on size at birth. J. Clin. Endocrinol. Metab. 2004, 89, 2044–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Qi, Q.; Workalemahu, T.; Hu, F.B.; Qi, L. Birth weight, genetic susceptibility, and adulthood risk of type 2 diabetes. Diabetes Care 2012, 35, 2479–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rooij, S.R.; Painter, R.C.; Phillips, D.I.W.; Osmond, C.; Tanck, M.W.T.; Defesche, J.C.; Bossuyt, P.M.M.; Michels, R.P.J.; Bleker, O.P.; Roseboom, T.J. The effects of the pro12ala polymorphism of the peroxisome proliferator-activated receptor-γ2 gene on glucose/insulin metabolism interact with prenatal exposure to famine. Diabetes Care 2006, 29, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Van Hoek, M.; Langendonk, J.G.; de Rooij, S.R.; Sijbrands, E.J.; Roseboom, T.J. Genetic variant in the igf2bp2 gene may interact with fetal malnutrition to affect glucose metabolism. Diabetes 2009, 58, 1440–1444. [Google Scholar] [CrossRef] [Green Version]
- Botden, I.P.; Zillikens, M.C.; de Rooij, S.R.; Langendonk, J.G.; Danser, A.H.; Sijbrands, E.J.; Roseboom, T.J. Variants in the sirt1 gene may affect diabetes risk in interaction with prenatal exposure to famine. Diabetes Care 2012, 35, 424–426. [Google Scholar] [CrossRef] [Green Version]
- Zimmet, P.; Shi, Z.; El-Osta, A.; Ji, L. Epidemic t2dm, early development and epigenetics: Implications of the chinese famine. Nat. Rev. Endocrinol. 2018, 14, 738–746. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, G.; Piao, J.; Zhang, J.; Yu, D.; He, Y.; Huo, J.; Hu, X.; Yang, Z.; Yang, X. Scheme of the 2010–2012 chinese nutrition and health surveillance. Zhonghua Yu Fang Yi Xue Za Zhi Chin. J. Prev. Med. 2016, 50, 204–207. [Google Scholar]
- Hu, Y.; Chen, J.; Wang, R.; Li, M.; Yun, C.; Li, W.; Yang, Y.; Piao, J.; Yang, X.; Yang, L. Vitamin d nutritional status and its related factors for chinese children and adolescents in 2010–2012. Nutrients 2017, 9, 1024. [Google Scholar] [CrossRef] [Green Version]
- Venn, B.J.; Mann, J.I. Cereal grains, legumes and diabetes. Eur. J. Clin. Nutr. 2004, 58, 1443–1461. [Google Scholar] [CrossRef] [Green Version]
- Shan, R.; Duan, W.; Liu, L.; Qi, J.; Gao, J.; Zhang, Y.; Du, S.; Han, T.; Pang, X.; Sun, C.; et al. Low-carbohydrate, high-protein, high-fat diets rich in livestock, poultry and their products predict impending risk of type 2 diabetes in chinese individuals that exceed their calculated caloric requirement. Nutrients 2018, 10, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Society, C.N. Chinese Dietary Guideline; People’s Medical Publishing House: Beijing, China, 2016. [Google Scholar]
- WHO/IDF. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia. Available online: https://www.who.int/publications/i?healthtopics=17f23e6d-2c9a-4f9e-9a08-0151693e0d0a&publishingoffices-hidden=true (accessed on 3 December 2020).
- WHO(1999). Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications: Report of a WHO Consultation. Part 1, Diagnosis and Classification of Diabetes Mellitus. World Health Organization. Available online: https://apps.who.int/iris/handle/10665/66040 (accessed on 17 December 2020).
- WHO. Diagnosis and Management of Type 2 Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 3 December 2020).
