The Clustering of Low Diet Quality, Low Physical Fitness, and Unhealthy Sleep Pattern and Its Association with Changes in Cardiometabolic Risk Factors in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Dietary Assessment
2.3. Physical Fitness Measurements
2.4. Sleep Pattern
2.5. Confounders
2.6. Physical Examinations and Blood Tests
2.7. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. The Clustering of Unhealthy Factors
3.3. Individual Unhealthy Factors and Changes in CMRS
3.4. Clustering of Unhealthy Factors and Changes in CMRS
3.5. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Spring, B.; Moller, A.C.; Coons, M.J. Multiple health behaviours: Overview and implications. J. Public Health 2012, 34 (Suppl. S1), i3–i10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leech, R.M.; McNaughton, S.A.; Timperio, A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voracova, J.; Badura, P.; Hamrik, Z.; Holubcikova, J.; Sigmund, E. Unhealthy eating habits and participation in organized leisure-time activities in Czech adolescents. Eur. J. Pediatr. 2018, 177, 1505–1513. [Google Scholar] [CrossRef]
- Condello, G.; Puggina, A.; Aleksovska, K.; Buck, C.; Burns, C.; Cardon, G.; Carlin, A.; Simon, C.; Ciarapica, D.; Coppinger, T.; et al. Behavioral determinants of physical activity across the life course: A “Determinants of Diet and Physical Activity” (DEDIPAC) umbrella systematic literature review. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleddens, E.F.; Kroeze, W.; Kohl, L.F.; Bolten, L.M.; Velema, E.; Kaspers, P.J.; Brug, J.; Kremers, S.P. Determinants of dietary behavior among youth: An umbrella review. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaput, J.P. Sleep patterns, diet quality and energy balance. Physiol. Behav. 2014, 134, 86–91. [Google Scholar] [CrossRef]
- Chaput, J.P.; Dutil, C. Lack of sleep as a contributor to obesity in adolescents: Impacts on eating and activity behaviors. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 103. [Google Scholar] [CrossRef] [Green Version]
- Spruyt, K.; Molfese, D.L.; Gozal, D. Sleep duration, sleep regularity, body weight, and metabolic homeostasis in school-aged children. Pediatrics 2011, 127, e345–e352. [Google Scholar] [CrossRef] [Green Version]
- Chaput, J.P.; Gray, C.E.; Poitras, V.J.; Carson, V.; Gruber, R.; Olds, T.; Weiss, S.K.; Connor Gorber, S.; Kho, M.E.; Sampson, M.; et al. Systematic review of the relationships between sleep duration and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S266–S282. [Google Scholar] [CrossRef]
- Kelishadi, R.; Heshmat, R.; Mansourian, M.; Motlagh, M.E.; Ziaodini, H.; Taheri, M.; Ahadi, Z.; Aminaee, T.; Goodarzi, A.; Mansourian, M.; et al. Association of dietary patterns with continuous metabolic syndrome in children and adolescents; a nationwide propensity score-matched analysis: The CASPIAN-V study. Diabetol. Metab. Syndr. 2018, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Pinto, A.; Santos, A.C.; Lopes, C.; Oliveira, A. Dietary patterns at 7 year-old and their association with cardiometabolic health at 10 year-old. Clin. Nutr. 2019. [Google Scholar] [CrossRef]
