A Systematic Review of the Effect of Dietary Supplements on Cognitive Performance in Healthy Young Adults and Military Personnel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Screening
2.3. Data Extraction and Synthesis
2.4. Quality Assessment
3. Results
3.1. Literature Search
3.2. Overview of Cognitive Effects by Supplement
3.2.1. Macronutrients
Carbohydrates
Beta-Alanine (Protein)
Tyrosine (Protein)
Omega-3 (Fats)
3.2.2. Micronutrients
B Vitamins
Nitrate
3.2.3. Herbal (Plant-Based) Supplements
Caffeine
Flavonoids
Gingko biloba
Ginseng
Guarana and Multivitamins
3.2.4. Prebiotics
4. Discussion
4.1. Scope of Review
4.2. Overall Synthesis
4.3. Situational Effects
4.4. Limitations
4.5. Recommendations
4.6. Future Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef]
- Knapik, J.J.; Trone, D.W.; Austin, K.G.; Steelman, R.A.; Farina, E.K.; Lieberman, H.R. Prevalence, Adverse Events, and Factors Associated with Dietary Supplement and Nutritional Supplement Use by US Navy and Marine Corps Personnel. J. Acad. Nutr. Diet. 2016, 116, 1423–1442. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, H.R.; Stavinoha, T.B.; McGraw, S.M.; White, A.; Hadden, L.S.; Marriott, B.P. Use of dietary supplements among active-duty US Army soldiers. Am. J. Clin. Nutr. 2010, 92, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Zion Market Research. Dietary supplements market by ingredients (Botanicals, Vitamins, Minerals, Amino Acids, Enzymes) for additional supplements, medicinal supplements and sports nutrition applciations - Global industry perspective, Comprehensive analysis and forecast, 2016-2022. Available online: https://www.zionmarketresearch.com/report/dietary-supplements-market. (accessed on 23 June 2017).
- Barnes, K.; Ball, L.; Desbrow, B.; Alsharairi, N.; Ahmed, F. Consumption and reasons for use of dietary supplements in an Australian university population. Nutrition 2016, 32, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Kjertakov, M.; Hristovski, R.; Racaj, M. The use of dietary supplement among soldiers from the macedonian special operations regiment. J. Spec. Oper. Med. 2013, 13, 19–24. [Google Scholar] [PubMed]
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Farina, E.K.; Austin, K.G.; Lieberman, H.R. A systematic review and meta-analysis on the prevalence of dietary supplement use by military personnel. BMC Complement. Altern. Med. 2014, 14, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, B.; Probert, B.; Pomeroy, D.; Carins, J.; Tooley, K. Prevalence and Predictors of Dietary and Nutritional Supplement Use in the Australian Army: A Cross-Sectional Survey. Nutrients 2019, 11, 1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, K.G.; Farina, E.K.; Lieberman, H.R. Self-reported side-effects associated with use of dietary supplements in an armed forces population. Drug Test. Anal. 2016, 8, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Cellini, M.; Attipoe, S.; Seales, P.; Gray, R.; Ward, A.; Stephens, M.; Deuster, P.A. Dietary supplements: physician knowledge and adverse event reporting. Med. Sci. Sports Exerc. 2013, 45, 23–28. [Google Scholar] [CrossRef]
- Chatham-Stephens, K.; Taylor, E.; Chang, A.; Peterson, A.; Daniel, J.; Martin, C.; Deuster, P.; Noe, R.; Kieszak, S.; Schier, J.; et al. Hepatotoxicity associated with weight loss or sports dietary supplements, including OxyELITE Pro - United States, 2013. Drug Test. Anal. 2016. [Google Scholar] [CrossRef] [Green Version]
- Deuster, P.A.; Lieberman, H.R. Protecting military personnel from high risk dietary supplements. Drug Test. Anal. 2016, 8, 431–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliason, M.J.; Eichner, A.; Cancio, A.; Bestervelt, L.; Adams, B.D.; Deuster, P.A. Case reports: Death of active duty soldiers following ingestion of dietary supplements containing 1,3-dimethylamylamine (DMAA). Mil. Med. 2012, 177, 1455–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geller, A.I.; Shehab, N.; Weidle, N.J.; Lovegrove, M.C.; Wolpert, B.J.; Timbo, B.B.; Mozersky, R.P.; Budnitz, D.S. Emergency Department Visits for Adverse Events Related to Dietary Supplements. N. Engl. J. Med. 2015, 373, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Guallar, E.; Stranges, S.; Mulrow, C.; Appel, L.J.; Miller, E.R. Enough is enough: Stop wasting money on vitamin and mineral supplements. Ann. Intern. Med. 2013, 159, 850–851. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Shelton, B.; Hughes, T. Suspected dietary supplement injuries in special operations soldiers. J. Spec. Oper. Med. 2010, 10, 14–24. [Google Scholar] [PubMed]
- Klein, E.A.; Thompson, I.M., Jr.; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011, 306, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Magee, C.D.; Witte, S.; Kwok, R.M.; Deuster, P.A. Mission Compromised? Drug-Induced Liver Injury From Prohormone Supplements Containing Anabolic-Androgenic Steroids in Two Deployed U.S. Service Members. Mil. Med. 2016, 181, e1169–e1171. [Google Scholar] [CrossRef] [Green Version]
- Stanger, M.J.; Thompson, L.A.; Young, A.J.; Lieberman, H.R. Anticoagulant activity of select dietary supplements. Nutr. Rev. 2012, 70, 107–117. [Google Scholar] [CrossRef]
- Urban, K.R.; Gao, W.J. Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain. Front. Syst. Neurosci. 2014, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- van der Voet, G.B.; Sarafanov, A.; Todorov, T.I.; Centeno, J.A.; Jonas, W.B.; Ives, J.A.; Mullick, F.G. Clinical and analytical toxicology of dietary supplements: a case study and a review of the literature. Biol. Trace Elem. Res. 2008, 125, 1–12. [Google Scholar] [CrossRef]
- Cohen, P.A.; Ernst, E. Safety of Herbal Supplements: A Guide for Cardiologists. Cardiovas. Ther. 2010, 28, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Navarro, V.J.; Khan, I.; Björnsson, E.; Seeff, L.B.; Serrano, J.; Hoofnagle, J.H. Liver injury from herbal and dietary supplements. Hepatology 2017, 65, 363–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzo, A.A.; Ernst, E. Interactions Between Herbal Medicines and Prescribed Drugs. Drugs 2009, 69, 1777–1798. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, S.; Lindsey, T. Fatal caffeine overdose: two case reports. Forensic Sci. Int. 2005, 153, 67–69. [Google Scholar] [CrossRef]