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.S.; Lee, J.Y.; Park, K.S.; Nho, C.W. Genetics of type 2 diabetes in east asian populations. Curr. Diabetes Rep. 2012, 12, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.; Saleheen, D.; Been, L.F.; Garavito, M.L.; Braun, T.; Bjonnes, A.; Young, R.; Ho, W.K.; Rasheed, A.; Frossard, P.; et al. Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in sikhs of punjabi origin from india. Diabetes 2013, 62, 1746–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Gan, W.; Lu, L.; Dong, X.; Han, X.; Hu, C.; Yang, Z.; Sun, L.; Bao, W.; Li, P.; et al. A genome-wide association study identifies grk5 and rasgrp1 as type 2 diabetes loci in chinese hans. Diabetes 2013, 62, 291–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, A.P.; Voight, B.F.; Teslovich, T.M.; Ferreira, T.; Segre, A.V.; Steinthorsdottir, V.; Strawbridge, R.J.; Khan, H.; Grallert, H.; Mahajan, A.; et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 2012, 44, 981–990. [Google Scholar]
- Saxena, R.; Elbers, C.C.; Guo, Y.; Peter, I.; Gaunt, T.R.; Mega, J.L.; Lanktree, M.B.; Tare, A.; Castillo, B.A.; Li, Y.R.; et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am. J. Hum. Genet. 2012, 90, 410–425. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.S.; Chen, C.H.; Hu, C.; Long, J.; Ong, R.T.; Sim, X.; Takeuchi, F.; Wu, Y.; Go, M.J.; Yamauchi, T.; et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east asians. Nat. Genet. 2011, 44, 67–72. [Google Scholar] [CrossRef]
- Matsuba, R.; Sakai, K.; Imamura, M.; Tanaka, Y.; Iwata, M.; Hirose, H.; Kaku, K.; Maegawa, H.; Watada, H.; Tobe, K.; et al. Replication study in a japanese population to evaluate the association between 10 snp loci, identified in european genome-wide association studies, and type 2 diabetes. PLoS ONE 2015, 10, e0126363. [Google Scholar] [CrossRef]
- Pulizzi, N.; Lyssenko, V.; Jonsson, A.; Osmond, C.; Laakso, M.; Kajantie, E.; Barker, D.J.; Groop, L.C.; Eriksson, J.G. Interaction between prenatal growth and high-risk genotypes in the development of type 2 diabetes. Diabetologia 2009, 52, 825–829. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, M.; Bradfield, J.P.; Wang, K.; Zhang, H.; Sleiman, P.; Kim, C.E.; Annaiah, K.; Glaberson, W.; Glessner, J.T.; et al. Examination of type 2 diabetes loci implicates cdkal1 as a birth weight gene. Diabetes 2009, 58, 2414–2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, S.H.; Park, K.S. Genetics of type 2 diabetes and potential clinical implications. Arch. Pharm. Res. 2013, 36, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P. In utero programming of chronic disease. Biochem. Soc. Med. Res. Soc. 1998, 95, 14. [Google Scholar]
- Ingelsson, E.; Langenberg, C.; Hivert, M.F.; Prokopenko, I.; Lyssenko, V.; Dupuis, J.; Magi, R.; Sharp, S.; Jackson, A.U.; Assimes, T.L.; et al. Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes 2010, 59, 1266–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Total | Unexposed | Exposed | p-Value |