- Shang, X.; Li, Y.; Liu, A.; Zhang, Q.; Hu, X.; Du, S.; Ma, J.; Xu, G.; Li, Y.; Guo, H.; et al. Dietary pattern and its association with the prevalence of obesity and related cardiometabolic risk factors among Chinese children. PLoS ONE 2012, 7, e43183. [Google Scholar] [CrossRef]
- Pala, V.; Lissner, L.; Hebestreit, A.; Lanfer, A.; Sieri, S.; Siani, A.; Huybrechts, I.; Kambek, L.; Molnar, D.; Tornaritis, M.; et al. Dietary patterns and longitudinal change in body mass in European children: A follow-up study on the IDEFICS multicenter cohort. Eur. J. Clin. Nutr. 2013, 67, 1042–1049. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Churchward-Venne, T.A.; Tieland, M.; Verdijk, L.B.; Leenders, M.; Dirks, M.L.; de Groot, L.C.; van Loon, L.J. There Are No Nonresponders to Resistance-Type Exercise Training in Older Men and Women. J. Am. Med. Dir. Assoc. 2015, 16, 400–411. [Google Scholar] [CrossRef]
- Kaminsky, L.A.; Arena, R.; Beckie, T.M.; Brubaker, P.H.; Church, T.S.; Forman, D.E.; Franklin, B.A.; Gulati, M.; Lavie, C.J.; Myers, J.; et al. The importance of cardiorespiratory fitness in the United States: The need for a national registry: A policy statement from the American Heart Association. Circulation 2013, 127, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Despres, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Hurtig-Wennlof, A.; Ruiz, J.R.; Harro, M.; Sjostrom, M. Cardiorespiratory fitness relates more strongly than physical activity to cardiovascular disease risk factors in healthy children and adolescents: The European Youth Heart Study. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 575–581. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Zhang, Q.; Liu, A.; Fang, H.; Hao, L.; Duan, Y.; Xu, H.; Shang, X.; Ma, J.; et al. The nutrition-based comprehensive intervention study on childhood obesity in China (NISCOC): A randomised cluster controlled trial. BMC Public Health 2010, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, G.; Pan, X. China Food Composition; Peking Medical University: Beijing, China, 2009. [Google Scholar]
- Research Group on Chinese School Students Physical Fitness and Health. Report on the Physical Fitness and Health Surveillance of Chinese School Students in 2014; Research Group on Chinese School Students Physical Fitness and Health: Beijing, China, 2016. [Google Scholar]
- Liu, A.L.; Ma, G.S.; Zhang, Q.; Ma, W.J. Reliability and validity of a 7-day physical activity questionnaire for elementary students. Zhonghua Liu Xing Bing Xue Za Zhi = Zhonghua Liuxingbingxue Zazhi 2003, 24, 901–904. [Google Scholar]
- Miller, A.L.; Kaciroti, N.; Lebourgeois, M.K.; Chen, Y.P.; Sturza, J.; Lumeng, J.C. Sleep timing moderates the concurrent sleep duration-body mass index association in low-income preschool-age children. Acad. Pediatr. 2014, 14, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Paruthi, S.; Brooks, L.J.; D’Ambrosio, C.; Hall, W.A.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.; Nichols, C.; Quan, S.F.; et al. Recommended Amount of Sleep for Pediatric Populations: A Consensus Statement of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2016, 12, 785–786. [Google Scholar] [CrossRef]