- Or, F.; Kim, Y.; Simms, J.; Austin, S.B. Taking Stock of Dietary Supplements’ Harmful Effects on Children, Adolescents, and Young Adults. J. adolesc. Health 2019, 65, 455–461. [Google Scholar] [CrossRef]
- Newmaster, S.G.; Grguric, M.; Shanmughanandhan, D.; Ramalingam, S.; Ragupathy, S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Bauer, I.; Hughes, M.; Rowsell, R.; Cockerell, R.; Pipingas, A.; Crewther, S.; Crewther, D. Omega-3 supplementation improves cognition and modifies brain activation in young adults. Hum. Psychopharmacol. 2014, 29, 133–144. [Google Scholar] [CrossRef]
- Muldoon, M.F.; Ryan, C.M.; Yao, J.K.; Conklin, S.M.; Manuck, S.B. Long-chain omega-3 fatty acids and optimization of cognitive performance. Mil. Med. 2014, 179, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, D.O.; Stevenson, E.J.; Jackson, P.A.; Dunn, S.; Wishart, K.; Bieri, G.; Barella, L.; Carne, A.; Dodd, F.L.; Robertson, B.C.; et al. Multivitamins and minerals modulate whole-body energy metabolism and cerebral blood-flow during cognitive task performance: a double-blind, randomised, placebo-controlled trial. Nutr. Metabol. 2016, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Pipingas, A.; Camfield, D.A.; Stough, C.; Scholey, A.B.; Cox, K.H.; White, D.; Sarris, J.; Sali, A.; Macpherson, H. Effects of multivitamin, mineral and herbal supplement on cognition in younger adults and the contribution of B group vitamins. Hum. Psychopharmacol. 2014, 29, 73–82. [Google Scholar] [CrossRef]
- Lieberman, H.R.; Tharion, W.J.; Shukitt-Hale, B.; Speckman, K.L.; Tulley, R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Psychopharmacology 2002, 164, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.; Harris, W.; Kane, R.L.; Banderet, L.; Levinson, D.; Reeves, D. Neuropsychological assessment in extreme environments. Arch. Clini. Neuropsychol. 2007, 22 Suppl 1, S89–S99. [Google Scholar] [CrossRef] [Green Version]
- Killgore, W.D.; Killgore, D.B.; Day, L.M.; Li, C.; Kamimori, G.H.; Balkin, T.J. The effects of 53 hours of sleep deprivation on moral judgment. Sleep 2007, 30, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Orzel-Gryglewska, J. Consequences of sleep deprivation. Intern. J. Occupat. Med. Environ. Health 2010, 23, 95–114. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; the PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. Br. Med. J. 2015, 350, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. GRADE Handbook: Introduction to GRADE Handbook: Handbook for Grading the Quality of Evidence and the Strength of Recommendations Using the GRADE Approach; Schünemann, H., Brożek, J., Guyatt, G., Oxman, A., Eds.; 2013; Available online: https://med.mahidol.ac.th/ceb/sites/default/files/public/pdf/journal_club/2017/GRADE%20handbook.pdf (accessed on 30 July 2017).
- Scottish Intercollegiate Guidelines Network. SIGN 50: A Guideline Developer’s Handbook. Available online: http://www.sign.ac.uk/methodology/checklists.html (accessed on 1 May 2017).
- Hoffman, J.R.; Landau, G.; Stout, J.R.; Dabora, M.; Moran, D.S.; Sharvit, N.; Hoffman, M.W.; Ben Moshe, Y.; McCormack, W.P.; Hirschhorn, G.; et al. beta-alanine supplementation improves tactical performance but not cognitive function in combat soldiers. J. Intern. Soc. Sports Nutr. 2014, 11, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aidman, E.; Johnson, K.; Paech, G.M.; Della Vedova, C.; Pajcin, M.; Grant, C.; Kamimori, G.H.; Mitchelson, E.; Hoggan, B.L.; Fidock, J.; et al. Caffeine reduces the impact of drowsiness in driving errors. Transp. Res. Part F: Traffic Psychol. Behav. 2018, 54, 236–247. [Google Scholar] [CrossRef]
- Brunye, T.T.; Mahoney, C.R.; Lieberman, H.R.; Giles, G.E.; Taylor, H.A. Acute caffeine consumption enhances the executive control of visual attention in habitual consumers. Brain Cogn. 2010, 74, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.J.; Cole, K.J. No Enhancement of 24-Hour Visuomotor Skill Retention by Post-Practice Caffeine Administration. PLoS ONE 2015, 10, e0129543. [Google Scholar] [CrossRef]
- Kahathuduwa, C.N.; Dassanayake, T.L.; Amarakoon, A.M.; Weerasinghe, V.S. Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr. Neurosci. 2017. [Google Scholar] [CrossRef]
- Kamimori, G.H.; McLellan, T.M.; Tate, C.M.; Voss, D.M.; Niro, P.; Lieberman, H.R. Caffeine improves reaction time, vigilance and logical reasoning during extended periods with restricted opportunities for sleep. Psychopharmacology (Berlin) 2015, 232, 2031–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyner, L.A.; Horne, J.A. Early morning driver sleepiness: Effectiveness of 200 mg caffeine. Psychophysiology 2000, 37, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Soar, K.; Chapman, E.; Lavan, N.; Jansari, A.S.; Turner, J.J.D. Investigating the effects of caffeine on executive functions using traditional Stroop and a new ecologically-valid virtual reality task, the Jansari assessment of Executive Functions (JEF). Appetite 2016, 105, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Lamport, D.J.; Pal, D.; Macready, A.L.; Barbosa-Boucas, S.; Fletcher, J.M.; Williams, C.M.; Spencer, J.P.; Butler, L.T. The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: an acute, randomised, placebo-controlled cross-over trial in healthy, young adults. Br. J. Nutr. 2017, 116, 2160–2168. [Google Scholar] [CrossRef] [Green Version]
- Scholey, A.B.; French, S.J.; Morris, P.J.; Kennedy, D.O.; Milne, A.L.; Haskell, C.F. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J. Psychopharmacol. 2010, 24, 1505–1514. [Google Scholar] [CrossRef]
- Watson, A.W.; Haskell-Ramsay, C.F.; Kennedy, D.O.; Cooney, J.M.; Trower, T.; Scheepens, A. Acute supplementation with blackcurrant extracts modulates cognitive functioning and inhibits monoamine oxidase-B in healthy young adults. J. Functional Foods 2015, 17, 524–539. [Google Scholar] [CrossRef] [Green Version]
- Wightman, E.L.; Haskell, C.F.; Forster, J.S.; Veasey, R.C.; Kennedy, D.O. Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum. Psychopharmacol. 2012, 27, 177–186. [Google Scholar] [CrossRef]
- Elsabagh, S.; Hartley, D.E.; Ali, O.; Williamson, E.M.; File, S.E. Differential cognitive effects of Ginkgo biloba after acute and chronic treatment in healthy young volunteers. Psychopharmacology (Berlin) 2005, 179, 437–446. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Scholey, A.B.; Wesnes, K.A. The dose-dependent cognitive effects of acute administration of Ginkgo biloba to healthy young volunteers. Psychopharmacology 2000, 151, 416–423. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Scholey, A.B.; Wesnes, K.A. Modulation of cognition and mood following administration of single doses of Ginkgo biloba, ginseng, and a ginkgo/ginseng combination to healthy young adults. Physiol. Behav. 2002, 75, 739–751. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Haskell, C.F.; Mauri, P.L.; Scholey, A.B. Acute cognitive effects of standardised Ginkgo biloba extract complexed with phosphatidylserine. Hum. Psychopharmacol. 2007, 22, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Moulton, P.L.; Boyko, L.N.; Fitzpatrick, J.L.; Petros, T.V. The effect of Ginkgo biloba on memory in healthy male volunteers. Physiol. Behave. 2001, 73, 659–665. [Google Scholar] [CrossRef]
- Scholey, A.B.; Kennedy, D.O. Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combination in healthy young volunteers differential interactions with cognitive demand. Hum. Psychopharmacol.: Clin. Expe. 2002, 17, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Yeo, H.B.; Yoon, H.K.; Lee, H.J.; Kang, S.G.; Jung, K.Y.; Kim, L. Effects of Korean Red Ginseng on Cognitive and Motor Function: A Double-blind, Randomized, Placebo-controlled Trial. J. Ginseng Res. 2012, 36, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Haskell, C.F.; Kennedy, D.O.; Wesnes, K.A.; Milne, A.L.; Scholey, A.B. A double-blind, placebo-controleld, multi-dose evaluationm of the acute behavioural effects of guarana in humans. J. Psychopharmacol. 2007, 21, 65–70. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Haskell, C.F.; Wesnes, K.A.; Scholey, A.B. Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: comparison and interaction with Panax ginseng. Pharmacol. Biochem. Behave. 2004, 79, 401–411. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Haskell, C.F.; Robertson, B.; Reay, J.; Brewster-Maund, C.; Luedemann, J.; Maggini, S.; Ruf, M.; Zangara, A.; Scholey, A.B. Improved cognitive performance and mental fatigue following a multi-vitamin and mineral supplement with added guarana (Paullinia cupana). Appetite 2008, 50, 506–513. [Google Scholar] [CrossRef]
- Veasey, R.C.; Haskell-Ramsay, C.F.; Kennedy, D.O.; Wishart, K.; Maggini, S.; Fuchs, C.J.; Stevenson, E.J. The Effects of Supplementation with a Vitamin and Mineral Complex with Guarana Prior to Fasted Exercise on Affect, Exertion, Cognitive Performance, and Substrate Metabolism: A Randomized Controlled Trial. Nutrients 2015, 7, 6109–6127. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.G.; Turner, L.; Prichard, J.; Dodd, F.; Kennedy, D.O.; Haskell, C.; Blackwell, J.R.; Jones, A.M. Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir. Physiol. Neurobiol. 2014, 193, 11–20. [Google Scholar] [CrossRef]
- Wightman, E.L.; Haskell-Ramsay, C.F.; Thompson, K.G.; Blackwell, J.R.; Winyard, P.G.; Forster, J.; Jones, A.M.; Kennedy, D.O. Dietary nitrate modulates cerebral blood flow parameters and cognitive performance in humans: A double-blind, placebo-controlled, crossover investigation. Physiol. Behav. 2015, 149, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Giles, G.E.; Mahoney, C.R.; Urry, H.L.; Brunye, T.T.; Taylor, H.A.; Kanarek, R.B. Omega-3 fatty acids and stress-induced changes to mood and cognition in healthy individuals. Pharmacol. Biochem. Behav. 2015, 132, 10–19. [Google Scholar] [CrossRef]
- Smith, A.P.; Sutherland, D.; Hewlett, P. An Investigation of the Acute Effects of Oligofructose-Enriched Inulin on Subjective Wellbeing, Mood and Cognitive Performance. Nutrients 2015, 7, 8887–8896. [Google Scholar] [CrossRef] [PubMed]
- Colzato, L.S.; Jongkees, B.J.; Sellaro, R.; Hommel, B. Working memory reloaded: tyrosine repletes updating in the N-back task. Front. Behav. Neurosci. 2013, 7, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colzato, L.S.; Jongkees, B.J.; Sellaro, R.; van den Wildenberg, W.P.; Hommel, B. Eating to stop: tyrosine supplementation enhances inhibitory control but not response execution. Neuropsychologia 2014, 62, 398–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colzato, L.S.; de Haan, A.M.; Hommel, B. Food for creativity: tyrosine promotes deep thinking. Psycholog. Res. 2015, 79, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Coull, N.; Watkins, S.L.; Aldous, J.W.; Warren, L.K.; Chrismas, B.C.; Dascombe, B.; Mauger, A.R.; Abt, G.; Taylor, H. Effect of tyrosine ingestion on cognitive and physical performance utilising an intermittent soccer performance test (iSPT) in a warm environment. Euro. J. Appl. Physiol. 2015, 115, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Kishore, K.; Ray, K.; Anand, J.P.; Thakur, L.; Kumar, S.; Panjwani, U. Tyrosine ameliorates heat induced delay in event related potential P300 and contingent negative variation. Brain Cogn. 2013, 83, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Steenbergen, L.; Sellaro, R.; Hommel, B.; Colzato, L.S. Tyrosine promotes cognitive flexibility: evidence from proactive vs. reactive control during task switching performance. Neuropsychologia 2015, 69, 50–55. [Google Scholar] [CrossRef]
- Watson, P.; Enever, S.; Page, A.; Stockwell, J.; Maughan, R.J. Tyrosine supplementation does not influence the capacity to perform prolonged exercise in a warm environment. Intern. J. sport nutr. Exerc. Metabol. 2012, 22, 363–373. [Google Scholar] [CrossRef]
- Jongkees, B.J.; Sellaro, R.; Beste, C.; Nitsche, M.A.; Kuhn, S.; Colzato, L.S. L-Tyrosine administration modulates teh effect of transcranial direct current stimulation on working memory in healthy humans. Cortex 2017, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Bryan, J.; Calvaresi, E.; Hughes, D. Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J. Nutr. 2002, 132, 1345–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 5.1.0 [updated March 2011]; The Cochrane Collaboration, 2011; Available online: www.handbook.cochrane.org (accessed on 17 January 2020).
- Stautz, K.; Zupan, Z.; Field, M.; Marteau, T.M. Does self-control modify the impact of interventions to change alcohol, tobacco, and food consumption? A systematic review. Health Psychol. Rev. 2018, 12, 157–178. [Google Scholar] [CrossRef] [PubMed]
- Hoyland, A.; Lawton, C.L.; Dye, L. Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: a systematic research review. Neurosci. Biobehav. Rev. 2008, 32, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Ko, R.; Low Dog, T.; Gorecki, D.K.; Cantilena, L.R.; Costello, R.B.; Evans, W.J.; Hardy, M.L.; Jordan, S.A.; Maughan, R.J.; Rankin, J.W.; et al. Evidence-based evaluation of potential benefits and safety of beta-alanine supplementation for military personnel. Nutr. Rev. 2014, 72, 217–225. [Google Scholar] [CrossRef]
- Murakami, T.; Furuse, M. The impact of taurine and beta-alanine supplemented diets on behavioral and neurochemical parameters in mice: antidepressant versus anxiolytic-like effects. Amino Acids 2010, 39, 427–434. [Google Scholar] [CrossRef]
- Jongkees, B.J.; Hommel, B.; Kuhn, S.; Colzato, L.S. Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands--A review. J. Psychiatr. Res. 2015, 70, 50–57. [Google Scholar] [CrossRef]
- Meeusen, R.; Watson, P.; Hasegawa, H.; Roelands, B.; Piacentini, M.F. Central fatigue: the serotonin hypothesis and beyond. Sports Med. 2006, 36, 881–909. [Google Scholar] [CrossRef]
- Attipoe, S.; Zeno, S.A.; Lee, C.; Crawford, C.; Khorsan, R.; Walter, A.R.; Deuster, P.A. Tyrosine for mitigating stress and enhamcing performance in healthy adult humans, a Rapid Evidence Assessment of the Literature. Mil. Med. 2015, 180, 754–765. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.A.; Prall, B.C. The challenges of incorporation of omega-3 fatty acids into ration components and their prevalence in garrison feeding. Military medicine 2014, 179, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Bailes, J.E.; Patel, V. The potential for DHA to mitigate mild traumatic brain injury. Mil. Med. 2014, 179, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Stonehouse, W.; Conlon, C.A.; Podd, J.; Hill, S.R.; Minihane, A.M.; Haskell, C.; Kennedy, D. DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 1134–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, P.A.; Reay, J.L.; Scholey, A.B.; Kennedy, D.O. DHA-rich oil modulates the cerebral haemodynamic response to cognitive tasks in healthy young adults: a near IR spectroscopy pilot study. Br. J. Nutr. 2012, 107, 1093–1098. [Google Scholar] [CrossRef]
- Stonehouse, W. Does consumption of LC omega-3 PUFA enhance cognitive performance in healthy school-aged children and throughout adulthood? Evidence from clinical trials. Nutrients 2014, 6, 2730–2758. [Google Scholar] [CrossRef] [Green Version]
- Teo, L.; Crawford, C.; Yehuda, R.; Jaghab, D.; Bingham, J.J.; Chittum, H.K.; Gallon, M.D.; O’Connell, M.L.; Arzola, S.M.; Berry, K. Omega-3 polyunsaturated fatty acids to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field. Nutr. Rev. 2017, 75, 36–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karr, J.E.; Grindstaff, T.R.; Alexander, J.E. Omega-3 polyunsaturated fatty acids and cognition in a college-aged population. Exp. Clin. Psychopharmacol. 2012, 20, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Haskell, C.F. Vitamins and cognition: what is the evidence? Drugs 2011, 71, 1957–1971. [Google Scholar] [CrossRef]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy--A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Presley, T.D.; Morgan, A.R.; Bechtold, E.; Clodfelter, W.; Dove, R.W.; Jennings, J.M.; Kraft, R.A.; King, S.B.; Laurienti, P.J.; Jack, W. Acute effect of a high nitrate diet on brain perfusion in older adults. Nitric Oxide 2011, 24, 34–42. [Google Scholar] [CrossRef]
- Glade, M.J. Caffeine-Not just a stimulant. Nutrition 2010, 26, 932–938. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [Green Version]
- Nehlig, A. Is caffeine a cognitive enhancer? J. Alzheimer’s Dis. 2010, 20 (Suppl. 1), S85–S94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullrich, S.; de Vries, Y.C.; Kuhn, S.; Repantis, D.; Dresler, M.; Ohla, K. Feeling smart: Effects of caffeine and glucose on cognition, mood and self-judgment. Physiol. Behav. 2015, 151, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Crawford, C.; Teo, L.; Lafferty, L.; Drake, A.; Bingham, J.J.; Gallon, M.D.; O’Connell, M.L.; Chittum, H.K.; Azorla, S.M.; Berry, K. Caffeine to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field. Nutr. Rev. 2017, 75, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.; Lamport, D.J.; Butler, L.T.; Williams, C.M. A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action. Nutrients 2015, 7, 10290–10306. [Google Scholar] [CrossRef]
- Spencer, J.P.E. Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr. 2009, 4, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ude, C.; Paulke, A.; Nőldner, M.; Schubert-Zsilavecz, M.; Wurglics, M. Plasma and brain levels of terpene trilactones in rats after an oral single dose of standardized Gingko biloba extract EGb 761(R). Planta Medica 2011, 77, 259–264. [Google Scholar] [CrossRef]
- Tachikawa, E.; Kudo, K.; Harada, K.; Kashimoto, T.; Miyate, Y.; Kakizaki, A.; Takahashi, E. Effects of ginseng saponins on responses induced by various receptor stimuli. Euro. J. Pharmacol. 1999, 369, 23–32. [Google Scholar] [CrossRef]
- Reay, J.L.; Scholey, A.B.; Kennedy, D.O. Panax ginseng (G115) improves aspects of working memory performance and subjective ratings of calmness in healthy young adults. Hum. Psychopharmacol. 2010, 25, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Neale, C.; Camfield, D.; Reay, J.; Stough, C.; Scholey, A. Cognitive effects of two nutriceuticals Ginseng and Bacopa benchmarked against modafinil: a review and comparison of effect sizes. Br. J. Clin. Pharmacol. 2012, 75, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Dong, J.; Ni, H.; Lee, M.S.; Wu, T.; Jiang, K.; Wang, G.; Zhou, A.L.; Malouf, R. Ginseng for cognition. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef] [PubMed]
- Weckerle, C.A.; Stutz, M.A.; Baumann, T.W. Purine alkaloids in Paullinia. Phytochemistry 2003, 64, 735–742. [Google Scholar] [CrossRef]
- Espinola, E.B.; Dias, R.F.; Mattei, R.; Carlini, E.A. Pharmacological activity of Guaranan (Paullinia cupana Mart) in laboratory animals. J. Ethnopharmacol. 1997, 55, 223–229. [Google Scholar] [CrossRef]
- Kao, A.C.; Harty, S.; Burnet, P.W. The Influence of Prebiotics on Neurobiology and Behavior. Intern. Rev. Neurobiol. 2016, 131, 21–48. [Google Scholar] [CrossRef]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G.; et al. Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull. 2010, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Moustakas, D.; Mezzio, M.; Rodriguez, B.R.; Constable, M.A.; Mulligan, M.E.; Voura, E.B. Guarana provides additional stimulation over caffeine alone in the planarian model. PLoS ONE 2005, 10, e0123310. [Google Scholar] [CrossRef] [PubMed]
- Albert, B.B.; Cameron-Smith, D.; Garg, M.L.; Derraik, J.G.B.; Hofman, P.L.; Cutfield, W.S. Marine oils: Complex, confusing, confounded? J. Nutr. Intermed. Metab. 2016, 5, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, D.O.; Scholey, A.B.; Wesnes, K.A. Dose dependent changes in cognitive performance and mood following acute administration of Ginseng to healthy young volunteers. Nutritional Neurosci. 2001, 4, 295–310. [Google Scholar] [CrossRef]
- Huang, W.; Ramsey, K.M.; Marcheva, B.; Bass, J. Circadian rhythms, sleep, and metabolism. J. Clin. Invest. 2011, 121, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.D.M.; Cade, J.E.; Grant, P.J.; Hardie, L.J. Nutrition and the circadian system. Br. J. Nutr. 2016, 116, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.R.; Allen, A.P.; Temko, A.; Hutch, W.; Kennedy, P.J.; Farid, N.; Murphy, E.; Boylan, G.; Bienenstock, J.; Cryan, J.F.; et al. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects. Brain Behav. Immun. 2017, 61, 50–59. [Google Scholar] [CrossRef]
- Allen, A.P.; Hutch, W.; Borre, Y.E.; Kennedy, P.J.; Temko, A.; Boylan, G.; Murphy, E.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry 2016, 6, e939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, C.K.; Coad, R.A.; Roberts, W. Evaluation of an Australian combat ration pack as a sole nutrition source during 23 days of military adventurous training in the tropics. Nutr. Diet. 2004, 60, 239–247. [Google Scholar]
- Booth, C.K.; Probert, B.; Forbes-Ewan, C.F.; Coad, R.A. Australian Army recruits in training display symptoms of overtraining. Mil. Med. 2006, 171, 1059–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, J.M.; Lindsey, A.T.; Costello, R.B.; Deuster, P.A. Using the Dietary Supplement Label Database to Identify Potentially Harmful Dietary Supplement Ingredients. Nutr. Today 2018, 53, 229–233. [Google Scholar] [CrossRef] [PubMed]
Parameter | Description |
---|---|
Population | Healthy young adults in both military and civilian populations aged 18–35 years to reflect the age of military personnel likely to be deployed. Reports using experimental or control groups outside the 18–35 age range were included where results for this age group could be clearly identified. |
Intervention | Oral administration of legal dietary supplements, used a sole nutritional element, with the aim of enhancing cognitive performance. Multivitamin and/or multi-mineral supplements were included as they are consumed by a large number of military personnel. |
Comparison | Age-matched controls with placebo or no treatment, or repeated samples designs and placebo. |
Outcome | Cognitive domains: psychomotor, information processing speed, attention/vigilance, memory, and executive function. |
Study design | Peer-reviewed randomised control trial |
Random Sequence Generation (Selection Bias) | Allocation Concealment (Selection Bias) | Blinding of Participants and Personnel (Performance Bias) | Incomplete Outcome Data (Attrition Bias) | Selective Reporting (Reporting Bias) | Other Sources of Bias | Risk of Bias | SIGN Quality Evaluation | |
---|---|---|---|---|---|---|---|---|
Beta-Alanine | ||||||||
Hoffman 2014 [39] | - | - | ? | + | + | +Funding | - | ? |
Caffeine | ||||||||
Aidman 2018 [40] | + | + | ? | + | + | + | + | + |
Brunye 2010 [41] | + | ? | ? | + | + | +Funding | ? | - |
Hussain 2015 [42] | - | - | ? | + | + | + | - | ? |
Kahathuduwa 2017 [43] | + | + | ? | + | + | + | + | + |
Kamimori 2015 [44] | - | ? | ? | + | + | + | ? | - |
Reyner 2000 [45] | + | ? | + | + | + | + | + | + |
Soar 2016 [46] | + | ? | + | + | + | + | + | + |
Flavonoids | ||||||||
Lamport 2017 [47] | + | + | + | + | + | +Funding | + | ++ |
Scholey 2010 [48] | + | ? | ? | + | + | +Funding | ? | - |
Watson 2015 [49] | + | + | + | + | + | +Funding | + | ++ |
Wightman 2012 [50] | + | ? | ? | + | + | + | ? | - |
Gingko Biloba | + | |||||||
Elsabagh 2005 [51] | - | ? | + | + | + | + | ? | - |
Kennedy 2000 [52] | + | ? | ? | + | + | +Funding | ? | - |
Kennedy 2002 [53] | + | ? | ? | + | + | +Funding | ? | - |
Kennedy 2007 [54] | + | ? | ? | ? | + | +Funding | ? | - |
Moulton 2001 [55] | - | ? | + | + | + | +Funding | ? | - |
Scholey 2002 [56] | + | ? | ? | + | + | +Funding | ? | - |
Ginseng | ||||||||
Yeo 2012 [57] | - | - | - | + | + | +Funding | - | ? |
Guarana | ||||||||
Haskell 2007 [58] | + | ? | ? | + | + | +Funding | ? | - |
Kennedy 2004 [59] | + | ? | ? | + | + | +Funding | ? | - |
Kennedy 2008 [60] | - | + | + | + | + | +Funding | ? | - |
Veasey 2015 [61] | + | ? | ? | + | + | +Funding | ? | - |
Nitrate | ||||||||
Thompson 2014 [62] | + | ? | + | + | + | +Funding | + | + |
Wightman 2015 [63] | + | + | + | + | + | + | + | ++ |
Omega-3 | ||||||||
Bauer 2014 [28] | + | + | + | + | + | +Funding | + | ++ |
Giles 2015 [64] | - | ? | ? | + | + | +Funding | ? | - |
Prebiotics | ||||||||
Smith 2015 [65] | + | ? | + | + | + | +Funding | + | + |
Tyrosine | ||||||||
Colzato 2013 [66] | + | ? | ? | + | + | + | ? | - |
Colzato 2014 [67] | + | ? | ? | + | + | + | ? | - |
Colzato 2015 [68] | + | ? | ? | + | + | + | ? | - |
Coull 2015 [69] | + | ? | ? | + | + | + | ? | - |
Kishore 2013 [70] | + | ? | + | + | + | + | + | + |
Steenbergen 2015 [71] | + | ? | ? | + | + | + | ? | - |
Watson 2012 [72] | - | ? | + | + | + | + | ? | - |
Jongkees 2017 [73] | ? | ? | + | + | + | + | ? | - |
B Vitamins | ||||||||
Bryan 2002 [74] | - | ? | ? | + | + | + | ? | - |
Supplement/Author and Referenc | Population a (Sample Size (n), Age Range (mean ± SD), n = Male/Female) | Intervention (dose (Supplier), Placebo, Frequency (f)) | Moderator Description | Outcome Summary Positive (+), Negative (-), Inconclusive (<>), Null (0) |
---|---|---|---|---|
Beta-Alanine | (n = 1 study) | |||
Hoffman et al. (2014) [39] | n = 20 M age = beta-alanine: 20.1 years (0.7); placebo: 20.2years(1.1) 20 Males; 0 Females | 6 g beta-alanine tablet (CarnoSynTM; Natural Alternatives International) Placebo (rice flour) f = 3/day (2 g/serve), 28 day | Fatigue (physical and cognitive) | Information processing speed (+) Memory (0) |
Caffeine | (n = 7 studies) | subsequent from lit review | ||
Aidman et al. (2018) [40] | n = 11 M age = 22.5 years (2.7) 6 Males; 5 Females | 800 mg of caffeine gum (Military Energy Gum) Placebo gum f = 200 mg 4/day, 2 hrly (0100–0700h), 2 days | Sleep deprivation (period) | Attention (+) Executive function (+) |
Brunye et al. (2010) [41] | n = 36 M age = 20.1 years (ND) 10 Males; 26 Females | Caffeine capsule: 0, 100, 200 or 400 mg Placebo (capsule) f = single dose | Habitual caffeine intake | Executive function 400 mg only (+) Attention (+) |
Hussain and Cole (2015) [42] | n = 26 M age = caffeine: 22.9 years (0.9); placebo: 24 years (0.8) 12 Males; 14 Females | 200 mg caffeine placebo f = capsule, single dose | 24-h recall | Memory (0) Executive function (0) |
Kahathuduwa et al. (2017) [43] | n = 20 M age = 21.9 years (ND) 20 Males; 0 Females | 160 mg caffeine drink placebo drink f = single dose 5-way crossover | No moderator | Memory (+) Executive function (+) Information processing speed (0) |
Kamimori et al. (2015) [44] | n = 20 M age = 28.6 years (4.7) 20 Males; 0 Females | 200 mg caffeine gum (Stay Alert®) Placebo gum f = 2145, 0100, 0345 and 0700 h (total 800 mg/day), 3 days | 3 nights of sustained wakefulness | Attention (+) Executive function (+) |
Reyner and Horne (2000) [45] | n = 16 (2 studies); n = 8/study M age = 23 years (2) 8 Males; 8 Females | 200 mg caffeine (2–3 cups of coffee) Placebo f = single dose | Restricted sleep (study 1) and sleep deprivation (study 2) | Attention (+) Sleep restriction only (Study 1) |
Soar et al. (2016) [46] | n = 43 M age = 28.1 years 17 Males; 26 Females | 1 cup (50 mg caffeine) of caffeinated coffee Placebo (decaffeinated) f = single dose | Habitual caffeine intake | Information processing speed (+) Executive function (<>) Memory (+) |
Flavonoids | (n = 5 studies) | |||
Lamport et al. (2017) [47] | Study 1: n = 28 M age = 22 years (2.2) 4 Males; 24 Females Study 2: n = 16; M age = 22 years (1.9) 8 Males; 8 Females | 70.5 mg (500 mL) flavonoid drink (Tropicana Ruby Breakfast Juice; PepsiCo Inc.;) placebo f = single dose | Time since ingestion | Information processing speed (+) Memory (0) Attention (0) Executive function (0) |
Scholey et al. (2010) [48] | n = 30 M age = 21.9 years (0.6) 13 Males; 17 Females | Dairy cocoa drink (dose: 520 mg and 994 mg Cocoa Flavanols) placebo (nutrient-matched, low flavanol) f = single dose | High cognitive demand | Memory (<>) Information processing speed 994 mg only (+) at 30 and 40 min |
Watson et al. (2015) [49] | n = 36 M age = 24.8 years (3.9) M: F not disclosed | 525 ± 5 mg of polyphenols /60 kg body weight (anthocyanin-enriched blackcurrant extract; 1.66 g of DelCyan) or from 142 mL of blackcurrant fruit juice (Blackadder), Placebo (0 mg polyphenols) drink; f = single dose | No moderator | Attention (+) |
Wightman et al. (2012) [50] | n = 27 M age = 22 years 11 Males; 16 Females | 135 mg or 270 mg of epigallocatechin (green tea; DSM Nutritional Products) placebo (not disclosed) f = single dose (2 capsules) | No moderator | Information processing speed (0) Memory (0) Executive function (0) |
Gingko Biloba | (n = 7 studies) | |||
Elsabagh et al. (2005) [51] | Study 1: n = 52 M age = gingko 21.3 years (0.3); Placebo 21.7years(0.4) 26 Males; 26 Females Study 2: n = 40 M age = gingko 21.2 years (0.3); Placebo 21.5 (0.3) 21 Males; 19 Females | 120 mg of standardised gingko extract (LI 1370; Lichtwer Pharma) Placebo ND f = Study 1 single dose; Study 2 daily for 6 wk. | No moderator | Study 1: Attention (+) Memory (<>) Executive function (0) Study 2: Attention (0) Memory (0) Executive function (0) |
Kennedy et al. (2002) [53] | n = 20; M age = 21.2 years (3.9) 5 Males; 15 Females | 60 mg of gingko biloba (GK501, pharmaton), 100 mg P. ginseng extract (G115, Pharmaton), 160 mg ginkgo/ginseng combination (100 mg ginseng/60 mg ginkgo per capsule, Pharmaton) Placebo inert (ND) f = Single dose (6 capsules); 360 mg ginkgo, 400 mg ginseng, 960 mg ginkgo/ginseng, inert placebo | No moderator | Attention (<>) Memory (<>) Information processing speed (<>) |
Kennedy et al. (2000) [52] | n = 20 M age = 19.9 years (ND) 2 Males; 18 Females | 60 mg standardised gingko extract (GK501, Pharmanton,) Placebo inert (ND) f = Single dose (6 capsules); 120, 240, 360 mg gingko, or inert placebo | No moderator | Attention (<>) Memory (<>) Information processing speed (<>) |
Kennedy et al. (2007) [54] | n = 28; M age = 20.4 years (1.2) 10 Males; 18 Females | 120 mg standardised gingko biloba extract (60 mg ginkgo per capsule); complexed with 360 mg of phosphatidylserine OR 360 mg of phosphatidylcholine OR Placebo (Indena SpA, Milan) f = single dose (2 capsules) | Complexed extract with two phospholipids | Information processing speed (+); phosphatidylserine only Attention (0) Memory (<>) |
Moulton et al. (2001) [55] | n = 60 M age = Gingko: 20.6y (1.9); placebo: 20.4 years (1.8) 60 Males; 0 Females | 120 mg of BioGinkgo 27/7 (LI 1370) Placebo = fillers (Pharmanex Inc.) f = once daily (2 tablets), 5 days | No moderator | Memory (<>) Information processing speed (0) |
Scholey and Kennedy (2002) [56] | n = 20 (study 1) M age = 19.9 years (1.5) 2 Males; 18 Females | 120, 240, or 360 mg of standardized gingko biloba extract (GK501, Pharmaton SA, 60 mg ginkgo biloba/capsule) Placebo = ND f = single dose 6 capsules (60 mg/capsule) | Serial arithmetic tasks with different cognitive loads | Memory (<>) |
Ginseng | (n = 1 study) | subsequent from lit review | ||
Yeo et al. (2012) [57] | n = 15 M age = ND15 Males; 0 Females | 4500 mg/day of Korean red ginseng Placebo = ND f = 5 capsules (300 mg/capsule) 3 doses/day; 2 wk | No moderator | Attention (+); brain activity Memory (+); brain activity Information processing speed (0) |
Guarana / Guarana + Multivitamin | (n = 4 studies) | |||
Haskell et al. (2007) [58] | n = 26 M age = 21.4 years (0.6) 8 Males; 18 Females | 37.5, 75, 150 and 300 mg standardize guarana extract (PC-102, Pharmaton, SA) Placebo = ND f = single dose; 1 capsule/day; 6 days | No moderator | Memory (<>) Attention (0) Information processing speed (0) |
Kennedy et al. (2004) [59] | n = 28 M age = 21.4 years (0.8) 9 Males; 19 Females | 75 mg of a standardised guarana extract (Pharmaton) Placebo = ND f = single dose (2 capsules) | No moderator | Memory (<>) Attention (<>) Information processing speed (<>) Executive function (<>) |
Kennedy et al. (2008) [60] | n = 130 M age = 20.9 years (1.6) 60 Males; 70 Females | Berocca Boost® multivitamin + mineral complex (222.2 mg guarana) Placebo = inert effervescent tablet f = single dose, effervesce tablet in 200 mL water | Cognitive demand | Attention (+) Memory (0) Information processing speed (<>) Executive function (<>) |
Veasey et al. (2015) [61] | n = 40 M age = 21.4 years 40 Males; 0 Females | Berocca Boost® multivitamin + mineral complex (222.2 mg guarana) Placebo = inert effervescent tablet f = single dose, effervesce tablet in 250 mL water | Exercise | Attention (0) Memory (<>) Information processing speed (<>) |
Nitrate | (n = 2 studies) | |||
Thompson et al. (2014) [62] | n = 16 M age = 24.4 years (4.0) 16 Males; 0 Females | 5 mmol nitrate drink (450 mL beetroot juice, 50 mL low calorie blackcurrant cordial; James White Drinks, Ipswich UK) Placebo (50 mL blackcurrant cordial, 45 mL apple juice, 405 mL water) f = single dose | Mental fatigue and exercise intensities | Attention (0) Executive function (0) |
Wightman et al. (2015) [63] | n = 40 Mean = 21.3 years (0.7) 13 Males; 27 Females | 5.5 mmol nitrate drink (450 mL beetroot juice, 50 mL low calorie apple and blackcurrant cordial; James White Drinks, UK) Placebo (50 mL apple and blackcurrant cordial, 50 mL apple juice, 400 mL water) f = single dose | No moderator | Memory (<>) Attention (0) |
Omega-3 | (n = 2 studies) | |||
Bauer et al. (2014) [28] | n = 13 M age = 23.8 years (3.5) 4 Males; 9 Females | EPA-rich (590 mg EPA, 137 mg DHA; 4.3:1; Eye-QTM, Novasel); DHA-rich (417 mg DHA 159 mg EPA; 3:1; EfalexTM, Efamol) Placebo—NONE f = 6/day, 30 days | No moderator | Executive function (+) Memory (<>) |
Giles et al. (2015) [64] | n = 72 M age = Omega-3: 20.8 years (2.4); Placebo: 20.5 years (1.7) 27 Males; 45 Females | 2800 mg fish oil (1680 mg EPA, 1120 mg DHA; Compound Solutions, CT Placebo (2800 mg olive oil; Compound Solutions, CT) f = 7 capsules/day, 35 days | Stress | Attention (0) |
Prebiotics | (n = 1 study) | |||
Smith et al. (2015) [65] | n = 50 M age = 23.0 years (ND) 19 Males; 28 Females | 5 g oligofructose-enriched inulin powder (ORAFTI, Tienen, Belgium) Placebo powder (ORAFTI, Tienen, Belgium) f = single dose, added to decaffeinated tea or coffee | No moderator | Memory (<>) Information processing speed (0) Attention (0) Executive function (0) |
Tyrosine | (n = 8 studies) | |||
Colzato et al. (2013) [66] | n = 22 M age = 19.7 years (ND) 0 Males; 22 Females | 2 g tyrosine (Bulk Powders Ltd.) Placebo 2 g microcrystalline cellulose (Sigma-Aldrich) f = single dose, dissolved in 400 mL of orange juice | Cognitive stress | Memory (<>) |
Colzato et al. (2014) [67] | n = 22 M age = 20.4 years (ND) 0 Males; 22 Females | 2 g tyrosine (Bulk Powders Ltd.) Placebo 2 g microcrystalline cellulose (Sigma-Aldrich LLR, Zwijndrecht, Netherlands f = single dose, dissolved in 400 mL of orange juice | No moderator | Executive function (<>) |
Colzato et al. (2015) [68] | n = 32 M age = 19.4 years (ND) 8 Males; 24 Females | 2 g tyrosine (Bulk Powders Ltd.) Placebo 2 g microcrystalline cellulose (Sigma-Aldrich) f = single dose, dissolved in 400 mL of orange juice | No moderator | Executive function (<>) |
Coull et al. (2015) [69] | n = 8 M age = 21.0 years (1.0) 8 Males | Total of 150 mg/kg tyrosine (Myprotein.co.uk) mixed with 250 mL of sugar-free lemon squash (Tesco, UK) Placebo 250 mL of sugar-free lemon squash (Tesco, UK) f = single dose | Exercise in a hot environment | Vigilance (+) |
Kishore et al. (2013) [70] | n = 10 M age = not stated 10 Males; 0 Females | 100 mg/kg tyrosine 50 g low fat, high-energy bar (containing 6.5 g of L-tyrosine; Defence Food Research Laboratory, Defence Research and Development Organization, India) Placebo 50 g low fat, high-energy bar (Defence Food Research Laboratory, Defence Research and Development Organization, India) f = single dose | Heat stress | Brain Activity: Attention (+) Executive function (+) |
Steenbergen et al. (2015) [71] | n = 22 M age = 19.3 years (1.5) 0 Males; 22 Females | 2 g tyrosine (Bulk Powders Ltd.) Placebo 2 g microcrystalline cellulose (Sigma-Aldrich) f = single dose, dissolved in 400 mL of orange juice | No moderator | Executive function (+) |
Watson et al. (2012) [72] | n = 8 M age = 23.0 years (3.0) 8 Males; 0 Females | Total 150 mg/kg tyrosine (SHS Intl., Liverpool, UK) in a sugar-free fruit drink (Tesco Ltd., Chestnut, UK) Placebo sugar-free fruit drink (Tesco Ltd., Chestnut, UK) f = 2 doses 30 min apart to yield total of 150mg/kg | Exercise in a warm environment | Attention (0) Memory (0) Executive function (0) |
Jongkees et al. (2017) [73] | Study 1: n = 36 M age = Tyrosine 22.2 (2.4); Placebo 20.8 (1.9), 2 Males; 34 Females | 2 g tyrosine (Bulk Powders Ltd.) Placebo 2 g microcrystalline cellulose (Sigma-Aldrich) f = single dose, dissolved in 400ml of orange juice | Study 1: No Moderator | Study 1: Memory (+) |
B Vitamins | (n = 1 study) | |||
Bryan et al. (2002) [74] | n = 56 M age = 25.2 years (3.2) 0 Males; 56 Females | 750 µg folate, 15 µg B12, 75 mg B6 capsule (Technical Consultancy Services, NSW, Australia) Placebo microcrystalline cellulose, calcium phosphate, soy polysaccharide and magnesium capsule (Technical Consultancy Services, Australia) f = single dose, 5 weeks | No moderator | Information processing speed (0) Memory (0) Executive function (0) |
Higher-Order Cognitive Function | Lower-Order Cognitive Function |
---|---|
Information Processing Speed | Simple Reaction Time (RT) |
Choice/Complex RT | |
Psychomotor | Fine motor control |
Hand-eye coordination | |
Gross motor control | |
(Marksmanship involves first two) | |
Attention/Vigilance | Selective Attention |
Sustained Attention (vigilance) | |
Divided Attention | |
Target Detection | |
Memory | Procedural |
Episodic | |
Semantic | |
Prospective | |
Short-Term Memory | |
Visual Discrimination | |
Executive Function | Running Memory |
Working Memory Map Reading (orienteering) Inhibitory Control: | |
Self-Control (emotions) | |
Resistance to Interference | |
Response Inhibition | |
Logical reasoning | |
Planning | |
Cognitive Flexibility: Verbal Reasoning | |
Numerical Reasoning (math ability) | |
Spatial Reasoning | |
Problem Solving | |
Task Switching | |
Cognitive Shifting |
Cognitive Domain | |||||
---|---|---|---|---|---|
Dietary Supplement | Psychomotor | Information Processing Speed | Attention/ Vigilance | Memory | Executive Function |
Beta-alanine | +(20(1)) | <>(20(1)) | |||
Tyrosine | |||||
Stress | |||||
Heat | +(10(1)) | +(10(1)) a | |||
Cognitive | <>(22(1)) | ||||
Heat and Physical | <>(16(2)) | ?(16(2)) | <>(8(1)) | <>(8(1)) | |
No Stress | +(36(1)) | ||||
Omega-3 | ?(85(2)) | -(13(1)) | ?(85(2)) | ||
Vitamin B | -(56(1)) | <>(56(1)) | -(56(1)) | ||
Nitrate | |||||
Stress | |||||
Cognitive/Physical | <>(16(1)) | ||||
No Stress | <>(40(1)) | <>(40(1)) | |||
Caffeine | |||||
Stress | |||||
Sleep Deprivation | +(39(3)) | +(31(2)) | |||
No Stress | +(43(1)) | <>(20(1)) | ?(36(1)) | ?(46(2)) | ?(125(4)) |
Flavanoids | +(28(1)) | +(36(1)) | ?(57(2)) | <>(55(2)) | |
Gingko biloba | ?(120(4)) | <>(48(2)) | ?(240(7)) | ?(52(1)) | |
Ginseng | <>(15(1)) | +(15(1)) | |||
Guarana | |||||
Stress | |||||
Mental Fatigue | ?(130(1)) | +(130(1)) | <>(130(1)) | ?(130(1)) | |
Physical Fatigue | ?(40(1)) | <>(40(1)) | ?(40(1)) | ||
No Stress | ?(54(2)) | ?(54(2)) | ?(54(2)) | ?(28(1)) | |
Prebiotics | <>(29(1)) | <>(29(1)) | ?(29(1)) | <>(29(1)) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pomeroy, D.E.; Tooley, K.L.; Probert, B.; Wilson, A.; Kemps, E. A Systematic Review of the Effect of Dietary Supplements on Cognitive Performance in Healthy Young Adults and Military Personnel. Nutrients 2020, 12, 545. https://doi.org/10.3390/nu12020545
Pomeroy DE, Tooley KL, Probert B, Wilson A, Kemps E. A Systematic Review of the Effect of Dietary Supplements on Cognitive Performance in Healthy Young Adults and Military Personnel. Nutrients. 2020; 12(2):545. https://doi.org/10.3390/nu12020545
Chicago/Turabian StylePomeroy, Diane E., Katie L. Tooley, Bianka Probert, Alexandra Wilson, and Eva Kemps. 2020. "A Systematic Review of the Effect of Dietary Supplements on Cognitive Performance in Healthy Young Adults and Military Personnel" Nutrients 12, no. 2: 545. https://doi.org/10.3390/nu12020545
APA StylePomeroy, D. E., Tooley, K. L., Probert, B., Wilson, A., & Kemps, E. (2020). A Systematic Review of the Effect of Dietary Supplements on Cognitive Performance in Healthy Young Adults and Military Personnel. Nutrients, 12(2), 545. https://doi.org/10.3390/nu12020545