---|---|---|---|---|
N | 2216 | 1108 | 1108 | |
Age (years) | 49.7 (48.7, 51.3) | 48.8 (48.3, 49.4) | 51.1 (50.3, 51.7) | <0.001 * |
Gender | 0.965 | |||
Male | 879 (39.7%) | 439 (39.6%) | 440 (39.7%) | |
Female | 1337 (60.3%) | 669 (60.4%) | 668 (60.3%) | |
Areas | 1.000 | |||
Medium and small cities | 720 (32.5%) | 360 (32.5%) | 360 (32.5%) | |
Ordinary rural areas | 1002 (45.2%) | 501 (45.2%) | 501 (45.2%) | |
Poor rural areas | 494 (22.3%) | 247 (22.3%) | 247 (22.3%) | |
Education level | 0.026 * | |||
Illiterate to primary school | 787 (35.5%) | 369 (33.3%) | 418 (37.7%) | |
Junior middle school | 951 (42.9%) | 506 (45.7%) | 445 (40.2%) | |
Senior high school or higher | 478 (21.6%) | 233 (21.0%) | 245 (22.1%) | |
Family’s economic level (RMB/Year/per capita) | 0.614 | |||
<20,000 | 1146 (51.7%) | 565 (51.0%) | 581 (52.4%) | |
20,000–40,000 | 834 (37.6%) | 420 (37.9%) | 414 (37.4%) | |
>40,000 | 157 (7.1%) | 78 (7.0%) | 79 (7.1%) | |
Unknown | 79 (3.6%) | 45 (4.1%) | 34 (3.1%) | |
Smoking | 0.493 | |||
No | 1555 (70.2%) | 789 (71.2%) | 766 (69.1%) | |
Yes | 658 (29.7%) | 318 (28.7%) | 340 (30.7%) | |
Unknown | 3 (0.1%) | 1 (0.1%) | 2 (0.2%) | |
Drinking | 0.004 * | |||
No | 1472 (66.4%) | 722 (65.2%) | 750 (67.7%) | |
Yes | 742 (33.5%) | 386 (34.8%) | 356 (32.1%) | |
Unknown | 2 (0.1%) | 0 | 2 (0.2%) | |
Intake of cereals and beans | 0.908 | |||
Insufficient | 1452 (65.5%) | 733 (66.2%) | 719 (64.9%) | |
Sufficient | 185 (8.3%) | 93 (8.4%) | 92 (8.3%) | |
Excessive | 42 (1.9%) | 20 (1.8%) | 22 (2.0%) | |
Unknown | 537 (24.2%) | 262 (23.7%) | 275 (24.8%) | |
Intake of meat and poultry | 0.163 | |||
Low | 692 (31.2%) | 361 (32.6%) | 331 (29.9%) | |
Medium | 382 (17.2%) | 174 (15.7%) | 208 (18.8%) | |
High | 605 (27.3%) | 311 (28.1%) | 294 (26.5%) | |
Unknown | 537 (24.2%) | 262 (23.7%) | 275 (24.8%) | |
Physical exercise | 0.192 | |||
No | 2009 (90.7%) | 995 (89.8%) | 1014 (91.5%) | |
Yes | 192 (8.7%) | 107 (9.7%) | 85 (7.7%) | |
Unknown | 15 (0.7%) | 6 (0.5%) | 9 (0.8%) | |
Sedentary time(h/d) | 2.0 (2.0, 3.0) | 2.0 (2.0, 3.0) | 2.0 (2.0, 3.0) | 0.196 |
Family history of diabetes | ||||
No | 2173 (98.1%) | 1084 (97.8%) | 1089 (98.3%) | 0.441 |
Yes | 43 (1.9%) | 24 (2.2%) | 19 (1.7%) | |
BMI (kg/m2) | 24.0 (21.9, 26.4) | 24.1 (22.0, 26.4) | 23.9 (21.8, 26.5) | 0.708 |
FPG (mmol/L) | 5.2 (4.7, 5.7) | 5.1 (4.7, 5.6) | 5.2 (4.7, 5.7) | 0.425 |
Diabetes | 0.427 | |||
No | 2079 (93.8%) | 1035 (93.4%) | 1044 (94.2%) | |
Yes | 137 (6.2%) | 73 (6.6%) | 64 (5.8%) | |
IGT | 0.886 | |||
No | 1960 (94.3%) | 975 (94.2%) | 985 (94.3%) | |
Yes | 119 (5.7%) | 60 (5.8%) | 59 (5.7%) | |
IFG | 0.824 | |||
No | 1950 (93.8%) | 972 (93.9%) | 978 (93.7%) | |
Yes | 129 (6.2%) | 63 (6.1%) | 66 (6.3%) | |
FINS (mU/L) | 12.6 (9.3, 15.7) | 12.7 (9.4, 15.6) | 12.6 (9.2, 15.8) | 0.870 |
SNP | Loci | Diabetes | IGT | IFG | FPG | FINS |
---|---|---|---|---|---|---|
rs10401969 | CILP2 | 0.145 | 0.763 | 0.545 | 0.094 | 0.046 * |
rs10830963 | MTNR1B | 0.314 | 0.565 | 0.347 | 0.393 | 0.906 |