- Deurenberg, P.; van der Kooy, K.; Leenen, R.; Weststrate, J.A.; Seidell, J.C. Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: A cross-validation study. Int. J. Obes. 1991, 15, 17–25. [Google Scholar]
- Eisenmann, J.C. On the use of a continuous metabolic syndrome score in pediatric research. Cardiovasc. Diabetol. 2008, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Howe, A.S.; Skidmore, P.M.; Parnell, W.R.; Wong, J.E.; Lubransky, A.C.; Black, K.E. Cardiorespiratory fitness is positively associated with a healthy dietary pattern in New Zealand adolescents. Public Health Nutr. 2016, 19, 1279–1287. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, P.; Black, K.E.; Haszard, J.J.; Skeaff, S.; Stoner, L.; Davidson, B.; Harrex, H.A.L.; Meredith-Jones, K.; Quigg, R.; Wong, J.E.; et al. Dietary Patterns, Cardiorespiratory and Muscular Fitness in 9(-)11-Year-Old Children from Dunedin, New Zealand. Nutrients 2018, 10, 887. [Google Scholar] [CrossRef] [Green Version]
- Golley, R.K.; Maher, C.A.; Matricciani, L.; Olds, T.S. Sleep duration or bedtime? Exploring the association between sleep timing behaviour, diet and BMI in children and adolescents. Int. J. Obes. 2013, 37, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Thivel, D.; Tremblay, M.S.; Katzmarzyk, P.T.; Fogelholm, M.; Hu, G.; Maher, C.; Maia, J.; Olds, T.; Sarmiento, O.L.; Standage, M.; et al. Associations between meeting combinations of 24-hour movement recommendations and dietary patterns of children: A 12-country study. Prev. Med. 2019, 118, 159–165. [Google Scholar] [CrossRef]
- Dolezal, B.A.; Neufeld, E.V.; Boland, D.M.; Martin, J.L.; Cooper, C.B. Interrelationship between Sleep and Exercise: A Systematic Review. Adv. Prev. Med. 2017, 2017, 1364387. [Google Scholar] [CrossRef]
- Lin, Y.; Tremblay, M.S.; Katzmarzyk, P.T.; Fogelholm, M.; Hu, G.; Lambert, E.V.; Maher, C.; Maia, J.; Olds, T.; Sarmiento, O.L.; et al. Temporal and bi-directional associations between sleep duration and physical activity/sedentary time in children: An international comparison. Prev. Med. 2018, 111, 436–441. [Google Scholar] [CrossRef]
- Ekstedt, M.; Nyberg, G.; Ingre, M.; Ekblom, O.; Marcus, C. Sleep, physical activity and BMI in six to ten-year-old children measured by accelerometry: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Vincent, G.E.; Barnett, L.M.; Lubans, D.R.; Salmon, J.; Timperio, A.; Ridgers, N.D. Temporal and bidirectional associations between physical activity and sleep in primary school-aged children. Appl. Physiol. Nutr. Metab. 2017, 42, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Bleich, S.N.; Vercammen, K.A.; Zatz, L.Y.; Frelier, J.M.; Ebbeling, C.B.; Peeters, A. Interventions to prevent global childhood overweight and obesity: A systematic review. Lancet Diabetes Endocrinol. 2018, 6, 332–346. [Google Scholar] [CrossRef]
