The Effect of Sheep and Cow Milk Supplementation of a Low Calcium Diet on the Distribution of Macro and Trace Minerals in the Organs of Weanling Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Diets and Procedures
2.3. Proximate Analysis of Diets and Milk
2.4. Analysis of Mineral Composition
2.5. Statistical Analysis
3. Results and Discussion
3.1. Diet Composition
3.2. Rat Food and Milk Intake
3.3. Rat Weight Gain
3.4. Macro and Trace Minerals in Soft Organs and Serum
3.5. Non-Essential Minerals in Soft Organs and Serum
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tortolani, J.P.; McCarthy, E.F.; Sponseller, P.D. Bone mineral density deficiency in children. J. Am. Acad. Orthop. Surg. 2002, 10, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C. Iron-deficiency anemia. N. Engl. J. Med. 2015, 372, 1832–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayuk, J.; Gittoes, N.J.L. Contemporary view of the clinical relevance of magnesium homeostasis. Ann. Clin. Biochem. 2014, 51, 179–188. [Google Scholar] [CrossRef] [PubMed]
- De Baaij, J.H.F.; Hoenderop, J.G.J.; Bindels, R.J.M. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Weaver, C.; Gordon, C.; Janz, K.; Kalkwarf, H.; Lappe, J.; Lewis, R.; O’Karma, M.; Wallace, T.; Zemel, B. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [Green Version]
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity, 5th ed.; Høybråten, D., Ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2012. [Google Scholar]
- Aslam, M.N.; Varani, J. The Western-Style Diet, Calcium Deficiency and Chronic Disease. J. Nutr. Food Sci. 2016, 6. [Google Scholar] [CrossRef]
- Michaëlsson, K. Calcium supplements do not prevent fractures. BMJ 2015, 351, h4825. [Google Scholar] [CrossRef]
- Burrow, K.; Young, W.; McConnell, M.; Carne, A.; Bekhit, A.E.-D. Do Dairy Minerals Have a Positive Effect on Bone Health? Compr. Rev. Food Sci. Food Saf. 2018, 17, 989–1005. [Google Scholar] [CrossRef] [Green Version]
- Barlowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional Value and Technological Suitability of Milk from Various Animal Species Used for Dairy Production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Chia, J.; Burrow, K.; Carne, A.; McConnell, M.; Samuelsson, L.; Day, L.; Young, W.; Bekhit, A.E.-D. Minerals in Sheep milk. In Nutrients in Milk and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V., Eds.; Elsevier Publishing: London, UK, 2017; pp. 345–363. [Google Scholar]
- Yabrir, B.; Chenouf, A.; Chenouf, N.; Bouzidi, A.; Gaucheron, F.; Mati, A. Heavy metals in small ruminant’s milk from Algerian area steppe. Int. Food Res. J. 2016, 23, 1012. [Google Scholar]
- Ivanova, T.; Pacinovski, N.; Raicheva, E.; Abadjeiva, D. Mineral content of milk from dairy sheep breeds. Maced. J. Anim. Sci. 2001, 1, 67–71. [Google Scholar]
- Peterson, S.; Prichard, C. The sheep dairy industry in New Zealand: A review. Proc. N. Z. Soc. Anim. Prod. 2015, 75, 119–126. [Google Scholar]
- Burrow, K.; Young, W.; McConnell, M.; Carne, A.; Barr, D.; Reid, M.; Bekhit, A.E.-D. The distribution of essential, trace, and non-essential minerals in weanling male rats fed sheep or cow milk. Mol. Nutr. Food Res. 2018, 62, 1800482. [Google Scholar] [CrossRef] [PubMed]
- Burrow, K.; Young, W.; McConnell, M.; Hammer, N.; Scholze, M.; Carne, A.; Bekhit, A.E.-D. Consumption of sheep milk compared to cow milk can affect trabecular bone ultrastructure in a rat model. Food Funct. 2019, 10, 163–171. [Google Scholar] [CrossRef]
- Hennigar, S.R.; McClung, J.P. Homeostatic regulation of trace mineral transport by ubiquitination of membrane transporters. Nutr. Rev. 2016, 74, 59–67. [Google Scholar] [CrossRef]
- Lobo, A.R.; Cocato, M.L.; Jorgetti, V.; de Sá, L.R.; Nakano, E.Y.; Colli, C. Changes in bone mass, biomechanical properties, and microarchitecture of calcium-and iron-deficient rats fed diets supplemented with inulin-type fructans. Nutr. Res. 2009, 29, 873–881. [Google Scholar] [CrossRef]
- Rader, J.I.; Baylink, D.J.; Hughes, M.R.; Safilian, E.F.; Haussler, M.R. Calcium and phosphorus deficiency in rats: Effects on PTH and 1,25-dihydroxyvitamin D3. Am. J. Physiol. 1979, 236, E118–E122. [Google Scholar] [CrossRef]
- New Zealand Animal Welfare Act 1999; New Zealand Statutes: Wellington, New Zealand, 1999.