rs10842994 | KLHDC5 | 0.903 | 0.701 | 0.888 | 0.736 | 0.916 |
rs10886471 | GRK5 | 0.900 | 0.872 | 0.659 | 0.258 | 0.005 * |
rs10906115 | CDC123, CAMK1D | 0.969 | 0.187 | 0.164 | 0.514 | 0.748 |
rs10946398 | CDKAL1 | 0.005 * | 0.442 | 0.935 | 0.238 | 0.400 |
rs11257655 | CDC123 | 0.657 | 0.398 | 0.243 | 0.705 | 0.766 |
rs11634397 | ZFAND6 | 0.337 | 0.987 | 0.936 | 0.399 | 0.513 |
rs12454712 | BCL2 | 0.365 | 0.152 | 0.136 | 0.540 | 0.614 |
rs12970134 | MC4R | 0.549 | 0.211 | 0.286 | 0.248 | 0.416 |
rs13266634 | SLC30A8 | 0.695 | 0.439 | 0.284 | 0.805 | 0.860 |
rs1470579 | IGF2BP2 | 0.612 | 0.829 | 0.142 | 0.635 | 0.022 * |
rs1535500 | KCNK16 | 0.482 | 0.347 | 0.491 | 0.553 | 0.795 |
rs1552224 | CENTD2 | 0.951 | 0.959 | 0.954 | 0.648 | 0.873 |
rs1558902 | FTO | 0.119 | 0.091 | 0.291 | 0.254 | 0.700 |
rs16861329 | ST6GAL1 | 0.643 | 0.064 | 0.112 | 0.382 | 0.553 |
rs17584499 | PTPRD | 0.432 | 0.508 | 0.453 | 0.351 | 0.775 |
rs2028299 | AP3S2 | 0.948 | 0.574 | 0.452 | 0.843 | 0.820 |
rs2191349 | DGKB, TMEM195 | 0.284 | 0.579 | 0.139 | 0.860 | 0.319 |
rs243021 | BCL11A | 0.611 | 0.403 | 0.090 | 0.296 | 0.342 |
rs2796441 | TLE1 | 0.412 | 0.172 | 0.039 * | 0.709 | 0.322 |
rs2943641 | IRS1 | 0.999 | 0.952 | 0.949 | 0.881 | 0.360 |
rs340874 | PROX1 | 0.830 | 0.024 * | 0.527 | 0.687 | 0.958 |
rs3794991 | GATAD2A | 0.720 | 0.353 | 0.456 | 0.966 | 0.018 * |
rs3923113 | GRB14 | 0.903 | 0.888 | 0.160 | 0.399 | 0.059 |
rs4430796 | HNF1B | 0.565 | 0.516 | 0.787 | 0.512 | 0.341 |
rs459193 | ANKRD55 | 0.627 | 0.867 | 0.925 | 0.976 | 0.099 |
rs4607103 | ADAMTS9 | 0.583 | 0.714 | 0.187 | 0.426 | 0.338 |
rs4607517 | GCK | 0.719 | 0.116 | 0.567 | 0.461 | 0.056 |
rs4858889 | SCAP | 0.383 | 0.980 | 0.824 | 0.765 | 0.845 |
rs5015480 | HHEX | 0.785 | 0.377 | 0.036 * | 0.428 | 0.346 |
rs516946 | ANK1 | 0.804 | 0.927 | 0.474 | 0.793 | 0.700 |
rs5215 | KCNJ11 | 0.943 | 0.477 | 0.192 | 0.564 | 0.567 |
rs6815464 | MAEA | 0.820 | 0.194 | 0.081 | 0.286 | 0.395 |
rs7041847 | GLIS3 | 0.265 | 0.193 | 0.088 | 0.053 | 0.299 |
rs7172432 | C2CD4A, C2CD4B | 0.133 | 0.344 | 0.381 | 0.522 | 0.588 |
rs7178572 | HMG20A | 0.108 | 0.946 | 0.998 | 0.711 | 0.274 |
rs7202877 | BCAR1 | 0.917 | 0.881 | 0.852 | 0.762 | 0.817 |
rs7403531 | RASGRP1 | 0.572 | 0.080 | 0.802 | 0.489 | 0.184 |
rs7593730 | RBMS1, ITGB6 | 0.884 | 0.261 | 0.315 | 0.528 | 0.958 |
rs7612463 | UBE2E2 | 0.967 | 0.882 | 0.146 | 0.176 | 0.291 |
rs780094 | GCKR | 0.566 | 0.869 | 0.277 | 0.589 | 0.178 |
rs7961581 | TSPAN8, LGR5 | 0.073 | 0.642 | 0.163 | 0.017 * | 0.944 |
rs8050136 | FTO | 0.102 | 0.458 | 0.360 | 0.282 | 0.867 |
rs8090011 | LAMA1 | 0.114 | 0.679 | 0.499 | 0.177 | 0.851 |
rs831571 | PSMD6 | 0.569 | 0.402 | 0.815 | 0.659 | 0.144 |
rs864745 | JAZF1 | 0.453 | 0.283 | 0.800 | 0.188 | 0.939 |
rs896854 | TP53INP1 | 0.184 | 0.747 | 0.452 | 0.280 | 0.191 |
rs9470794 | ZFAND3 | 0.946 | 0.146 | 0.053 | 0.356 | 0.007 * |
rs972283 | KLF14 | 0.704 | 0.616 | 0.162 | 0.837 | 0.155 |