- Perez-Rodrigo, C.; Gil, A.; Gonzalez-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Aranceta-Bartrina, J. Clustering of Dietary Patterns, Lifestyles, and Overweight among Spanish Children and Adolescents in the ANIBES Study. Nutrients 2015, 8, 11. [Google Scholar] [CrossRef]
No Unhealthy Factor | Low Diet Quality Only | Low CRF Only | Unhealthy Sleep Pattern Only | Low CRF-Unhealthy Sleep Pattern | Low Diet Quality-Unhealthy Sleep Pattern | Low Diet Quality-Low CRF | Three Unhealthy Factors | p-Value * | |
---|---|---|---|---|---|---|---|---|---|
Age (years) | 9.24 ± 1.02 † | 9.35 ± 1.16 | 9.27 ± 1.11 | 9.77 ± 1.19 | 9.76 ± 1.20 | 9.83 ± 1.25 | 9.57 ± 1.22 | 9.79 ± 1.25 | <0.0001 |
Sex | <0.0001 | ||||||||
Boys | 311 (36.1) ‡ | 263 (84.0) | 290 (30.6) | 312 (41.3) | 278 (30.9) | 183 (79.6) | 534 (73.4) | 418 (72.3) | |
Girls | 550 (63.9) | 50 (16.0) | 658 (69.4) | 444 (58.7) | 623 (69.1) | 47 (20.4) | 194 (26.6) | 160 (27.7) | |
Puberty | 0.95 | ||||||||
No | 818 (95.0) | 302 (96.5) | 872 (92.0) | 646 (85.4) | 796 (88.3) | 212 (92.2) | 690 (94.8) | 550 (95.2) | |
Yes | 43 (5.0) | 11 (3.5) | 76 (8.0) | 110 (14.6) | 105 (11.7) | 18 (7.8) | 38 (5.2) | 28 (4.8) | |
Body composition | |||||||||
BMI (kg/m2) | 16.40 ± 2.52 | 16.98 ± 2.54 | 17.34 ± 3.29 | 16.41 ± 2.37 | 17.51 ± 3.32 | 17.10 ± 3.06 | 17.70 ± 3.49 | 18.19 ± 3.82 | <0.0001 |
WC (cm) | 55.58 ± 6.70 | 57.74 ± 7.15 | 58.39 ± 9.10 | 56.54 ± 6.56 | 59.76 ± 9.29 | 58.55 ± 8.39 | 59.95 ± 9.71 | 61.83 ± 10.83 | <0.0001 |
PBF (%) | 23.09 ± 4.59 | 22.26 ± 4.31 | 25.34 ± 4.63 | 22.35 ± 4.54 | 25.17 ± 4.80 | 21.86 ± 4.84 | 24.24 ± 4.78 | 24.46 ± 5.02 | <0.0001 |
Blood pressure | |||||||||
SBP (mm Hg) | 99.37 ± 10.35 | 99.11 ± 10.96 | 100.38 ± 10.78 | 99.76 ± 10.84 | 101.23 ± 10.69 | 100.29 ± 11.46 | 101.73 ± 10.80 | 102.23 ± 10.46 | <0.0001 |
DBP (mm Hg) | 61.98 ± 7.78 | 61.75 ± 8.48 | 63.89 ± 8.90 | 63.96 ± 9.49 | 65.99 ± 9.46 | 62.86 ± 9.45 | 65.07 ± 9.14 | 65.36 ± 8.66 | <0.0001 |
MAP (mm Hg) | 74.43 ± 7.98 | 74.19 ± 8.60 | 76.04 ± 8.73 | 75.88 ± 9.09 | 77.73 ± 9.07 | 75.32 ± 9.31 | 77.26 ± 9.01 | 77.64 ± 8.58 | <0.0001 |
Lipids | |||||||||
TC (mmol/L) | 3.96 ± 0.80 | 3.92 ± 0.81 | 4.05 ± 0.73 | 4.30 ± 0.86 | 4.30 ± 0.85 | 4.04 ± 0.79 | 3.97 ± 0.68 | 3.94 ± 0.68 | 0.68 |
HDL-C (mmol/L) | 1.45 ± 0.29 | 1.48 ± 0.32 | 1.44 ± 0.29 | 1.51 ± 0.31 | 1.49 ± 0.32 | 1.49 ± 0.28 | 1.45 ± 0.30 | 1.44 ± 0.31 | 0.78 |
LDL-C (mmol/L) | 2.23 ± 0.60 | 2.20 ± 0.62 | 2.16 ± 0.65 | 2.23 ± 0.63 | 2.19 ± 0.65 | 2.14 ± 0.63 | 1.94 ± 0.63 | 1.92 ± 0.60 | <0.0001 |
TG (mmol/L) | 0.84 ± 0.46 | 0.83 ± 0.48 | 0.83 ± 0.42 | 0.81 ± 0.40 | 0.85 ± 0.47 | 0.72 ± 0.34 | 0.80 ± 0.42 | 0.83 ± 0.51 | 0.0927 |
Glucose and insulin | |||||||||
Fasting glucose (mmol/L) | 4.58 ± 0.52 | 4.62 ± 0.60 | 4.47 ± 0.56 | 4.61 ± 0.45 | 4.51 ± 0.55 | 4.62 ± 0.53 | 4.44 ± 0.57 | 4.52 ± 0.59 | 0.0001 |
Log insulin | 1.57 ± 0.55 | 1.51 ± 0.53 | 1.62 ± 0.64 | 1.67 ± 0.60 | 1.81 ± 0.65 | 1.62 ± 0.56 | 1.61 ± 0.60 | 1.65 ± 0.63 | 0.0004 |