- Alférez, M.J.; Lopez-Aliaga, I.; Nestares, T.; Díaz-Castro, J.; Barrionuevo, M.; Ros, P.B.; Campos, M.S. Dietary goat milk improves iron bioavailability in rats with induced ferropenic anaemia in comparison with cow milk. Int. Dairy J. 2006, 16, 813–821. [Google Scholar] [CrossRef]
- McKinnon, H.; Kruger, M.; Prosser, C.; Lowry, D. The effect of formulated goats’ milk on calcium bioavailability in male growing rats. J. Sci. Food Agric. 2010, 90, 112–116. [Google Scholar] [CrossRef]
- Liu, G.; Jæger, T.C.; Lund, M.N.; Nielsen, S.B.; Ray, C.A.; Ipsen, R. Effects of disulphide bonds between added whey protein aggregates and other milk components on the rheological properties of acidified milk model systems. Int. Dairy J. 2016, 59, 1–9. [Google Scholar] [CrossRef]
- Park, Y.W.; Juarez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Stewart, W.F.; Schwartz, B.S.; Davatzikos, C.; Shen, D.; Liu, D.; Wu, X.; Todd, A.C.; Shi, W.; Bassett, S.; Youssem, D. Past adult lead exposure is linked to neurodegeneration measured by brain MRI. Neurology 2006, 66, 1476–1484. [Google Scholar] [CrossRef] [PubMed]
- Zamberlin, Š.; Antunac, N.; Havranek, J.; Samaržija, D. Mineral elements in milk and dairy products. Mljekarstvo 2012, 62, 111–125. [Google Scholar]
- Food Standards Australia New Zealand. Australia New Zealand Food Standards Code Schedule 19; Australian Government: Canberra, Australia, 2017.
- Larue-Achagiotis, C.; Martin, C.; Verger, P.; Louis-Sylvestre, J. Dietary self-selection vs. complete diet: Body weight gain and meal pattern in rats. Physiol. Behav. 1992, 51, 995–999. [Google Scholar] [CrossRef]
- Reeves, P.G. Patterns of food intake and self-selection of macronutrients in rats during short-term deprivation of dietary zinc. J. Nutr. Biochem. 2003, 14, 232–243. [Google Scholar] [CrossRef]
- Stanley, B.G.; Leibowitz, S.F. Neuropeptide Y injected in the paraventricular hypothalamus: A powerful stimulant of feeding behavior. Proc. Natl. Acad. Sci. USA 1985, 82, 3940–3943. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, P.; Khassawna, T.; Kampschulte, M.; Böcker, W.; Huerter, B.; Dürselen, L.; Faulenbach, M.; Heiss, C. Implications of combined ovariectomy and glucocorticoid (dexamethasone) treatment on mineral, microarchitectural, biomechanical and matrix properties of rat bone. Int. J. Exp. Pathol. 2013, 94, 387–398. [Google Scholar] [CrossRef]
- Penido, M.G.M.G.; Alon, U.S. Phosphate homeostasis and its role in bone health. Pediatr. Nephrol. 2012, 27, 2039–2048. [Google Scholar] [CrossRef] [Green Version]
- Blaine, J.; Chonchol, M.; Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1257–1272. [Google Scholar] [CrossRef]
- Kim, J. Cobalt and Inorganic Cobalt Compounds; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Yamada, K. Cobalt: Its role in health and disease. In Interrelations between Essential Metal Ions and Human Diseases; Sigel, A., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 295–320. [Google Scholar]
