Maternal Lutein and Zeaxanthin Concentrations in Relation to Offspring Visual Acuity at 3 Years of Age: The GUSTO Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Maternal Plasma Lutein and Zeaxanthin
2.3. Children’s Eye Measurements at Age 3 Years
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Characteristics of Mother–Offspring Pairs
3.2. Maternal Lutein and Zeaxanthin with Child Visual Acuity at Age 3 Years
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zeiss, C.J.; Tu, D.C.; Phan, I.; Wong, R.; Treuting, P.M. Chapter 21—Special Senses: Eye. In Comparative Anatomy and Histology, 3nd ed.; Treuting, P.M., Dintzis, S.M., Montine, K.S., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 445–470. [Google Scholar] [CrossRef]
- Zimmer, J.P.; Hammond, B.R., Jr. Possible influences of lutein and zeaxanthin on the developing retina. Clin. Ophthalmol. 2007, 1, 25–35. [Google Scholar]
- Liu, R.; Wang, T.; Zhang, B.; Qin, L.; Wu, C.; Li, Q.; Ma, L. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2015, 56, 252–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasano, H.; Obana, A.; Sharifzadeh, M.; Bernstein, P.S.; Okazaki, S.; Gohto, Y.; Seto, T.; Gellermann, W. Optical Detection of Macular Pigment Formation in Premature Infants. Transl. Vis. Sci. Technol. 2018, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, P.S.; Sharifzadeh, M.; Liu, A.; Ermakov, I.; Nelson, K.; Sheng, X.; Panish, C.; Carlstrom, B.; Hoffman, R.O.; Gellermann, W. Blue-Light Reflectance Imaging of Macular Pigment in Infants and Children. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4034–4040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bone, R.A.; Landrum, J.T.; Fernandez, L.; Tarsis, S.L. Analysis of the macular pigment by HPLC: Retinal distribution and age study. Investig. Ophthalmol. Vis. Sci. 1988, 29, 843–849. [Google Scholar]
- Hendrickson, A. Development of retinal layers in prenatal human retina. Am. J. Ophthalmol. 2016, 161, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Perrone, S.; Tei, M.; Longini, M.; Santacroce, A.; Turrisi, G.; Proietti, F.; Felici, C.; Picardi, A.; Bazzini, F.; Vasarri, P.; et al. Lipid and protein oxidation in newborn infants after lutein administration. Oxid. Med. Cell. Longev. 2014, 2014, 781454. [Google Scholar] [CrossRef] [Green Version]
- Hammond, B.R., Jr. Possible role for dietary lutein and zeaxanthin in visual development. Nutr. Rev. 2008, 66, 695–702. [Google Scholar] [CrossRef]
- Burton, G.J.; Jauniaux, E. Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Feeney-Burns, L.; Neuringer, M.; Gao, C.L. Macular pathology in monkeys fed semipurified diets. Prog. Clin. Biol. Res. 1989, 314, 601–622. [Google Scholar]
- Leung, I.Y.; Sandstrom, M.M.; Zucker, C.L.; Neuringer, M.; Snodderly, D.M. Nutritional manipulation of primate retinas, II: Effects of age, n-3 fatty acids, lutein, and zeaxanthin on retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3244–3256. [Google Scholar] [CrossRef]
- Rubin, L.P.; Chan, G.M.; Barrett-Reis, B.M.; Fulton, A.B.; Hansen, R.M.; Ashmeade, T.L.; Oliver, J.S.; Mackey, A.D.; Dimmit, R.A.; Hartmann, E.E.; et al. Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants. J. Perinatol. 2012, 32, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Meyers, K.J.; Johnson, E.J.; Snodderly, M.; Tinker, L.; Wallace, R.; Sarto, G.; Mares, J.A. Exposure to lutein in infancy via breast milk and later life macular pigment optical density. Investig. Ophthalmol. Vis. Sci. 2015, 56, 192. [Google Scholar]
- Neuringer, M.; Bone, R.A.; Jeffrey, B.; Bettler, J.; Zimmer, J.P.; Wallace, P.; DeRusso, P.A. Lutein in breastmilk and infant formula: Effects on serum lutein, macular pigment and visual function. Investig. Ophthalmol. Vis. Sci. 2009, 50, 1707. [Google Scholar]
- Sommerburg, O.; Meissner, K.; Nelle, M.; Lenhartz, H.; Leichsenring, M. Carotenoid supply in breast-fed and formula-fed neonates. Eur. J. Pediatr. 2000, 159, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, B.S.; Chan, G.; Hoffman, R.O.; Sharifzadeh, M.; Ermakov, I.V.; Gellermann, W.; Bernstein, P.S. Interrelationships between maternal carotenoid status and newborn infant macular pigment optical density and carotenoid status. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5568–5578. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, P.S.; Delori, F.C.; Richer, S.; van Kuijk, F.J.M.; Wenzel, A.J. The value of measurement of macular carotenoid pigment optical densities and distributions in age-related macular degeneration and other retinal disorders. Vis. Res. 2010, 50, 716–728. [Google Scholar] [CrossRef] [Green Version]
- Soh, S.-E.; Tint, M.T.; Gluckman, P.D.; Godfrey, K.M.; Rifkin-Graboi, A.; Chan, Y.H.; Stünkel, W.; Holbrook, J.D.; Kwek, K.; Chong, Y.-S.; et al. Cohort Profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int. J. Epidemiol. 2014, 43, 1401–1409. [Google Scholar] [CrossRef]
- Lee, B.L.; Ong, C.N. Comprehensive high-performance liquid chromatographic method for the measurements of lipophilic antioxidants in human plasma. J. Chromatogr. A 2009, 1216, 3131–3137. [Google Scholar] [CrossRef]
- Cotter, S.A.; Cyert, L.A.; Miller, J.M.; Quinn, G.E. Vision screening for children 36 to <72 months: Recommended practices. Optom. Vis. Sci. 2015, 92, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.D.; Gazzard, G.; Liang, Y.; Shankar, A.; Tan, D.T.; Saw, S.M. Defining myopia using refractive error and uncorrected logMAR visual acuity >0.3 from 1334 Singapore school children ages 7–9 years. Br. J. Ophthalmol. 2006, 90, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.Y.; Ikram, M.K.; Tan, C.S.; Lee, Y.S.; Ni, Y.; Shirong, C.; Gluckman, P.D.; Chong, Y.S.; Yap, F.; Wong, T.Y.; et al. Relative contribution of risk factors for early-onset myopia in young asian children. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8101–8107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, S.Y.; Sabanayagam, C.; Tan, C.S.; Lim, L.S.; Toh, J.Y.; Chong, Y.S.; Gluckman, P.D.; Yap, F.; Cheng, C.Y.; Ngo, C.S.; et al. Diet and risk of myopia in three-year-old Singapore children: The GUSTO cohort. Clin. Exp. Optom. 2018, 101, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Dirani, M.; Chan, Y.-H.; Gazzard, G.; Hornbeak, D.M.; Leo, S.-W.; Selvaraj, P.; Zhou, B.; Young, T.L.; Mitchell, P.; Varma, R.; et al. Prevalence of refractive error in Singaporean Chinese children: The strabismus, amblyopia, and refractive error in young Singaporean Children (STARS) study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1348–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baird, J.; Jacob, C.; Barker, M.; Fall, C.H.D.; Hanson, M.; Harvey, N.C.; Inskip, H.M.; Kumaran, K.; Cooper, C. Developmental Origins of Health and Disease: A lifecourse approach to the prevention of non-communicable diseases. Healthcare 2017, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rifas-Shiman, S.L.; Rich-Edwards, J.W.; Willett, W.C.; Kleinman, K.P.; Oken, E.; Gillman, M.W. Changes in dietary intake from the first to the second trimester of pregnancy. Paediatr. Perinat. Epidemiol. 2006, 20, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savard, C.; Lemieux, S.; Carbonneau, É.; Provencher, V.; Gagnon, C.; Robitaille, J.; Morisset, A.-S. Trimester-specific assessment of diet quality in a sample of Canadian pregnant women. Int. J. Environ. Res. Public Health 2019, 16, 311. [Google Scholar] [CrossRef] [Green Version]
- Horton, D.K.; Adetona, O.; Aguilar-Villalobos, M.; Cassidy, B.E.; Pfeiffer, C.M.; Schleicher, R.L.; Caldwell, K.L.; Needham, L.L.; Rathbun, S.L.; Vena, J.E.; et al. Changes in the concentrations of biochemical indicators of diet and nutritional status of pregnant women across pregnancy trimesters in Trujillo, Peru, 2004–2005. Nutr. J. 2013, 12, 80. [Google Scholar] [CrossRef] [Green Version]
- Oostenbrug, G.S.; Mensink, R.P.; Al, M.D.; van Houwelingen, A.C.; Hornstra, G. Maternal and neonatal plasma antioxidant levels in normal pregnancy, and the relationship with fatty acid unsaturation. Br. J. Nutr. 1998, 80, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Read, S.A.; Vincent, S.J.; Tan, C.-S.; Ngo, C.; Collins, M.J.; Saw, S.-M. Patterns of daily outdoor light exposure in Australian and Singaporean children. Transl. Vis. Sci. Technol. 2018, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Guggenheim, J.A.; Northstone, K.; McMahon, G.; Ness, A.R.; Deere, K.; Mattocks, C.; Pourcain, B.S.; Williams, C. Time outdoors and physical activity as predictors of incident myopia in childhood: A prospective cohort study. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2856–2865. [Google Scholar] [CrossRef] [PubMed]
Low Visual Acuity | Normal Visual Acuity | ||
---|---|---|---|
>0.3 logMAR (n = 126) | ≤0.3 logMAR (n = 345) | p2 | |
Maternal Characteristics | |||
Age (year), mean ± SD | 30.8 ± 5.0 | 30.9 ± 5.2 | 0.76 |
Ethnicity, n (%) | |||
Chinese | 71 (56) | 208 (60) | 0.30 |
Malay | 28 (22) | 84 (24) | |
Indian | 27 (22) | 53 (16) | |
Highest education, n (%) | |||
≤Secondary | 42 (33) | 95 (28) | 0.30 |
Post-secondary | 36 (29) | 122 (36) | |
University | 48 (38) | 126 (37) | |
Parental myopia, n (%) | |||
Yes | 98 (80) | 270 (83) | 0.58 |
No | 24 (20) | 57 (17) | |
Child Characteristics | |||
Age at eye examination (month), mean ± SD | 36.5 ± 1.1 | 36.4 ± 1.0 | 0.30 |
Sex, n (%) | |||
Male | 68 (54) | 174 (50) | 0.50 |
Female | 58 (46) | 171 (50) | |
Any breastfeeding duration, n (%) | |||
<1 month | 29 (24.0) | 74 (22.6) | 0.91 |
1 to <3 months | 21 (17.4) | 62 (18.9) | |
3 to <6 months | 20 (16.5) | 55 (16.8) | |
6 to <12 months | 25 (20.7) | 57 (17.4) | |
≥12 months | 26 (21.5) | 80 (24.4) | |
Fruit and vegetables intake age 3 years (g/day), median (IQR) | 69.8 (30.5, 143.3) | 72.6 (21.6, 138.9) | 0.76 |
A. Poor Visual Acuity (Defined as >0.3 logMAR) | |||
Model 1 1 | Model 2 2 | Model 3 3 | |
RR (95% CI) | RR (95% CI) | RR (95% CI) | |
Zeaxanthin Tertiles (Median; IQR µmol/L) | |||
Tertile 1 (0.06; 0.05, 0.07) | (reference) | (reference) | (reference) |
Tertile 2 (0.09; 0.08, 0.10) | 0.91 (0.65, 1.29) | 0.89 (0.63, 1.25) | 0.89 (0.63, 1.25) |
Tertile 3 (0.13; 0.12, 0.15) | 0.63 (0.43, 0.95) * | 0.62 (0.41, 0.92) * | 0.62 (0.42, 0.93) * |
p-Trends | 0.03 * | 0.02 * | 0.02 ** |
p-Quadratic | 0.52 | 0.41 | 0.43 |
Lutein Tertiles (Median; IQR µmol/L) | |||
Tertile 1 (0.08; 0.06, 0.09) | (reference) | (reference) | (reference) |
Tertile 2 (0.13; 0.12, 0.15) | 0.62 (0.42, 0.91) * | 0.60 (0.40, 0.88) * | 0.60 (0.40, 0.88) * |
Tertile 3 (0.22; 0.18, 0.28) | 0.73 (0.48, 1.11) | 0.78 (0.51, 1.19) | 0.78 (0.51, 1.19) |
p-Trends | 0.16 | 0.31 | 0.31 |
p-Quadratic | 0.02 * | 0.02 * | 0.02 * |
B. LogMAR Visual Acuity | |||
Model 1 1 | Model 2 2 | Model 3 3 | |
β (95% CI) | β (95% CI) | β (95% CI) | |
Zeaxanthin Tertiles (Median; IQR µmol/L) | |||
Tertile 1 (0.06; 0.05, 0.07) | (reference) | (reference) | (reference) |
Tertile 2 (0.09; 0.08, 0.10) | −0.02 (−0.05, 0.01) | −0.02 (−0.05, 0.01) | −0.02 (−0.05, 0.01) |
Tertile 3 (0.13; 0.12, 0.15) | −0.03 (−0.06, −0.003) * | −0.03 (−0.06, −0.001) * | −0.03 (−0.06, −0.001) * |
p-Trends | 0.03 * | 0.04 * | 0.04 * |
p-Quadratic | 0.97 | 0.92 | 0.91 |
Lutein Tertiles (Median; IQR µmol/L) | |||
Tertile 1 (0.08; 0.06, 0.09) | (reference) | (reference) | (reference) |
Tertile 2 (0.13; 0.12, 0.15) | −0.04 (−0.07, −0.003) * | −0.04 (−0.07, −0.01) * | −0.04 (−0.07, −0.01) * |
Tertile 3 (0.22; 0.18, 0.28) | −0.01 (−0.04, 0.03) | −0.01 (−0.04, 0.03) | −0.01 (−0.04, 0.03) |
p-Trends | 0.79 | 0.85 | 0.85 |
p-Quadratic | 0.03 * | 0.04 * | 0.04 * |
A. Poor Visual Acuity (Defined as >0.3 logMAR) | |||
Model 11 | Model 22 | Model 33 | |
RR (95% CI) | RR (95% CI) | RR (95% CI) | |
Zeaxanthin Tertiles (Median; IQR µmol/L) | |||
Tertile 1 (0.06; 0.05, 0.06) | (reference) | (reference) | (reference) |
Tertile 2 (0.09; 0.08, 0.10) | 0.97 (0.65, 1.46) | 0.98 (0.65, 1.47) | 0.98 (0.65, 1.46) |
Tertile 3 (0.13; 0.12, 0.16) | 0.73 (0.45, 1.17) | 0.72 (0.45, 1.16) | 0.73 (0.45, 1.18) |
p-Trends | 0.21 | 0.19 | 0.20 |
p-Quadratic | 0.77 | 0.67 | 0.62 |
Lutein Tertiles (Median; IQR µmol/L) | |||
Tertile 1 (0.08; 0.06, 0.09) | (reference) | (reference) | (reference) |
Tertile 2 (0.13; 0.12, 0.15) | 0.68 (0.44, 1.07) | 0.69 (0.44, 1.08) | 0.69 (0.44, 1.08) |
Tertile 3 (0.22; 0.18, 0.26) | 0.85 (0.52, 1.39) | 0.86 (0.53, 1.42) | 0.87 (0.53, 1.43) |
p-Trends | 0.29 | 0.67 | 0.69 |
p-Quadratic | 0.05 | 0.12 | 0.12 |
B. LogMAR Visual Acuity | |||
Model 11 | Model 22 | Model 33 | |
β (95% CI) | β (95% CI) | β (95% CI) | |
Zeaxanthin Tertiles (Median; IQR µmol/L) | |||
Tertile 1 (0.06; 0.05, 0.06) | (reference) | (reference) | (reference) |
Tertile 2 (0.09; 0.08, 0.10) | −0.01 (−0.04, 0.02) | −0.01 (−0.04, 0.02) | −0.01 (−0.04, 0.02) |
Tertile 3 (0.13; 0.12, 0.16) | −0.02 (−0.05, 0.02) | −0.02 (−0.05, 0.02) | −0.02 (−0.05, 0.02) |
p-Trends | 0.34 | 0.30 | 0.31 |
p-Quadratic | 0.95 | 0.99 | 0.92 |
Lutein Tertiles (Median; IQR µmol/L) | |||
Tertile 1 (0.08; 0.06, 0.09) | (reference) | (reference) | (reference) |
Tertile 2 (0.13; 0.12, 0.15) | −0.02 (−0.05, 0.02) | −0.02 (−0.05, 0.02) | −0.02 (−0.05, 0.02) |
Tertile 3 (0.22; 0.18, 0.26) | 0.01 (−0.03, 0.05) | 0.01 (−0.02, 0.05) | 0.02 (−0.02, 0.05) |
p-Trends | 0.56 | 0.36 | 0.32 |
p-Quadratic | 0.16 | 0.13 | 0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, J.S.; Veetil, V.O.; Lanca, C.; Lee, B.L.; Godfrey, K.M.; Gluckman, P.D.; Shek, L.P.; Yap, F.; Tan, K.H.; Chong, Y.S.; et al. Maternal Lutein and Zeaxanthin Concentrations in Relation to Offspring Visual Acuity at 3 Years of Age: The GUSTO Study. Nutrients 2020, 12, 274. https://doi.org/10.3390/nu12020274
Lai JS, Veetil VO, Lanca C, Lee BL, Godfrey KM, Gluckman PD, Shek LP, Yap F, Tan KH, Chong YS, et al. Maternal Lutein and Zeaxanthin Concentrations in Relation to Offspring Visual Acuity at 3 Years of Age: The GUSTO Study. Nutrients. 2020; 12(2):274. https://doi.org/10.3390/nu12020274
Chicago/Turabian StyleLai, Jun S., Vaishnavi O. Veetil, Carla Lanca, Bee Lan Lee, Keith M. Godfrey, Peter D. Gluckman, Lynette P. Shek, Fabian Yap, Kok Hian Tan, Yap Seng Chong, and et al. 2020. "Maternal Lutein and Zeaxanthin Concentrations in Relation to Offspring Visual Acuity at 3 Years of Age: The GUSTO Study" Nutrients 12, no. 2: 274. https://doi.org/10.3390/nu12020274
APA StyleLai, J. S., Veetil, V. O., Lanca, C., Lee, B. L., Godfrey, K. M., Gluckman, P. D., Shek, L. P., Yap, F., Tan, K. H., Chong, Y. S., Ong, C. N., Ngo, C. S., Saw, S. -M., & Chong, M. F. F. (2020). Maternal Lutein and Zeaxanthin Concentrations in Relation to Offspring Visual Acuity at 3 Years of Age: The GUSTO Study. Nutrients, 12(2), 274. https://doi.org/10.3390/nu12020274