CMRS | −0.17 ± 2.27 | −0.29 ± 2.57 | −0.08 ± 2.41 | −0.46 ± 2.31 | −0.14 ± 2.37 | −0.51 ± 2.18 | −0.20 ± 2.40 | 0.07 ± 2.57 | 0.35 |
Physical activity (MET/week) | 643.3 ± 597.6 | 753.2 ± 681.0 | 652.4 ± 596.2 | 557.9 ± 590.8 | 606.7 ± 598.4 | 639.5 ± 631.8 | 655.9 ± 491.6 | 609.5 ± 488.2 | 0.14 |
Dietary intake | |||||||||
Energy (kcal/day) | 1176.78 ± 530.43 | 1377.66 ± 543.52 | 1193.11 ± 569.28 | 1385.63 ± 589.20 | 1305.41 ± 613.17 | 1484.70 ± 644.60 | 1222.03 ± 578.79 | 1258.06 ± 562.18 | 0.0164 |
Protein intake (g/100 Kcal/day) | 4.69 ± 1.24 | 4.25 ± 1.05 | 4.36 ± 1.25 | 4.51 ± 1.18 | 4.29 ± 1.08 | 4.13 ± 1.01 | 3.99 ± 0.87 | 4.13 ± 0.93 | <0.0001 |
Fat intake (g/100 Kcal/day) | 2.93 ± 1.08 | 2.87 ± 1.10 | 2.95 ± 1.25 | 2.88 ± 1.06 | 2.90 ± 1.13 | 2.83 ± 1.15 | 3.06 ± 1.20 | 3.10 ± 1.19 | 0.0027 |
Carbohydrate intake (g/100 Kcal/day) | 13.82 ± 2.93 | 14.40 ± 2.77 | 14.15 ± 3.20 | 14.15 ± 2.82 | 14.37 ± 2.91 | 14.64 ± 2.77 | 14.30 ± 2.90 | 14.10 ± 2.92 | 0.0105 |
Fibre intake (g/100 Kcal/day) | 0.51 ± 0.29 | 0.57 ± 0.32 | 0.52 ± 0.34 | 0.47 ± 0.27 | 0.48 ± 0.26 | 0.57 ± 0.31 | 0.59 ± 0.44 | 0.59 ± 0.36 | <0.0001 |
Healthy Factor (Participants) | Unhealthy Factor (Participants) | Percentage of Unhealthy Factor | Multivariable-Adjusted Analysis * | ||
---|---|---|---|---|---|
OR (95% CI) | p-Value | ||||
CRF at baseline | High diet quality at baseline | Low diet quality at baseline | |||
High | 1617 | 543 | 25.14 | Reference | <0.0001 |
Low | 1849 | 1306 | 41.39 | 2.43 (2.11–2.79) | |
CRF at baseline | High diet quality at follow-up | Low diet quality at follow-up | |||
High | 1452 | 305 | 17.36 | Reference | <0.0001 |
Low | 1691 | 552 | 24.61 | 1.60 (1.33–1.91) | |
CRF at baseline | Healthy sleep pattern at baseline | Unhealthy sleep pattern at baseline | |||
High | 1174 | 986 | 45.65 | Reference | 0.12 |
Low | 1676 | 1479 | 46.88 | 1.10 (0.98–1.23) | |
CRF at baseline | Healthy sleep pattern at follow-up | Unhealthy sleep pattern at follow-up | |||
High | 1035 | 1000 | 49.14 | Reference | <0.0001 |
Low | 1667 | 1182 | 41.49 | 0.75 (0.66–0.84) | |
CRF at baseline | High CRF at follow-up | Low CRF at follow-up | |||
High | 1243 | 497 | 28.56 | Reference | <0.0001 |
Low | 551 | 1011 | 64.72 | 4.24 (3.62–4.96) | |
Sleep pattern at baseline | High diet quality at baseline | Low diet quality at baseline | |||
Healthy | 1809 | 1041 | 36.53 | Reference | 0.00042 |
Unhealthy | 1657 | 808 | 32.78 | 0.79 (0.69–0.90) | |
Sleep pattern at baseline | High diet quality at follow-up | Low diet quality at follow-up | |||
Healthy | 1670 | 492 | 22.76 | Reference | 0.01178 |
Unhealthy | 1473 | 365 | 19.86 | 0.80 (0.67–0.95) | |
Sleep pattern at baseline | High CRF at follow-up | Low CRF at follow-up | |||
Healthy | 1013 | 722 | 41.61 | Reference | <0.0001 |
Unhealthy | 781 | 786 | 50.16 | 1.52 (1.30–1.77) | |
Sleep pattern at baseline | Healthy sleep pattern at follow-up | Unhealthy sleep pattern at follow-up | |||
Healthy | 1921 | 695 | 26.57 | Reference | <0.0001 |
Unhealthy | 781 | 1487 | 65.56 | 4.78 (4.21–5.44) | |
Diet quality at baseline | High CRF at follow-up | Low CRF at follow-up | |||
High | 1326 | 1110 | 45.57 | Reference | 0.23 |
Low | 468 | 398 | 45.96 | 0.89 (0.75–1.07) | |
Diet quality at baseline | Healthy sleep pattern at follow-up | Unhealthy sleep pattern at follow-up | |||
High | 1681 | 1551 | 47.99 | Reference | <0.0001 |
Low | 1021 | 631 | 38.20 | 0.57 (0.50–0.66) | |
Diet quality at baseline | High diet quality at follow-up | Low diet quality at follow-up | |||
High | 2415 | 358 | 12.91 | Reference | <0.0001 |
Low | 728 | 499 | 40.67 | 2.65 (2.22–3.17) |
Change in CMRS | p-Value * | ||
---|---|---|---|
Healthy | Unhealthy | ||
Diet quality | |||
Participants | 2979 | 1533 | |
Mean ± SE, Model 1 † | −0.43 ± 0.11 | 0.31 ± 0.12 | <0.0001 |
Mean ± SE, Model 2 ‡ | −0.29 ± 0.11 | 0.35 ± 0.11 | <0.0001 |
Mean ± SE, Model 3 § | −0.20 ± 0.14 | 0.43 ± 0.14 | <0.0001 |
Cardiorespiratory fitness | |||
Participants | 1891 | 2621 | |
Mean ± SE, Model 1 | −0.62 ± 0.12 | 0.12 ± 0.11 | <0.0001 |
Mean ± SE, Model 2 | −0.37 ± 0.11 | 0.15 ± 0.10 | <0.0001 |
Mean ± SE, Model 3 | −0.30 ± 0.14 | 0.23 ± 0.13 | <0.0001 |
Sleep pattern | |||
Participants | 2425 | 2087 | |
Mean ± SE, Model 1 | −0.28 ± 0.12 | -0.01 ± 0.12 | 0.0001 |
Mean ± SE, Model 2 | −0.16 ± 0.11 | 0.08 ± 0.11 | 0.0002 |
Mean ± SE, Model 3 | −0.05 ± 0.14 | 0.20 ± 0.14 | 0.0001 |
No Unhealthy Factor | Low Diet Quality Only | Low CRF Only | Unhealthy Sleep Pattern Only | Low CRF-Unhealthy Sleep Pattern | Low Diet Quality-Unhealthy Sleep Pattern | Low Diet Quality-Low CRF | Three Unhealthy Factors | p-Value * | |
---|---|---|---|---|---|---|---|---|---|
Body composition Change in BMI | |||||||||
Participants | 847 | 308 | 938 | 744 | 897 | 226 | 718 | 571 | |
Mean ± SE † | 0.07 ± 0.03 | 0.12 ± 0.04 | 0.15 ± 0.03 | 0.11 ± 0.03 | 0.18 ± 0.03 | 0.18 ± 0.04 | 0.18 ± 0.03 | 0.19 ± 0.03 | 0.0004 |
Change in WC | |||||||||
Participants | 846 | 307 | 934 | 740 | 894 | 227 | 714 | 569 | |
Mean ± SE | 0.16 ± 0.02 | 0.20 ± 0.03 | 0.20 ± 0.02 | 0.20 ± 0.03 | 0.24 ± 0.02 | 0.22 ± 0.04 | 0.21 ± 0.02 | 0.24 ± 0.03 | 0.0110 |
Change in PBF | |||||||||
Participants | 836 | 303 | 917 | 726 | 865 | 219 | 692 | 547 | |
Mean ± SE | 0.17 ± 0.04 | 0.20 ± 0.05 | 0.29 ± 0.04 | 0.14 ± 0.04 c | 0.21 ± 0.04 | 0.24 ± 0.06 | 0.30 ± 0.04 d | 0.31 ± 0.04 d | <0.0001 |
Blood pressure | |||||||||
Change in SBP | |||||||||
Participants | 838 | 308 | 937 | 737 | 898 | 226 | 718 | 572 | |
Mean ± SE | −0.06 ± 0.06 | 0.21 ± 0.07 a | −0.02 ± 0.05 | −0.01 ± 0.06 | −0.10 ± 0.05 b | 0.35 ± 0.08 acde | 0.22 ± 0.05 acde | 0.11 ± 0.06 ae | <0.0001 |
Change in DBP | |||||||||
Participants | 837 | 308 | 939 | 739 | 898 | 227 | 719 | 573 | |
Mean ± SE | −0.17 ± 0.06 | 0.09 ± 0.07 a | −0.07 ± 0.05 | −0.15 ± 0.06 | −0.18 ± 0.06 b | 0.18 ± 0.08 ade | 0.07 ± 0.06 ade | 0.05 ± 0.06 ae | <0.0001 |
Change in MAP | |||||||||
Participants | 837 | 308 | 938 | 738 | 898 | 226 | 718 | 572 | |