- Roth, J.; Lawrence, J.; TA, B. Cobalamin (coenzyme B12): Synthesis and Biological Significance. Annu. Rev. Microbiol. 1996, 50, 137–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.R.; Williams, N.E.; Kendall, N.R. The efficacy of supplying supplemental cobalt, selenium and vitamin B12 via the oral drench route in sheep. Livest. Sci. 2017, 200, 80–84. [Google Scholar] [CrossRef]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese is essential for neuronal health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.L.; Trakooljul, N.; Liu, H.-C.; Moeser, A.J.; Spears, J.W. Iron transporters are differentially regulated by dietary iron, and modifications are associated with changes in manganese metabolism in young pigs. J. Nutr. 2009, 139, 1474–1479. [Google Scholar] [CrossRef] [Green Version]
- Mendel, R.R.; Kruse, T. Cell biology of molybdenum in plants and humans. Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 1568–1579. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.; Sandström, B.; Jensen, M.; Sørensen, S. Effect of casein phosphopeptides on zinc and calcium absorption from bread meals. J. Trace Elem. Med. Biol. 1997, 11, 143–149. [Google Scholar] [CrossRef]
- Miller, L.V.; Krebs, N.F.; Hambidge, K.M. Mathematical model of zinc absorption: Effects of dietary calcium, protein and iron on zinc absorption. Br. J. Nutr. 2013, 109, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Kumssa, D.B.; Joy, E.J.; Ander, E.L.; Watts, M.J.; Young, S.D.; Walker, S.; Broadley, M.R. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 2015, 5, 10974. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.F. Copper: Basic Physiological and Nutritional Aspects. In Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals; Collins, J.F., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 69–83. [Google Scholar]
- Harris, E.D. Copper transport: An overview. Exp. Biol. Med. 1991, 196, 130–140. [Google Scholar] [CrossRef]
- Díaz-Castro, J.; Alférez, M.J.M.; López-Aliaga, I.; Nestares, T.; Campos, M.S. Effect of calcium-fortified milk-rich diets (either goat’s or cow’s milk) on copper bioavailability in iron-deficient anemia. Dairy Sci. Technol. 2011, 91, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Shimamura, T.; Iijima, S.; Hirayama, M.; Iwashita, M.; Akiyama, S.; Takaku, Y.; Yumoto, S. Age-related effects of major and trace element concentrations in rat liver and their mutual relationships. J. Trace Elem. Med. Biol. 2013, 27, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, T.; Iijima, S.; Hirayama, M.; Iwashita, M.; Akiyama, S.; Takaku, Y.; Yumoto, S. The concentrations of major and trace elements in rat kidney: Aging effects and mutual relationships. J. Trace Elem. Med. Biol. 2013, 27, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Savastano, S.; Capone, D.; Colao, A. Spleen: A new role for an old player. World J. Gastroenterol. 2011, 17, 3776–3784. [Google Scholar] [CrossRef] [PubMed]
- Leggett, R.W.; Williams, L.R.; Melo, D.R.; Lipsztein, J.L. A physiologically based biokinetic model for cesium in the human body. Sci. Total Environ. 2003, 317, 235–255. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Nordberg, M.; Fowler, B.A.; Friberg, L.T. Handbook on the Toxicology of Metals, 3rd ed.; Elsevier: Burlington, ON, Canada, 2007. [Google Scholar]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Cesium; United States Department of Health and Human Services Public Health Service: Washington, DC, USA, 2004.
