Coenzyme A and Its Thioester Pools in Obese Zucker and Zucker Diabetic Fatty Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Extraction and Determination of the CoA Pool in Tissues
2.3. Analysis of Blood Serum
2.4. Statistical Analysis
3. Results
3.1. Analysis of Body Weight, Tissue Weight, and Blood Serum
3.2. Analysis of CoA Pools
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leonardi, R.; Zhang, Y.M.; Rock, C.O.; Jackowski, S. Coenzyme A: Back in action. Prog. Lipid Res. 2005, 44, 125–153. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, R.; Zhang, Y.M.; Lykidis, A.; Rock, C.O.; Jackowski, S. Localization and regulation of mouse pantothenate kinase 2. FEBS Lett. 2007, 581, 4639–4644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Subramanian, C.; Rock, C.O.; Jackowski, S. Human pantothenate kinase 4 is a pseudo-pantothenate kinase. Protein Sci. 2019, 28, 1031–1047. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Cha, S.H.; Chohnan, S.; Lane, M.D. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc. Natl. Acad. Sci. USA 2003, 100, 12624–12629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iio, W.; Tokutake, Y.; Matsukawa, N.; Tsukahara, T.; Chohnan, S.; Toyoda, A. Anorexic behavior and elevation of hypothalamic malonyl-CoA in socially defeated rats. Biochem. Biophys. Res. Commun. 2012, 421, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Tokutake, Y.; Onizawa, N.; Katoh, H.; Toyoda, A.; Chohnan, S. Coenzyme A and its thioester pools in fasted and fed rat tissues. Biochem. Biophys. Res. Commun. 2010, 402, 158–162. [Google Scholar] [CrossRef]
- Tokutake, Y.; Iio, W.; Onizawa, N.; Ogata, Y.; Kohari, D.; Toyoda, A.; Chohnan, S. Effect of diet composition on coenzyme A and its thioester pools in various rat tissues. Biochem. Biophys. Res. Commun. 2012, 423, 781–784. [Google Scholar] [CrossRef]
- Kava, R.; Greenwood, M.R.C.; Johnson, P.R. Zucker (fa/fa) rat. ILAR News 1990, 32, 4–8. [Google Scholar] [CrossRef]
- Zucker, L.M.; Zucker, T.F. Fatty, a new mutation in the rat. J. Hered. 1961, 52, 275–278. [Google Scholar] [CrossRef]
- Zucker, T.F.; Zucker, L.M. Fatty accretion and growth in the rat. J. Nutr. 1963, 80, 6–19. [Google Scholar]
- Peterson, R.G.; Shaw, W.N.; Neel, M.-A.; Little, L.A.; Eichberg, J. Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR J. 1990, 32, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Chua, S.C., Jr.; Chung, W.K.; Wu-Peng, X.S.; Zhang, Y.; Liu, S.M.; Tartaglia, L.; Leibel, R.L. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996, 271, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.C., Jr.; White, D.W.; Wu-Peng, X.S.; Liu, S.M.; Okada, N.; Kershaw, E.E.; Chung, W.K.; Power-Kehoe, L.; Chua, M.; Tartaglia, L.A.; et al. Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes 1996, 45, 1141–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.S.; Liu, Q.; Hammond, H.A.; Dugan, V.; Hey, P.J.; Caskey, C.J.; Hess, J.F. Leptin receptor missense mutation in the fatty Zucker rat. Nat. Genet. 1996, 13, 18–19. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre de Artiñano, A.; Miguel Castro, M. Experimental rat models to study the metabolic syndrome. Br. J. Nutr. 2009, 102, 1246–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, J.B.; Palmer, C.J.; Shaw, W.N. The diabetic Zucker fatty rat. Proc. Soc. Exp. Biol. Med. 1983, 173, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wu, H.; Cui, W.; Zhou, W.; Luo, P.; Sun, J.; Yuan, H.; Miao, L. Advances in murine models of diabetic nephropathy. J. Diabetes Res. 2013, 2013, 797548. [Google Scholar] [CrossRef] [Green Version]
- Chohnan, S.; Takamura, Y. A simple micromethod for measurement of CoASH and its use in measuring intracellular levels of CoASH and short chain acyl-CoAs in Escherichia coli K12 cells. Agric. Biol. Chem. 1991, 55, 87–94. [Google Scholar]
- Takamura, Y.; Kitayama, Y.; Arakawa, A.; Yamanaka, S.; Tosaki, M.; Ogawa, Y. Malonyl-CoA:acetyl-CoA cycling. A new micromethod for determination of acyl-CoAs with malonate decarboxylase. Biochim. Biophys. Acta 1985, 834, 1–7. [Google Scholar] [CrossRef]
- Chohnan, S.; Fujio, T.; Takaki, T.; Yonekura, M.; Nishihara, H.; Takamura, Y. Malonate decarboxylase of Pseudomonas putida is composed of five subunits. FEMS Microbiol. Lett. 1998, 169, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Takamura, Y.; Kitayama, Y. Purification and some properties of malonate decarboxylase from Pseudomonas ovalis: An oligomeric enzyme with bifunctional properties. Biochem. Int. 1981, 3, 483–491. [Google Scholar]
- Ogata, Y.; Chohnan, S. Prokaryotic type III pantothenate kinase enhances coenzyme A biosynthesis in Escherichia coli. J. Gen. Appl. Microbiol. 2015, 61, 266–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, M.; Edelman, E.R.; Groothuis, A.; Baker, A.B.; Seifert, P.; Rogers, C. Vascular neointimal formation and signaling pathway activation in response to stent injury in insulin-resistant and diabetic animals. Circ. Res. 2005, 97, 725–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Dai, Y.; Prentki, M.; Chohnan, S.; Lane, M.D. A role for hypothalamic malonyl-CoA in the control of food intake. J. Biol. Chem. 2005, 280, 39681–39683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Kinzig, K.P.; Aja, S.; Scott, K.A.; Keung, W.; Kelly, S.; Strynadka, K.; Chohnan, S.; Smith, W.W.; Tamashiro, K.L.; et al. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc. Natl. Acad. Sci. USA 2007, 104, 17358–17363. [Google Scholar] [CrossRef] [Green Version]
- Wolfgang, M.J.; Cha, S.H.; Sidhaye, A.; Chohnan, S.; Cline, G.; Shulman, G.I.; Lane, M.D. Regulation of hypothalamic malonyl-CoA by central glucose and leptin. Proc. Natl. Acad. Sci. USA 2007, 104, 19285–19290. [Google Scholar] [CrossRef] [Green Version]
- Gowans, G.J.; Hawley, S.A.; Ross, F.A.; Hardie, D.G. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 2013, 18, 556–566. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.M.; Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci. 2012, 13, 225–239. [Google Scholar] [CrossRef]
- Eny, K.M.; Wolever, T.M.S.; Fontaine-Bisson, B.; El-Sohemy, A. Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol. Genom. 2008, 33, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Leloup, C.; Arluison, M.; Lepetit, N.; Cartier, N.; Marfaing-Jallat, P.; Ferré, P.; Pénicaud, L. Glucose transporter 2 (GLUT 2): Expression in specific brain nuclei. Brain Res. 1994, 638, 221–226. [Google Scholar] [CrossRef]
- Beck, B. Neuropeptides and obesity. Nutrition 2000, 16, 916–923. [Google Scholar] [CrossRef]
- Beck, B.; Burlet, A.; Nicolas, J.P.; Burlet, C. Hypothalamic neuropeptide Y (NPY) in obese Zucker rats: Implications in feeding and sexual behaviors. Physiol. Behav. 1990, 47, 449–453. [Google Scholar] [CrossRef]
- Beck, B.; Burlet, A.; Nicolas, J.P.; Burlet, C. Hyperphagia in obesity is associated with a central peptidergic dysregulation in rats. J. Nutr. 1990, 120, 806–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, B.; Richy, S.; Stricker-Krongrad, A. Ghrelin and body weight regulation in the obese Zucker rat in relation to feeding state and dark/light cycle. Exp. Biol. Med. 2003, 228, 1124–1131. [Google Scholar] [CrossRef]
- Beck, B.; Richy, S.; Stricker-Krongrad, A. Feeding response to ghrelin agonist and antagonist in lean and obese Zucker rats. Life Sci. 2004, 76, 473–478. [Google Scholar] [CrossRef]
- Leonardi, R.; Rehg, J.E.; Rock, C.O.; Jackowski, S. Pntothenate kinase 1 is required to support the metabolic transition from the fed to the fasted state. PLoS ONE 2010, 5, e11107. [Google Scholar] [CrossRef] [Green Version]
- Rock, C.O.; Calder, R.B.; Karim, M.A.; Jackowski, S. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J. Biol. Chem. 2000, 275, 1377–1383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-M.; Rock, C.O.; Jackowski, S. Feedback regulation of murine pantothenate kinase 3 by coenzyme A and coenzyme A thioesters. J. Biol. Chem. 2005, 280, 32594–32601. [Google Scholar] [CrossRef] [Green Version]
- Gasmi, L.; Mclennan, A.G. The mouse Nudt7 gene encodes a peroxisomal nudix hydrolase specific for coenzyme A and its derivatives. Biochem. J. 2001, 357, 33–38. [Google Scholar] [CrossRef]
- Leonardi, R.; Rock, C.O.; Jackowski, S. Pank1 deletion in leptin-deficient mice reduces hyperglycaemia and hyperinsulinemia and modifies global metabolism without affecting insulin resistance. Diabetologia 2014, 57, 1466–1475. [Google Scholar] [CrossRef] [Green Version]
- Reilly, S.J.; Tillander, V.; Ofman, R.; Alexson, S.E.H.; Hunt, M.C. The nudix hydrolase 7 is an acyl-CoA diphosphatase involved in regulating peroxisomal coenzyme A homeostasis. J. Biochem. 2008, 144, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Makia, N.L.; Goldstein, J.A. CYP2C8 is a novel target of peroxisome proliferator-activated receptor in human liver. Mol. Pharmacol. 2016, 89, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaswamy, G.; Karim, M.A.; Murti, K.G.; Jackowski, S. PPARα controls the intracellular coenzyme A concentration via regulation of PANK1α gene expression. J. Lipid Res. 2004, 45, 17–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oana, F.; Takeda, H.; Hayakawa, K.; Matsuzawa, A.; Akahane, S.; Isaji, M.; Akahane, M. Physiological difference between obese (fa/fa) Zucker rats and lean Zucker rats concerning adiponectin. Metabolism 2005, 54, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Shimabukuro, M.; Koyama, K.; Chen, G.; Wang, M.-Y.; Trieu, F.; Lee, Y.; Newgard, C.B.; Unger, R.H. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc. Natl. Acad. Sci. USA 1997, 94, 4637–4641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foretz, M.; Guichard, C.; Ferré, P.; Foufelle, F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. USA 1999, 96, 12737–12742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimomura, I.; Bashmakov, Y.; Ikemoto, S.; Horton, J.D.; Brown, M.S.; Goldstein, J.L. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. USA 1999, 96, 13656–13661. [Google Scholar] [CrossRef] [Green Version]
- Himeno, K.; Seike, M.; Fukuchi, S.; Masaki, T.; Kakuma, T.; Sakata, T.; Yoshimatsu, H. Heterozygosity for leptin receptor (fa) accelerates hepatic triglyceride accumulation without hyperphagia in Zucker rats. Obes. Res. Clin. Pract. 2009, 3, 1–52. [Google Scholar] [CrossRef]
- Coimbra, T.M.; Janssen, U.; Gröne, H.J.; Ostendorf, T.; Kunter, U.; Schmidt, H.; Brabant, G.; Floege, J. Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int. 2000, 57, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Etgen, G.J.; Oldham, B.A. Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism 2000, 49, 684–688. [Google Scholar] [CrossRef]
- Mizuno, M.; Sada, T.; Kato, M.; Koike, H. Renoprotective effect of blockade of angiotensin II AT1 receptors in an animal model of type 2 diabetes. Hypertens. Res. 2002, 25, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vora, J.P.; Zimsen, S.M.; Houghton, D.C.; Anderson, S. Evolution of metabolic and renal changes in the ZDF/Drt-fa rat model of type II diabetes. J. Am. Soc. Nephrol. 1996, 7, 113–117. [Google Scholar] [PubMed]
- Sakamoto, K.; Goransson, O.; Hardie, D.G.; Alessi, D.R. Activity of LKB1 and AMPK-related kinases in skeletal muscle: Effects of contraction, phenformin, and AICAR. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E310–E317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, K.; McCarthy, A.; Smith, D.; Green, K.A.; Grahame Hardie, D.; Ashworth, A.; Alessi, D.R. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005, 24, 1810–1820. [Google Scholar] [CrossRef]
- Miura, S.; Kai, Y.; Tadaishi, M.; Tokutake, Y.; Sakamoto, K.; Bruce, C.R.; Febbraio, M.A.; Kita, K.; Chohnan, S.; Ezaki, O. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: Changes occurring in the diaphragm. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E213–E229. [Google Scholar] [CrossRef]
- Thomson, D.M.; Porter, B.B.; Tall, J.H.; Kim, H.J.; Barrow, J.R.; Winder, W.W. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E196–E202. [Google Scholar] [CrossRef]
- Marchington, D.; Rothwell, N.J.; Stock, M.J.; York, D.A. Energy balance, diet-induced thermogenesis and brown adipose tissue in lean and obese (fa/fa) Zucker rats after adrenalectomy. J. Nutr. 1983, 113, 1395–1402. [Google Scholar] [CrossRef]
- Mourelatos, Z.; Dostie, J.; Paushkin, S.; Sharma, A.; Charroux, B.; Abel, L.; Rappsilber, J.; Mann, M.; Dreyfuss, G. miRNPs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002, 16, 720–728. [Google Scholar] [CrossRef] [Green Version]
- Trajkovski, M.; Hausser, J.; Soutschek, J.; Bhat, B.; Akin, A.; Zavolan, M.; Heim, M.H.; Stoffel, M. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011, 474, 649–653. [Google Scholar] [CrossRef] [Green Version]
- Wilfred, B.R.; Wang, W.X.; Nelson, P.T. Energizing miRNA research: A review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab. 2007, 91, 209–217. [Google Scholar] [CrossRef] [Green Version]
Zucker | ZDF | Two-way ANOVA | |||||
---|---|---|---|---|---|---|---|
Lean | Fatty | Lean | Fatty | Str. | fa | Str. × fa | |
Body weight (g) | |||||||
11 weeks | 305.3 ± 5.3 | 429.0 ± 2.9 | 286.2 ± 2.2 | 344.7 ± 5.8 | *** | *** | *** |
12 weeks | 327.5 ± 6.8 | 459.6 ± 2.7 | 297.2 ± 2.1 | 338.0 ± 5.6 | *** | *** | *** |
Body weight gain (g/week) | 22.2 ± 2.0 | 30.5 ± 1.9 | 10.9 ± 0.8 | −6.72 ± 1.37 | *** | ** | *** |
Food intake (g/day) | 23.3 ± 1.0 | 39.1 ± 1.0 | 17.0 ± 0.2 | 41.5 ± 2.8 | ns | *** | * |
Drinking (mL/day) | 29.6 ± 1.7 | 52.0 ± 5.9 | 30.1 ± 0.7 | 151 ± 4 | *** | *** | *** |
Liver (g) | 9.53 ± 0.46 | 18.1 ± 1.0 | 8.50 ± 0.08 | 16.5 ± 0.5 | * | *** | ns |
Spleen (g) | 0.459 ± 0.020 | 0.490 ± 0.029 | 0.524 ± 0.012 | 0.504 ± 0.017 | ns | ns | ns |
Kidney (g) | 1.23 ± 0.03 | 1.41 ± 0.04 | 1.18 ± 0.05 | 1.65 ± 0.05 | * | *** | ** |
Heart (g) | 0.999 ± 0.056 | 1.06 ± 0.03 | 1.13 ± 0.04 | 1.11 ± 0.03 | * | ns | ns |
Skeletal muscle (g) | 0.171 ± 0.008 | 0.128 ± 0.007 | 0.144 ± 0.003 | 0.136 ± 0.004 | ns | *** | ** |
Perirenal adipose tissue (g) | 3.79 ± 0.23 | 18.4 ± 0.7 | 1.64 ± 0.09 | 9.35 ± 0.33 | *** | *** | *** |
Brown adipose tissue (g) | 0.533 ± 0.031 | 1.76 ± 0.09 | 0.344 ± 0.027 | 0.782 ± 0.048 | *** | *** | *** |
Epididymal adipose tissue (g) | 4.65 ± 0.31 | 14.2 ± 0.3 | 2.58 ± 0.08 | 6.33 ± 0.36 | *** | *** | *** |
Zucker | ZDF | Two-way ANOVA | |||||
---|---|---|---|---|---|---|---|
Lean | Fatty | Lean | Fatty | Str. | fa | Str. × fa | |
Glucose (mg/dL) | 140 ± 4 | 251 ± 9 | 114 ± 5 | 295 ± 20 | ns | *** | ** |
Triglycerides (mg/dL) | 40.7 ± 3.5 | 542 ± 59 | 19.8 ± 1.5 | 237 ± 40 | *** | *** | *** |
NEFAs (μEq/L) | 286 ± 29 | 604 ± 61 | 261 ± 14 | 598 ± 39 | ns | *** | ns |
T-KB (μmol/L) | 830 ± 36 | 1032 ± 233 | 726 ± 45 | 1170 ± 186 | ns | * | ns |
T-CHO (mg/dL) | 67.7 ± 4.1 | 102 ± 5 | 64.3 ± 1.0 | 137 ± 6 | ** | *** | ** |
Insulin (ng/mL) | 1.54 ± 0.19 | 12.1 ± 3.9 | 0.602 ± 0.072 | 2.06 ± 0.75 | * | ** | * |
Leptin (ng/mL) | 2.11 ± 0.07 | 73.0 ± 3.4 | 0.595 ± 0.034 | 12.7 ± 1.7 | *** | *** | *** |
CoA | Zucker | ZDF | Two-way ANOVA | |||||
---|---|---|---|---|---|---|---|---|
Tissues | Species | Lean | Fatty | Lean | Fatty | Str. | fa | Str. × fa |
Cerebral | A | 2.16 ± 0.11 | 1.55 ± 0.06 | 2.55 ± 0.21 | 2.07 ± 0.12 | ** | ** | ns |
cortex | M | 0.267 ± 0.018 | 0.230 ± 0.006 | 0.299 ± 0.035 | 0.155 ± 0.011 | ns | *** | * |
CoA | 6.09 ± 1.04 | 4.52 ± 1.22 | 5.62 ± 1.47 | 13.2 ± 0.5 | ** | * | *** | |
Total | 8.52 ± 1.11 | 6.29 ± 1.19 | 8.48 ± 1.66 | 15.4 ± 0.6 | ** | ns | ** | |
Hippocampus | A | 1.64 ± 0.17 | 1.39 ± 0.09 | 2.34 ± 0.08 | 2.14 ± 0.09 | *** | ns | ns |
M | 0.243 ± 0.014 | 0.214 ± 0.015 | 0.276 ± 0.021 | 0.211 ± 0.014 | ns | ** | ns | |
CoA | 1.04 ± 0.22 | 1.47 ± 0.19 | 11.7 ± 0.6 | 9.58 ± 1.90 | *** | ns | ns | |
Total | 2.92 ± 0.37 | 3.08 ± 0.27 | 14.3 ± 0.7 | 11.9 ± 2.0 | *** | ns | ns | |
Hypothalamus | A | 1.36 ± 0.10 | 1.14 ± 0.07 | 2.29 ± 0.07 | 1.49 ± 0.08 | *** | *** | ** |
M | 0.173 ± 0.015 | 0.152 ± 0.012 | 0.137 ± 0.006 | 0.130 ± 0.007 | * | ns | ns | |
CoA | 1.31 ± 0.18 | 1.06 ± 0.10 | 1.86 ± 0.20 | 1.06 ± 0.16 | ns | ** | ns | |
Total | 2.84 ± 0.27 | 2.35 ± 0.15 | 4.29 ± 0.23 | 2.68 ± 0.22 | *** | *** | * | |
Cerebellum | A | 3.74 ± 0.19 | 2.83 ± 0.07 | 2.68 ± 0.16 | 2.25 ± 0.17 | * | ** | ns |
M | 0.511 ± 0.042 | 0.480 ± 0.025 | 1.54 ± 0.06 | 1.52 ± 0.06 | *** | ns | ns | |
CoA | 2.55 ± 0.45 | 1.31 ± 0.11 | 10.9 ± 1.0 | 9.33 ± 0.94 | *** | ns | ns | |
Total | 6.80 ± 0.65 | 4.62 ± 0.12 | 15.1 ± 1.0 | 13.1 ± 1.0 | *** | ** | ns | |
Medulla | A | 1.02 ± 0.25 | 1.31 ± 0.12 | 2.44 ± 0.04 | 1.76 ± 0.05 | *** | ns | ** |
oblongata | M | 0.074 ± 0.017 | 0.119 ± 0.020 | 0.264 ± 0.013 | 0.187 ± 0.014 | *** | ns | ** |
CoA | 2.32 ± 1.24 | 7.83 ± 1.86 | 6.61 ± 1.48 | 4.67 ± 1.13 | ns | ns | * | |
Total | 3.40 ± 1.46 | 9.26 ± 1.93 | 9.31 ± 1.48 | 6.62 ± 1.14 | ns | ns | * | |
Liver | A | 3.28 ± 0.39 | 2.37 ± 0.15 | 5.78 ± 0.98 | 5.83 ± 0.37 | *** | ns | ns |
M | 0.918 ± 0.103 | 0.745 ± 0.077 | 1.58 ± 0.20 | 2.42 ± 0.17 | *** | * | ** | |
CoA | 6.15 ± 2.32 | 9.20 ± 2.72 | 80.8 ± 9.4 | 105 ± 8 | *** | * | ns | |
Total | 10.4 ± 2.6 | 12.3 ± 2.8 | 88.2 ± 10.5 | 114 ± 8 | *** | ns | ns | |
Spleen | A | 0.740 ± 0.066 | 0.686 ± 0.157 | 1.27 ± 0.21 | 0.993 ± 0.114 | * | ns | ns |
M | 1.37 ± 0.12 | 1.17 ± 0.15 | 1.37 ± 0.10 | 1.14 ± 0.04 | ns | ns | ns | |
CoA | nd | nd | 2.36 ± 0.93 | nd | – | – | – | |
Total | 2.11 ± 0.15 | 1.86 ± 0.26 | 5.00 ± 1.09 | 2.14 ± 0.11 | * | * | * | |
Kidney | A | 1.09 ± 0.06 | 0.791 ± 0.090 | 1.90 ± 0.10 | 1.82 ± 0.11 | *** | ns | ns |
M | 0.561 ± 0.048 | 0.567 ± 0.026 | 0.865 ± 0.038 | 0.909 ± 0.046 | *** | ns | ns | |
CoA | 2.12 ± 0.38 | 1.65 ± 0.55 | 1.53 ± 0.28 | 1.18 ± 0.31 | ns | ns | ns | |
Total | 3.78 ± 0.44 | 3.00 ± 0.60 | 4.30 ± 0.30 | 3.91 ± 0.43 | ns | ns | ns | |
Heart | A | 4.79 ± 0.56 | 3.21 ± 0.64 | 11.7 ± 0.6 | 8.93 ± 0.35 | *** | ** | ns |
M | 2.66 ± 0.45 | 1.47 ± 0.34 | 0.703 ± 0.028 | 0.699 ± 0.043 | *** | * | * | |
CoA | 15.9 ± 3.5 | 24.7 ± 5.3 | 42.1 ± 4.5 | 31.9 ± 2.8 | *** | ns | * | |
Total | 23.3 ± 4.1 | 29.4 ± 6.0 | 54.4 ± 5.0 | 41.5 ± 3.1 | *** | ns | ns | |
Skeletal | A | 0.993 ± 0.127 | 0.660 ± 0.117 | 0.703 ± 0.113 | 1.09 ± 0.14 | ns | ns | ** |
muscle | M | 1.52 ± 0.16 | 1.61 ± 0.13 | 1.94 ± 0.28 | 2.00 ± 0.13 | * | ns | ns |
CoA | 5.89 ± 0.43 | 6.26 ± 0.80 | 6.28 ± 1.08 | 9.70 ± 0.99 | * | * | ns | |
Total | 8.40 ± 0.43 | 8.53 ± 0.82 | 8.93 ± 1.13 | 12.8 ± 1.0 | * | * | * | |
Perirenal | A | 0.103 ± 0.025 | 0.042 ± 0.011 | 0.070 ± 0.018 | 0.016 ± 0.003 | ns | ** | ns |
adipose tissue | M | 0.191 ± 0.050 | 0.166 ± 0.030 | 0.197 ± 0.023 | 0.069 ± 0.016 | ns | * | ns |
CoA | 0.395 ± 0.094 | 0.211 ± 0.044 | 0.398 ± 0.150 | 0.219 ± 0.108 | ns | ns | ns | |
Total | 0.690 ± 0.152 | 0.418 ± 0.077 | 0.666 ± 0.174 | 0.304 ± 0.125 | ns | * | ns | |
Brown | A | 1.44 ± 0.29 | 0.406 ± 0.102 | 1.47 ± 0.15 | 0.394 ± 0.044 | ns | *** | ns |
adipose tissue | M | 0.916 ± 0.212 | 0.260 ± 0.079 | 1.14 ± 0.06 | 0.413 ± 0.023 | ns | *** | ns |
CoA | 3.65 ± 0.66 | 3.43 ± 1.01 | 44.4 ± 5.3 | 2.02 ± 0.43 | *** | *** | *** | |
Total | 6.01 ± 0.69 | 4.10 ± 0.87 | 47.0 ± 5.4 | 2.82 ± 0.48 | *** | *** | *** | |
Epididymal | A | 0.186 ± 0.074 | 0.021 ± 0.005 | 0.233 ± 0.035 | 0.208 ± 0.027 | * | * | ns |
adipose tissue | M | 0.114 ± 0.052 | 0.020 ± 0.009 | 0.200 ± 0.021 | 0.184 ± 0.010 | *** | ns | ns |
CoA | 0.253 ± 0.153 | 0.041 ± 0.015 | 0.475 ± 0.082 | 0.435 ± 0.100 | ** | ns | ns | |
Total | 0.553 ± 0.267 | 0.082 ± 0.021 | 0.908 ± 0.133 | 0.827 ± 0.109 | ** | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chohnan, S.; Matsuno, S.; Shimizu, K.; Tokutake, Y.; Kohari, D.; Toyoda, A. Coenzyme A and Its Thioester Pools in Obese Zucker and Zucker Diabetic Fatty Rats. Nutrients 2020, 12, 417. https://doi.org/10.3390/nu12020417
Chohnan S, Matsuno S, Shimizu K, Tokutake Y, Kohari D, Toyoda A. Coenzyme A and Its Thioester Pools in Obese Zucker and Zucker Diabetic Fatty Rats. Nutrients. 2020; 12(2):417. https://doi.org/10.3390/nu12020417
Chicago/Turabian StyleChohnan, Shigeru, Shiori Matsuno, Kei Shimizu, Yuka Tokutake, Daisuke Kohari, and Atsushi Toyoda. 2020. "Coenzyme A and Its Thioester Pools in Obese Zucker and Zucker Diabetic Fatty Rats" Nutrients 12, no. 2: 417. https://doi.org/10.3390/nu12020417
APA StyleChohnan, S., Matsuno, S., Shimizu, K., Tokutake, Y., Kohari, D., & Toyoda, A. (2020). Coenzyme A and Its Thioester Pools in Obese Zucker and Zucker Diabetic Fatty Rats. Nutrients, 12(2), 417. https://doi.org/10.3390/nu12020417