Mean ± SE | −0.14 ± 0.06 | 0.15 ± 0.07 a | −0.06 ± 0.05 | −0.11 ± 0.06 | −0.18 ± 0.06 b | 0.25 ± 0.08 acde | 0.13 ± 0.06 ade | 0.07 ± 0.06 ae | <0.0001 |
Lipids | |||||||||
Change in TC | |||||||||
Participants | 818 | 295 | 872 | 707 | 834 | 214 | 672 | 534 | |
Mean ± SE | 0.07 ± 0.04 | −0.01 ± 0.05 | 0.00 ± 0.04 | 0.13 ± 0.04 | 0.05 ± 0.04 | 0.02 ± 0.06 | −0.13 ± 0.04 ade | -0.09 ± 0.05 d | <0.0001 |
Change in HDL-C | |||||||||
Participants | 819 | 294 | 872 | 706 | 834 | 214 | 673 | 533 | |
Mean ± SE | 0.85 ± 0.07 | 0.54 ± 0.08 a | 0.51 ± 0.07 a | 0.45 ± 0.07 a | 0.40 ± 0.07 a | 0.35 ± 0.09 a | 0.35 ± 0.07 a | 0.32 ± 0.07 a | <0.0001 |
Change in LDL-C | |||||||||
Participants | 820 | 295 | 874 | 707 | 832 | 213 | 673 | 534 | |
Mean ± SE | 0.22 ± 0.05 | -0.01 ± 0.06 a | 0.16 ± 0.05 | 0.49 ± 0.05 abc | 0.37 ± 0.05 bc | 0.18 ± 0.07 d | −0.03 ± 0.05 acde | 0.07 ± 0.05 de | <0.0001 |
Change in TG | |||||||||
Participants | 818 | 294 | 873 | 711 | 835 | 214 | 673 | 533 | |
Mean ± SE | −0.04 ± 0.06 | 0.08 ± 0.07 | 0.01 ± 0.05 | 0.12 ± 0.06 | −0.00 ± 0.05 | 0.27 ± 0.07 a | −0.03 ± 0.06 f | 0.04 ± 0.06 a | 0.0001 |
Glucose and insulin | |||||||||
Change in fasting glucose | |||||||||
Participants | 820 | 295 | 874 | 711 | 833 | 214 | 673 | 533 | |
Mean ± SE | 0.18 ± 0.06 | 0.20 ± 0.07 | 0.31 ± 0.06 | 0.19 ± 0.06 | 0.36 ± 0.06 ad | 0.28 ± 0.08 | 0.47 ± 0.06 abd | 0.48 ± 0.06 bd | <0.0001 |
Change in insulin | |||||||||
Participants | 751 | 274 | 770 | 629 | 704 | 188 | 575 | 460 | |
Mean ± SE | −0.20 ± 0.08 | 0.05 ± 0.10 | −0.11 ± 0.08 | −0.69 ± 0.09 abc | −0.51 ± 0.08 abc | −0.05 ± 0.12 de | −0.15 ± 0.09 de | −0.15 ± 0.09 de | <0.0001 |
Change in CMRS | |||||||||
Participants | 763 | 273 | 785 | 660 | 771 | 195 | 604 | 461 | |
Mean ± SE | −0.79 ± 0.15 | 0.04 ± 0.18 a | −0.02 ± 0.15 a | −0.20 ± 0.15 a | 0.07 ± 0.15 ac | 0.59 ± 0.19 ad | 0.41 ± 0.15 ad | 0.38 ± 0.16 ad | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, X.; Li, Y.; Xu, H.; Zhang, Q.; Liu, A.; Ma, G. The Clustering of Low Diet Quality, Low Physical Fitness, and Unhealthy Sleep Pattern and Its Association with Changes in Cardiometabolic Risk Factors in Children. Nutrients 2020, 12, 591. https://doi.org/10.3390/nu12020591
Shang X, Li Y, Xu H, Zhang Q, Liu A, Ma G. The Clustering of Low Diet Quality, Low Physical Fitness, and Unhealthy Sleep Pattern and Its Association with Changes in Cardiometabolic Risk Factors in Children. Nutrients. 2020; 12(2):591. https://doi.org/10.3390/nu12020591
Chicago/Turabian StyleShang, Xianwen, Yanping Li, Haiquan Xu, Qian Zhang, Ailing Liu, and Guansheng Ma. 2020. "The Clustering of Low Diet Quality, Low Physical Fitness, and Unhealthy Sleep Pattern and Its Association with Changes in Cardiometabolic Risk Factors in Children" Nutrients 12, no. 2: 591. https://doi.org/10.3390/nu12020591
APA StyleShang, X., Li, Y., Xu, H., Zhang, Q., Liu, A., & Ma, G. (2020). The Clustering of Low Diet Quality, Low Physical Fitness, and Unhealthy Sleep Pattern and Its Association with Changes in Cardiometabolic Risk Factors in Children. Nutrients, 12(2), 591. https://doi.org/10.3390/nu12020591