- Nielsen, S.P. The biological role of strontium. Bone 2004, 35, 583–588. [Google Scholar] [CrossRef]
- Hendrych, M.; Olejnickova, V.; Novakova, M. Calcium versus strontium handling by the heart muscle. Gen. Physiol. Biophys. 2016, 35, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Zheng, K.; Shang, G.; Wang, Y.; Wang, W.; Qiu, E.; Li, S.; Zhang, X. Therapeutic Effect of Strontium Ranelate on Bone in Chemotherapy-Induced Osteopenic Rats via Increased Bone Volume and Reduced Bone Loss. Biol. Trace Elem. Res. 2019, 187, 472–481. [Google Scholar] [CrossRef]
Diet | Modified-AIN-93M (g) | Low Ca/P modified-AIN-93M (g) |
---|---|---|
Ingredient | ||
Beef protein extract | 140 | 140 |
L-cystine | 1.8 | 1.8 |
Corn starch | 495.69 | 495.69 |
Maltodextrin | 125 | 125 |
Sucrose | 106.69 | 106.69 |
Cellulose | 50 | 50 |
Soybean oil | 40 | 40 |
t-butylhydroquinone | 0.008 | 0.008 |
Mineral mix a | 3.5 | 3.5 |
NaCl | 2.59 | 2.59 |
CaCO3 b | 12.495 | 6.248 |
KH2PO4 c | 8.75 | 4.375 |
K3C6H5O d | 0.98 | 4.375 |
Vitamin mix e | 10 | 10 |
Choline bitartrate | 2.5 | 2.5 |
Yellow dye f | 0.00 | 0.05 |
Fraction | Basal Diet * | Milk # | ||
---|---|---|---|---|
Modified-AIN-93M (%) | Low Ca/P Modified-AIN-93M (%) | Cow Milk (%) | Sheep Milk (%) | |
Protein | 14 | 14 | 3.69 | 5.55 |
Lipid | 4 | 4 | 3.63^ | 8.72 ^ |
Carbohydrate | 76 | 76 | - | - |
Lactose | - | - | 4.81 | 4.47 |
Diet | Control [µg/day] | Low Ca/P Control [µg/day] | Low Ca/P + CM [µg/day] | Low Ca/P + SM [µg/day] | |
---|---|---|---|---|---|
Mineral Type | Mineral Intake | ||||
Macro | Ca * | 75.4 ± 7.17 b | 53.8 ± 3.75 c | 93.3 ± 5.44 a | 97.4 ± 11.7 a |
Mg * | 14.8 ± 1.40 ab | 14.0 ± 0.98 b | 15.8 ± 0.73 a | 15.4 ± 1.38 a | |
K * | 180 ± 17.1 b | 168 ± 11.7 bc | 198 ± 9.01 a | 160 ± 13.5 c | |
P * | 56.1 ± 5.33 b | 42.7 ± 2.98 c | 76.7 ± 4.61 a | 79.5 ± 9.68 a | |
Na * | 123 ± 11.7 a | 113 ± 7.85 b | 108 ± 5.89 b | 113 ± 9.65 b | |
Trace | Cu | 148 ± 14.1 a | 117 ± 8.17 b | 97.8 ± 6.80 c | 96.9 ± 8.02 c |
Fe | 180 ± 17.1 a | 168 ± 11.7 a | 148 ± 9.30 b | 170 ± 14.6 a | |
Mn | 262 ± 24.9 a | 220 ± 15.4 b | 182 ± 12.9 c | 165 ± 14.3 c | |
Mo | 3.63 ± 0.35 a | 2.66 ± 0.19 b | 2.18 ± 0.16 c | 1.94 ± 0.17 d | |
Ni | 14.0 ± 1.33 a | 12.3 ± 0.86 b | 10.1 ± 0.72 c | 9.07 ± 0.79 c | |
Zn * | 1.03 ± 0.10 a | 0.93 ± 0.07 b | 0.91 ± 0.06 bc | 0.84 ± 0.07 c | |
Non-essential | Al | 220 ± 21.0 a | 240 ± 16.8 a | 197 ± 14.1 b | 234 ± 19.8 a |
Ce # | 390 ± 37.1 a | 303 ± 21.1 b | 249 ± 17.8 c | 221 ± 19.5 d | |
