Survival of Recombinant Monoclonal Antibodies (IgG, IgA and sIgA) Versus Naturally-Occurring Antibodies (IgG and sIgA/IgA) in an Ex Vivo Infant Digestion Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Stability of Palivizumab IgG, IgA, and sIgA in Ex Vivo Gastric and Intestinal Digestion
2.3. Stability of Naturally-Occurring Milk RSV F Protein-Specific IgG and sIgA/IgA in Ex Vivo Gastric and Intestinal Digestion
2.4. RSV F Protein-Specific ELISA
2.5. Validation of RSV F Protein-Specific Antibody ELISA
2.6. Statistical Analyses
3. Results
3.1. Validation Parameters for RSV F Protein-Specific Antibodies ELISA
3.2. Survival of Palivizumab RSV F Protein-Specific IgG, IgA, and sIgA in Ex Vivo Gastric and Intestinal Digestion
3.3. Survival of Naturally-Occurring Milk IgG and sIgA/IgA in ex vivo Gastric and Intestinal Digestion
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kotloff, K.L.; Blackwelder, W.C.; Nasrin, D.; Nataro, J.P.; Farag, T.H.; Van Eijk, A.; Adegbola, R.A.; Alonso, P.L.; Breiman, R.F.; Faruque, A.S.G.; et al. The Global Enteric Multicenter Study (GEMS) of diarrheal disease in infants and young children in developing countries: Epidemiologic and clinical methods of the case/control study. Clin. Infect. Dis. 2012, 55 (Suppl. 4), S232–S245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosek, M.; Bern, C.; Guerrant, R.L. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull. World Health Organ. 2003, 81, 197–204. [Google Scholar] [PubMed]
- Lawrence, R.M.; Pane, C.A. Human Breast Milk: Current Concepts of Immunology and Infectious Diseases. Curr. Probl. Pediatr. Adolesc. Health Care 2007, 37, 7–36. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Marnila, P.; Korhonen, H. Milk immunoglobulins for health promotion. Int. Dairy J. 2006, 16, 1262–1271. [Google Scholar] [CrossRef]
- Hurley, W.L.; Theil, P.K. Perspectives on Immunoglobulins in Colostrum and Milk. Nutrients 2011, 3, 442–474. [Google Scholar] [CrossRef]
- Hanson, L.A. Breastfeeding provides passive and likely long-lasting active immunity. Ann. Allergy Asthma Immunol. 1998, 81, 523–533. [Google Scholar] [CrossRef]
- Arifeen, S.; Black, R.E.; Antelman, G.; Baqui, A.; Caulfield, L.; Becker, S. Exclusive Breastfeeding Reduces Acute Respiratory Infection and Diarrhea Deaths Among Infants in Dhaka Slums. Pediatrics 2001, 108, e67. [Google Scholar] [CrossRef] [Green Version]
- López-Alarcón, M.; Villalpando, S.; Fajardo, A. Breast-Feeding Lowers the Frequency and Duration of Acute Respiratory Infection and Diarrhea in Infants under Six Months of Age. J. Nutr. 1997, 127, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Clemens, J.; Elyazeed, R.A.; Rao, M.; Mph, M.; Savarino, S.; Morsy, B.Z.; Kim, Y.; Wierzba, T.; Naficy, A.; Lee, Y.J. Early Initiation of Breastfeeding and the Risk of Infant Diarrhea in Rural Egypt. Pediatrics 1999, 104, e3. [Google Scholar] [CrossRef] [Green Version]
- Victora, C.G. Infection and Disease: The Impact of Early Weaning. Food Nutr. Bull. 1996, 17, 1–8. [Google Scholar] [CrossRef]
- Wu, H.; Pfarr, D.S.; Losonsky, G.A.; Kiener, P.A. Immunoprophylaxis of RSV infection: Advancing from RSV-IGIV to palivizumab and motavizumab. Curr. Top. Microbiol. Immunol. 2008, 317, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Fenton, C.; Scott, L.J.; Plosker, G.L. Palivizumab. Paediatr. Drugs 2004, 6, 177–197. [Google Scholar] [CrossRef] [PubMed]
- Chirico, G.; Marzollo, R.; Cortinovis, S.; Fonte, C.; Gasparoni, A. Antiinfective Properties of Human Milk. J. Nutr. 2008, 138, 1801S–1806S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur, N.I.; Horsley, N.M.; Englund, J.A.; Nederend, M.; Magaret, A.; Kumar, A.; Jacobino, S.R.; de Haan, C.A.M.; Khatry, S.K.; LeClerq, S.C.; et al. Breast Milk Prefusion F Immunoglobulin G as a Correlate of Protection Against Respiratory Syncytial Virus Acute Respiratory Illness. J. Infect. Dis. 2019, 219, 59–67. [Google Scholar] [CrossRef]
- Andreasson, U.; Perret-Liaudet, A.; Doorn, L.J.C.V.W.V.; Blennow, K.; Chiasserini, D.; Engelborghs, S.; Fladby, T.; Genc, S.; Kruse, N.; Kuiperij, H.B.; et al. A Practical Guide to Immunoassay Method Validation. Front. Neurol. 2015, 6, 179. [Google Scholar] [CrossRef]
- