Maternal Consumption of a Low-Isoflavone Soy Protein Isolate Diet Accelerates Chemically Induced Hepatic Carcinogenesis in Male Rat Offspring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Tissue Sampling and Macroscopic Observations
2.3. Liver Histology
2.4. Serum Biochemical Analyses
2.5. Tissue Extract Preparation and Immunoblotting
2.6. Quantitative Real-Time PCR (qRT-PCR) Analyses
2.7. Statistical Analyses
3. Results
3.1. Effects of Maternal Diet on Mortality Rate and Body Weight in DEN-Treated Rat Offspring
3.2. Effects of Maternal Diet on HCC Incidence and Nodule Development in DEN-Treated Rat Offspring
3.3. Effects of Maternal Diet on Liver Damage of DEN-Treated Rat Offspring
3.4. Effects of Maternal Diet on Cholesterol Metabolism in DEN-Treated Rat Offspring
3.5. Effects of Maternal Diet on Cell Proliferation and Angiogenesis in the Liver of DEN-Treated Rat Offspring
3.6. Effects of Maternal Diet on Activation of Anti-Apoptotic Signaling Pathway in DEN-Treated Rat Offspring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dolinoy, D.C.; Jirtle, R.L. Environmental epigenomics in human health and disease. Environ. Mol. Mutagen. 2008, 49, 4–8. [Google Scholar] [CrossRef]
- McMullen, S.; Swali, A. Common phenotypes and the developmental origins of disease. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 398–404. [Google Scholar] [CrossRef]
- Langley-Evans, S.C. Nutrition in early life and the programming of adult disease: A review. J. Hum. Nutr. Diet. 2015, 28. [Google Scholar] [CrossRef]
- Wesolowski, S.R.; Kasmi, K.C.; Jonscher, K.R.; Friedman, J.E. Developmental origins of NAFLD: A womb with a clue. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Messina, M. Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef] [Green Version]
- Andres, S.; Abraham, K.; Appel, K.E.; Lampen, A. Risks and benefits of dietary isoflavones for cancer. Crit. Rev. Toxicol. 2011, 41, 463–506. [Google Scholar] [CrossRef]
- Warri, A.; Saarinen, N.M.; Makela, S.; Hilakivi-Clarke, L. The role of early life genistein exposures in modifying breast cancer risk. Br. J. Cancer 2008, 98, 1485–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, R.; Hennings, L.J.; Badger, T.M.; Simmen, F.A. Fetal programming of colon cancer in adult rats: Correlations with altered neonatal growth trajectory, circulating IGF-I and IGF binding proteins, and testosterone. J. Endocrinol. 2007, 195, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Eason, R.R.; Geng, Y.; Till, S.R.; Badger, T.M.; Simmen, R.C. In utero exposure to maternal diets containing soy protein isolate, but not genistein alone, protects young adult rat offspring from NMU-induced mammary tumorigenesis. Carcinogenesis 2007, 28, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berasain, C.; Castillo, J.; Perugorria, M.J.; Latasa, M.U.; Prieto, J.; Avila, M.A. Inflammation and liver cancer: New molecular links. Ann. N. Y. Acad Sci. 2009, 1155, 206–221. [Google Scholar] [CrossRef] [PubMed]
- Feo, F.; Frau, M.; Tomasi, M.L.; Brozzetti, S.; Pascale, R.M. Genetic and epigenetic control of molecular alterations in hepatocellular carcinoma. Exp. Biol. Med. 2009, 234, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Teufel, A.; Staib, F.; Kanzler, S.; Weinmann, A.; Schulze-Bergkamen, H.; Galle, P.R. Genetics of hepatocellular carcinoma. World J. Gastroenterol. 2007, 13, 2271–2282. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Chen, X.; Chan, C.Y.; Li, D.; Yuan, C.; Yu, F.; Lin, M.C.; Yew, D.T.; Kung, H.F.; Lai, L. Two-dimensional differential gel electrophoresis/analysis of diethylnitrosamine induced rat hepatocellular carcinoma. Int. J. Cancer 2008, 122, 2682–2688. [Google Scholar] [CrossRef]
- Kang, J.S.; Wanibuchi, H.; Morimura, K.; Gonzalez, F.J.; Fukushima, S. Role of CYP2E1 in diethylnitrosamine-induced hepatocarcinogenesis in vivo. Cancer Res. 2007, 67, 11141–11146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verna, L.; Whysner, J.; Williams, G.M. N-nitrosodiethylamine mechanistic data and risk assessment: Bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol. Ther. 1996, 71, 57–81. [Google Scholar] [CrossRef]
- Won, S.B.; Han, A.; Kwon, Y.H. Maternal consumption of low-isoflavone soy protein isolate alters hepatic gene expression and liver development in rat offspring. J. Nutr. Biochem. 2017, 42, 51–61. [Google Scholar] [CrossRef]
- Han, A.; Won, S.B.; Kwon, Y.H. Different Effects of Maternal Low-Isoflavone Soy Protein and Genistein Consumption on Hepatic Lipid Metabolism of 21-Day-Old Male Rat Offspring. Nutrients 2017, 9, 1039. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Park, D.H.; Shin, J.W.; Park, S.K.; Seo, J.N.; Li, L.; Jang, J.J.; Lee, M.J. Diethylnitrosamine (DEN) induces irreversible hepatocellular carcinogenesis through overexpression of G1/S-phase regulatory proteins in rat. Toxicol. Lett. 2009, 191, 321–326. [Google Scholar] [CrossRef]
- Park, S.T.; Jang, J.W.; Kim, G.D.; Park, J.A.; Hur, W.; Woo, H.Y.; Kim, J.D.; Kwon, J.H.; Yoo, C.R.; Bae, S.H.; et al. Beneficial effect of metronomic chemotherapy on tumor suppression and survival in a rat model of hepatocellular carcinoma with liver cirrhosis. Cancer Chemother Pharmacol. 2010, 65, 1029–1037. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Khalaf, A.M.; Fuentes, D.; Morshid, A.I.; Burke, M.R.; Kaseb, A.O.; Hassan, M.; Hazle, J.D.; Elsayes, K.M. Role of Wnt/beta-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J. Hepatocell Carcinoma 2018, 5, 61–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.J.; Ferrell, L.D.; Gill, R.M. Expression of liver fatty acid binding protein in hepatocellular carcinoma. Hum. Pathol. 2016, 50, 135–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, H.J.; Lim, S.C.; Kitisin, K.; Jogunoori, W.; Tang, Y.; Marshall, M.B.; Mishra, B.; Kim, T.H.; Cho, K.H.; Kim, S.S.; et al. Hepatocellular cancer arises from loss of transforming growth factor beta signaling adaptor protein embryonic liver fodrin through abnormal angiogenesis. Hepatology 2008, 48, 1128–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, J.A.; Mathers, J.C. Diet induced epigenetic changes and their implications for health. Acta Physiol. 2011, 202, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Xia, Y.; Li, J.; Deng, L.; Zhao, L.; Shi, J.; Wang, X.; Sun, B. High expression levels of IKKalpha and IKKbeta are necessary for the malignant properties of liver cancer. Int. J. Cancer 2010, 126, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Naugler, W.E.; Sakurai, T.; Kim, S.; Maeda, S.; Kim, K.; Elsharkawy, A.M.; Karin, M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007, 317, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Waza, A.A.; Hamid, Z.; Ali, S.; Bhat, S.A.; Bhat, M.A. A review on heme oxygenase-1 induction: Is it a necessary evil. Inflamm. Res. 2018, 67, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Thullberg, M.; Grasl-Kraupp, B.; Hogberg, J.; Garberg, P. Changes in liver fatty acid-binding protein in rat enzyme-altered foci. Cancer Lett. 1998, 128, 1–10. [Google Scholar] [CrossRef]
- Karin, M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol. 2009, 1, a000141. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Sheng, H.; Saxena, R.; Skill, N.J.; Bhat-Nakshatri, P.; Yu, M.; Nakshatri, H.; Maluccio, M.A. NF-kappaB inhibition in human hepatocellular carcinoma and its potential as adjunct to sorafenib based therapy. Cancer Lett. 2009, 278, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Zou, C.; Cheng, W.; Li, Q.; Han, Z.; Wang, X.; Jin, J.; Zou, J.; Liu, Z.; Zhou, Z.; et al. Heme oxygenase-1 retards hepatocellular carcinoma progression through the microRNA pathway. Oncol. Rep. 2016, 36, 2715–2722. [Google Scholar] [CrossRef]
- Won, S.B.; Kwon, Y.H. Maternal Consumption of Low-Isoflavone Soy Protein Isolate Confers the Increased Predisposition to Alcoholic Liver Injury in Adult Rat Offspring. Nutrients 2018, 10, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooi, K.; Shiraki, K.; Sakurai, Y.; Morishita, Y.; Nobori, T. Clinical significance of abnormal lipoprotein patterns in liver diseases. Int. J. Mol. Med. 2005, 15, 655–660. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, X.; Wu, C.; Qin, X.; Luo, G.; Deng, H.; Lu, M.; Xu, B.; Li, M.; Ji, M.; et al. Increased plasma apoM levels in the patients suffered from hepatocellular carcinoma and other chronic liver diseases. Lipids Health Dis. 2008, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Wang, D.; Qiao, S.; Wu, X.; Cao, S.; Wang, L.; Su, X.; Li, L. Metabolic and microbial signatures in rat hepatocellular carcinoma treated with caffeic acid and chlorogenic acid. Sci. Rep. 2017, 7, 4508. [Google Scholar] [CrossRef]
- Badger, T.M.; Ronis, M.J.; Hakkak, R.; Rowlands, J.C.; Korourian, S. The health consequences of early soy consumption. J. Nutr. 2002, 132, 559S–565S. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Simmen, F.A.; Xiao, R.; Simmen, R.C. Expression profiling of rat mammary epithelial cells reveals candidate signaling pathways in dietary protection from mammary tumors. Physiol. Genom. 2007, 30, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Diet (Maternal/Offspring) | ||||
---|---|---|---|---|
CAS/CON | CAS/DEN | SPI/CON | SPI/DEN | |
N1 (3 ≤ x < 5 mm) | 0 ± 0 | 45.2 ± 7.0 * | 0 ± 0 | 63.7 ± 8.2 *# |
N2 (5 ≤ x <10 mm) | 0 ± 0 | 6.1 ± 1.4 * | 0 ± 0 | 10.0 ± 2.5 * |
N3 (x ≥ 10 mm) | 0 ± 0 | 0.4 ± 0.2 | 0 ± 0 | 0.4 ± 0.3 |
Multiplicity | 0 ± 0 | 51.8 ± 8.0 * | 0 ± 0 | 74.1 ± 8.5 *# |
Diet (Maternal/Offspring) | ||||
---|---|---|---|---|
CAS/CON | CAS/DEN | SPI/CON | SPI/DEN | |
AST (IU/L) | 52.9 ± 2.0 | 92.3 ± 11.6 * | 54.2 ± 2.6 | 127.6 ± 27.6 * |
ALT (IU/L) | 19.5 ± 1.3 | 49.7 ± 3.6 * | 20.4 ± 1.1 | 77.0 ± 29.9 * |
Total bilirubin (mg/dL) | 0.45 ± 0.02 | 1.24 ± 0.22 * | 0.47 ± 0.02 | 1.73 ± 0.28 * |
Total protein (g/dL) | 6.55 ± 0.18 | 6.36 ± 0.12 | 6.40 ± 0.10 | 5.73 ± 0.09 *# |
Albumin (g/dL) | 4.83 ± 0.26 | 4.28 ± 0.09 | 4.87 ± 0.33 | 3.95 ± 0.18 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Won, S.B.; Kwon, Y.H. Maternal Consumption of a Low-Isoflavone Soy Protein Isolate Diet Accelerates Chemically Induced Hepatic Carcinogenesis in Male Rat Offspring. Nutrients 2020, 12, 571. https://doi.org/10.3390/nu12020571
Choi J, Won SB, Kwon YH. Maternal Consumption of a Low-Isoflavone Soy Protein Isolate Diet Accelerates Chemically Induced Hepatic Carcinogenesis in Male Rat Offspring. Nutrients. 2020; 12(2):571. https://doi.org/10.3390/nu12020571
Chicago/Turabian StyleChoi, Jihye, Sae Bom Won, and Young Hye Kwon. 2020. "Maternal Consumption of a Low-Isoflavone Soy Protein Isolate Diet Accelerates Chemically Induced Hepatic Carcinogenesis in Male Rat Offspring" Nutrients 12, no. 2: 571. https://doi.org/10.3390/nu12020571
APA StyleChoi, J., Won, S. B., & Kwon, Y. H. (2020). Maternal Consumption of a Low-Isoflavone Soy Protein Isolate Diet Accelerates Chemically Induced Hepatic Carcinogenesis in Male Rat Offspring. Nutrients, 12(2), 571. https://doi.org/10.3390/nu12020571