Cr | 36.5 ± 3.47 a | 31.0 ± 2.16 b | 25.5 ± 1.83 c | 22.6 ± 1.99 d | |
Cs | 0.37 ± 0.04 b | 0.35 ± 0.02 b | 0.33 ± 0.02 b | 1.13 ± 0.17 a | |
Er # | 32.7 ± 3.11 a | 30.4 ± 2.12 a | 25.0 ± 1.79 b | 22.1 ± 1.95 c | |
La | 2.77 ± 0.26 a | 2.56 ± 0.18 b | 2.11 ± 0.15 c | 1.87 ± 0.16 d | |
Li | 2.77 ± 0.26 a | 2.56 ± 0.18 a | 2.11 ± 0.15 b | 2.17 ± 0.18 b | |
Nd # | 215 ± 20.5 a | 185 ± 12.9 b | 152 ± 10.9 c | 135 ± 11.9 d | |
Ni | 14.0 ± 1.33 a | 12.3 ± 0.86 b | 10.1 ± 0.72 c | 9.07 ± 0.79 c | |
Rb | 72.2 ± 6.86 c | 67.2 ± 4.69 c | 131 ± 8.4 a | 110 ± 12.6 b | |
Sr | 41.9 ± 3.98 b | 31.6 ± 2.20 c | 46.9 ± 2.38 b | 75.1 ± 10.1 a | |
U | 240 ± 22.9 a | 153 ± 10.6 b | 125 ± 8.99 c | 111 ± 9.81 c | |
V | 12.0 ± 1.12 a | 10.0 ± 0.73 b | 9.00 ± 0.62 c | 8.00 ± 0.67 d | |
Y # | 511 ± 48.5 a | 453 ± 31.6 a | 373 ± 26.7 b | 331 ± 29.1 c |
Diet | Control | Low Ca/P Control | Low Ca/P + CM | Low Ca/P + SM | ||
---|---|---|---|---|---|---|
Organ | Element Type | Element | [µg/kg] | [µg/kg] | [µg/kg] | [µg/kg] |
Brain | Macro | Ca # | 46.3 ± 3.79 | 46.9 ± 2.70 | 46.5 ± 2.92 | 45.9 ± 3.32 |
K @ | 3.64 ± 0.18 | 3.76 ± 0.20 | 3.73 ± 0.16 | 3.66 ± 0.20 | ||
Mg # | 148 ± 4.40 | 151 ± 5.77 | 150 ± 5.03 | 149 ± 5.16 | ||
Na # | 1.07 ± 0.04 | 1.10 ± 0.07 | 1.11 ± 0.04 | 1.10 ± 0.05 | ||
P @ | 2.88 ±0.10 | 2.93 ± 0.14 | 2.96 ± 0.14 | 2.95 ± 0.11 | ||
Trace | Cu # | 1.85 ± 0.10 | 1.83 ± 0.10 | 1.85 ± 0.10 | 1.91 ± 0.11 | |
Fe # | 17.9 ± 2.14 | 17.5 ± 1.79 | 17.2 ± 2.48 | 18.2 ± 2.76 | ||
Mn | 353 ± 35.2 | 373 ± 22.9 | 370 ± 16.5 | 364 ± 17.5 | ||
Mo | 26.2 ± 2.67 | 25.6 ± 2.39 | 26.1 ± 1.82 | 25.1 ± 1.79 | ||
Zn # | 11.7 ± 0.46 | 11.9 ± 0.49 | 11.9 ± 0.43 | 11.6 ± 0.52 | ||
Non-essential | As | 22.2 ± 4.16 a | 20.7 ± 2.84 ab | 15.1 ± 2.23 c | 16.3 ± 3.12 bc | |
Co | 3.89 ± 0.42 | 4.06 ± 0.82 | 3.41 ± 0.41 | 3.47 ± 0.44 | ||
Cs | 5.20 ± 0.79 b | 4.87 ± 0.44 b | 4.61 ± 0.48 b | 9.38 ± 1.74 a | ||
Rb # | 1.29 ± 0.13 b | 1.35 ± 0.17 b | 2.09 ± 0.22 a | 2.05 ± 0.27 a | ||
Sr | 10.7 ± 2.39 b | 29.9 ± 17.6 a | 13.8 ± 6.16 b | 17.8 ± 8.97 ab | ||
Pb | BDL | BDL | BDL | BDL | ||
Kidney | Macro | Ca # | 69.5 ± 8.41 | 69.2 ± 4.97 | 67.9 ± 6.03 | 69.0 ± 5.25 |
K @ | 2.49 ± 0.38 | 2.71 ± 0.15 | 2.54 ± 0.28 | 2.55 ± 0.19 | ||
Mg # | 180 ± 26.2 | 185 ± 9.28 | 178 ± 17.3 | 179 ± 13.2 | ||
Na # | 1.42 ± 0.15 | 1.42 ± 0.07 | 1.40 ± 0.10 | 1.46 ± 0.14 | ||
P @ | 2.61 ± 0.40 | 2.62 ± 0.11 | 2.54 ± 0.26 | 2.54 ± 0.21 | ||
Trace | Cu # | 3.88 ± 0.54 b | 3.38 ± 0.20 b | 5.29 ± 1.13 a | 5.34 ± 1.01 a | |