SNP | Group | Risk Allele | Diabetes | p-Value | IGT | p-Value | IFG | p-Value | FPG | p Value | FINS | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95%CI) | OR (95%CI) | OR (95%CI) | β | β | ||||||||
rs10401969 | unexposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | |||||
unexposed | 1 | 1.007 (0.496, 2.045) | 0.985 | 1.070 (0.522, 2.196) | 0.853 | 1.592 (0.807, 3.140) | 0.180 | 0.123 (−0.062, 0.309) | 0.193 | −0.959 (−2.459, 0.541) | 0.210 | |
exposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | ||||||
exposed | 1 | 0.502 (0.193, 1.306) | 0.158 | 0.978 (0.456, 2.099) | 0.955 | 1.048 (0.524, 2.095) | 0.895 | −0.106 (−0.325, 0.113) | 0.345 | 1.314 (−0.214, 2.842) | 0.092 | |
rs10886471 | unexposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | |||||
unexposed | 1 | 1.677 (0.373, 7.538) | 0.500 | † | 1.605 (0.370, 6.965) | 0.527 | 0.201 (−0.124, 0.526) | 0.225 | −2.996 (−5.568, −0.424) | 0.023 * | ||
exposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | ||||||
exposed | 1 | 1.361 (0.300, 6.178) | 0.689 | 1.623 (0.210, 12.547) | 0.643 | 2.754 (0.356, 21.301) | 0.332 | 0.474 (0.040, 0.907) | 0.032 * | 2.498 (−0.112, 5.109) | 0.061 | |
rs10946398 | unexposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | |||||
unexposed | 1 | 3.263 (1.584, 6.724) | 0.001 * | 1.163 (0.654, 2.067) | 0.608 | 1.157 (0.650, 2.058) | 0.621 | 0.085 (−0.059, 0.228) | 0.247 | 0.025 (−1.134, 1.184) | 0.966 | |
exposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | ||||||
exposed | 1 | 0.830 (0.466, 1.478) | 0.526 | 0.867 (0.481, 1.565) | 0.636 | 1.167 (0.642, 2.122) | 0.613 | −0.050 (−0.223, 0.124) | 0.574 | −0.663 (−1.841, 0.515) | 0.270 | |
rs1470579 | unexposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | |||||
unexposed | 1 | 1.373 (0.798, 2.363) | 0.253 | 1.062 (0.619, 1.821) | 0.827 | 1.236 (0.719, 2.127) | 0.443 | 0.039 (−0.098, 0.175) | 0.578 | −0.400 (−1.519, 0.720) | 0.483 | |
exposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | ||||||
exposed | 1 | 0.990 (0.571, 1.715) | 0.970 | 1.157 (0.659, 2.030) | 0.611 | 0.703 (0.404, 1.225) | 0.214 | −0.024 (−0.186, 0.139) | 0.774 | 1.427 (0.335, 2.518) | 0.011 * | |
rs2796441 | unexposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | |||||
unexposed | 1 | 1.055 (0.599, 1.856) | 0.854 | 1.346 (0.733, 2.473) | 0.338 | 0.587 (0.336, 1.026) | 0.061 | −0.000 (−0.146, 0.145) | 0.997 | 0.058 (−1.118, 1.234) | 0.923 | |
exposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | ||||||
exposed | 1 | 0.740 (0.423, 1.295) | 0.292 | 0.790 (0.444, 1.404) | 0.421 | 1.376 (0.769, 2.460) | 0.282 | −0.025 (−0.195, 0.146) | 0.778 | −0.779 (−1.896, 0.339) | 0.172 | |
rs340874 | unexposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | |||||
unexposed | 1 | 0.989 (0.567, 1.726) | 0.969 | 0.616 (0.352, 1.077) | 0.089 | 0.900 (0.511, 1.586) | 0.716 | −0.036 (−0.182, 0.111) | 0.634 | −0.318 (−1.500, 0.863) | 0.597 | |
exposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | ||||||
exposed | 1 | 0.812 (0.459, 1.434) | 0.472 | 1.472 (0.799, 2.713) | 0.215 | 0.696 (0.407, 1.190) | 0.185 | 0.019 (−0.149, 0.188) | 0.822 | −0.269 (−1.284, 0.747) | 0.604 | |
rs3794991 | unexposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | |||||
unexposed | 1 | 0.606 (0.245, 1.499) | 0.278 | 0.532 (0.187, 1.516) | 0.237 | 0.909 (0.374, 2.208) | 0.833 | 0.002 (−0.215, 0.219) | 0.988 | −1.378 (−3.168, 0.412) | 0.131 | |
exposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | ||||||
exposed | 1 | 1.039 (0.424, 2.546) | 0.934 | 0.973 (0.395, 2.397) | 0.953 | 0.524 (0.184, 1.497) | 0.228 | 0.033 (−0.224, 0.290) | 0.803 | 1.725 (0.035, 3.416) | 0.046 * | |
rs5015480 | unexposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | |||||
unexposed | 1 | 0.995 (0.551, 1.798) | 0.988 | 1.030 (0.575, 1.844) | 0.921 | 1.941 (1.119, 3.366) | 0.018 * | 0.045 (−0.099, 0.189) | 0.540 | 0.369 (−0.803, 1.542) | 0.536 | |
exposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | ||||||
exposed | 1 | 1.236 (0.699, 2.183) | 0.466 | 0.665 (0.351, 1.262) | 0.212 | 0.839 (0.460, 1.529) | 0.566 | −0.029 (−0.203, 0.144) | 0.740 | 1.260 (0.108, 2.412) | 0.032 * | |
rs7961581 | unexposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | |||||
unexposed | 1 | 0.625 (0.349, 1.119) | 0.114 | 0.710 (0.405, 1.247) | 0.234 | 0.940 (0.539, 1.638) | 0.826 | −0.075 (−0.213, 0.062) | 0.282 | −0.525 (−1.607, 0.556) | 0.341 | |
exposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | ||||||
exposed | 1 | 1.219 (0.697, 2.132) | 0.487 | 0.583 (0.312, 1.089) | 0.090 | 1.629 (0.949, 2.797) | 0.077 | 0.171 (0.006, 0.335) | 0.042 * | −0.463 (−1.580, 0.654) | 0.416 | |
rs9470794 | unexposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | |||||
unexposed | 1 | 1.518 (0.545, 4.229) | 0.425 | 1.393 (0.488, 3.977) | 0.536 | 0.514 (0.239, 1.108) | 0.090 | 0.086 (−0.148, 0.319) | 0.472 | −1.468 (−3.287, 0.351) | 0.114 | |
exposed | 0 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | ||||||
exposed | 1 | 1.417 (0.540, 3.715) | 0.479 | 7.902 (1.063, 58.735) | 0.043 * | 1.709 (0.598, 4.883) | 0.317 | 0.235 (−0.020, 0.490) | 0.071 | 2.105 (0.363, 3.848) | 0.018 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Ding, C.; Yuan, F.; Feng, G.; Ma, Y.; Liu, A. Ten SNPs May Affect Type 2 Diabetes Risk in Interaction with Prenatal Exposure to Chinese Famine. Nutrients 2020, 12, 3880. https://doi.org/10.3390/nu12123880
Song C, Ding C, Yuan F, Feng G, Ma Y, Liu A. Ten SNPs May Affect Type 2 Diabetes Risk in Interaction with Prenatal Exposure to Chinese Famine. Nutrients. 2020; 12(12):3880. https://doi.org/10.3390/nu12123880
Chicago/Turabian StyleSong, Chao, Caicui Ding, Fan Yuan, Ganyu Feng, Yanning Ma, and Ailing Liu. 2020. "Ten SNPs May Affect Type 2 Diabetes Risk in Interaction with Prenatal Exposure to Chinese Famine" Nutrients 12, no. 12: 3880. https://doi.org/10.3390/nu12123880
APA StyleSong, C., Ding, C., Yuan, F., Feng, G., Ma, Y., & Liu, A. (2020). Ten SNPs May Affect Type 2 Diabetes Risk in Interaction with Prenatal Exposure to Chinese Famine. Nutrients, 12(12), 3880. https://doi.org/10.3390/nu12123880