Fe # | 60.0 ± 10.4 | 57.7 ± 6.58 | 59.5 ± 7.94 | 61.9 ± 10.6 | ||
Mn | 750 ± 123 | 829 ± 68.8 | 755 ± 105 | 764 ± 78.6 | ||
Mo | 180 ± 25.2 | 184 ± 15.6 | 183 ± 23.6 | 187 ± 16.7 | ||
Zn # | 18.0 ± 2.14 | 18.1 ± 1.98 | 18.0 ± 2.00 | 18.5 ± 1.46 | ||
Non-essential | As | 75.8 ± 19.1 ab | 65.1 ± 6.12 a | 56.6 ± 10.7 ab | 61.0 ± 14.5 b | |
Co | 85.4 ± 17.5 | 83.3 ± 11.4 | 68.9 ± 9.89 | 66.1 ± 9.26 | ||
Cs | 14.0 ± 2.95 b | 13.8 ± 1.62 b | 12.0 ± 1.37 b | 20.2 ± 2.69 a | ||
Rb # | 2.92 ± 0.51 b | 3.54 ± 0.37 b | 4.96 ± 0.67 a | 4.76 ± 0.66 a | ||
Sr | 24.1 ± 4.70 b | 46.7 ± 5.22 a | 27.6 ± 5.37 b | 39.4 ± 8.14 a | ||
Pb | 51.7 ± 38.8 | 81.5 ± 48.7 | 55.2 ± 59.0 | 105 ± 76.1 | ||
Liver | Macro | Ca # | 33.7 ± 3.56 | 32.8 ± 3.17 | 35.4 ± 1.91 | 36.4 ± 3.35 |
K @ | 3.34 ± 0.27 b | 3.41 ± 0.10 b | 3.61 ± 0.14 a | 3.55 ± 0.19 ab | ||
Mg # | 201 ± 17.6 | 206 ± 7.91 | 209 ± 9.70 | 209 ± 14.4 | ||
Na # | 668 ± 45.0 | 686 ± 37.9 | 663 ± 46.4 | 690 ± 49.6 | ||
P @ | 2.90 ± 0.21 | 2.93 ± 0.14 | 3.00 ± 0.18 | 3.04 ± 0.22 | ||
Trace | Cu # | 3.08 ± 0.34 b | 3.12 ± 0.13 b | 3.34 ± 0.24 ab | 3.41 ± 0.19 a | |
Fe # | 128 ± 22.8 a | 138 ± 16.9 a | 89.1 ± 9.79 b | 88.8 ± 10.6 b | ||
Mn | 1.41 ± 0.16 b | 1.57 ± 0.15 ab | 1.72 ± 0.15 a | 1.79 ± 0.11 a | ||
Mo | 235 ± 23.9 b | 214 ± 29.5 b | 297 ± 30.7 a | 335 ± 37.9 a | ||
Zn # | 20.8 ± 1.75 b | 21.0 ± 1.82 b | 24.0 ± 1.97 a | 25.0 ± 2.06 a | ||
Non-essential | As | 57.1 ± 13.4 ab | 64.3 ± 11.4 a | 45.8 ± 11.6 b | 47.7 ± 12.4 ab | |
Co | 15.6 ± 1.70 ab | 18.1 ± 2.88 a | 12.1 ± 2.81 c | 12.3 ± 2.44 bc | ||
Cs | 8.80 ± 1.05 b | 8.49 ± 0.91 b | 8.23 ± 0.80 b | 15.6 ± 1.88 a | ||
Rb # | 4.84 ± 0.42 b | 4.98 ± 0.54 b | 8.51 ± 0.82 a | 8.38 ± 0.92 a | ||
Sr | 11.6 ± 1.56 c | 17.0 ± 2.07 a | 13.0 ± 1.92 bc | 15.1 ± 1.44 ab | ||
Pb | BDL | BDL | BDL | BDL | ||
Spleen | Macro | Ca # | 31.2 ± 5.81 | 36.6 ± 4.88 | 34.2 ± 7.04 | 37.3 ± 3.69 |
K @ | 4.12 ± 0.54 | 4.54 ± 0.36 | 4.35 ± 0.53 | 4.47 ± 0.50 | ||
Mg # | 187 ± 25.0 | 207 ± 17.7 | 199 ± 24.8 | 206 ± 22.7 | ||
Na # | 490 ± 71.4 b | 559 ± 65.0 a | 551 ± 41.8 ab | 545 ± 52.5 ab | ||
P @ | 3.05 ± 0.45 | 3.39 ± 0.32 | 3.35 ± 0.15 | 3.39 ± 0.43 | ||
Trace | Cu # | 0.94 ± 0.16 | 0.98 ± 0.09 | 0.92 ± 0.19 | 1.00 ± 0.12 | |
Fe # | 305 ± 55.7 ab | 427 ± 99.1 a | 238 ± 75.0 bc | 205 ± 41.5 c | ||
Mn | 150 ± 25.2 | 178 ± 20.0 | 154 ± 28.6 | 162 ± 18.0 | ||
Mo | 53.2 ± 14.9 ab | 66.1 ± 11 a | 50.4 ± 14.9 b | 55.4 ± 12.4 ab | ||
Zn # | 16.2 ± 2.28 | 18.2 ± 1.94 | 17.3 ± 1.96 | 18.0 ± 2.03 | ||
Non-essential | As | 171 ± 45.7 a | 197 ± 37.7 a | 116 ± 31.8 b | 115 ± 16.5 b | |
Co | 8.78 ± 1.10 a | 10.1 ± 1.71 a | 5.89 ± 1.64 b | 5.59 ± 0.85 b | ||
Cs | 8.01 ± 2.11 b | 8.22 ± 0.94 b | 6.52 ± 1.26 b | 12.3 ± 1.57 a | ||
Rb # | 3.15 ± 0.40 c | 3.73 ± 0.44 bc | 5.05 ± 1.13 ab | 5.43 ± 0.80 a | ||
Sr | 10.3 ± 1.42 c | 19.5 ± 3.24 a | 11.8 ± 2.21 b | 17.2 ± 2.92 a | ||
Pb | BDL | BDL | BDL | BDL |
Diet | Control | Low Ca/P Control | Low Ca/P + CM | Low Ca/P + SM | |
---|---|---|---|---|---|
Element Type | Element | [µg/mL] | [µg/mL] | [µg/mL] | [µg/mL] |
Macro | Ca | 142 ± 10.8 | 140 ± 8.73 | 141 ± 8.06 | 138 ± 10.2 |
K | 331 ± 44.1 | 284 ± 54.3 | 306 ± 46.5 | 281 ± 45.3 | |
Mg | 29.1 ± 6.30 | 28.6 ± 4.46 | 26.5 ± 3.72 | 29.9 ± 7.20 | |
P | 199 ± 18.1 | 181 ± 12.5 | 187 ± 19.3 | 186 ± 9.71 | |
Trace | Cu | 1.00 ± 0.12 | 0.94 ± 0.05 | 1.00 ± 0.10 | 1.01 ± 0.09 |
Fe | 3.41 ± 0.91 | 3.07 ± 1.37 | 4.20 ± 1.15 | 4.11 ± 1.17 | |
Zn | 1.57 ± 0.15 | 1.55 ± 0.17 | 1.65 ± 0.25 | 1.70 ± 0.26 | |
Non-essential | Cs * | 0.88 ± 0.23ab | 0.67 ± 0.12b | 0.66 ± 0.14b | 1.00 ± 0.17a |
Rb | 0.28 ± 0.06ab | 0.22 ± 0.05b | 0.37 ± 0.09a | 0.37 ± 0.09a | |
Sr | BDL | BDL | BDL | BDL | |
Pb | BDL | BDL | BDL | BDL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burrow, K.; Young, W.; McConnell, M.; Carne, A.; Barr, D.; Reid, M.; Bekhit, A.E.-D. The Effect of Sheep and Cow Milk Supplementation of a Low Calcium Diet on the Distribution of Macro and Trace Minerals in the Organs of Weanling Rats. Nutrients 2020, 12, 594. https://doi.org/10.3390/nu12030594
Burrow K, Young W, McConnell M, Carne A, Barr D, Reid M, Bekhit AE-D. The Effect of Sheep and Cow Milk Supplementation of a Low Calcium Diet on the Distribution of Macro and Trace Minerals in the Organs of Weanling Rats. Nutrients. 2020; 12(3):594. https://doi.org/10.3390/nu12030594
Chicago/Turabian StyleBurrow, Keegan, Wayne Young, Michelle McConnell, Alan Carne, David Barr, Malcolm Reid, and Alaa El-Din Bekhit. 2020. "The Effect of Sheep and Cow Milk Supplementation of a Low Calcium Diet on the Distribution of Macro and Trace Minerals in the Organs of Weanling Rats" Nutrients 12, no. 3: 594. https://doi.org/10.3390/nu12030594
APA StyleBurrow, K., Young, W., McConnell, M., Carne, A., Barr, D., Reid, M., & Bekhit, A. E.-D. (2020). The Effect of Sheep and Cow Milk Supplementation of a Low Calcium Diet on the Distribution of Macro and Trace Minerals in the Organs of Weanling Rats. Nutrients, 12(3), 594. https://doi.org/10.3390/nu12030594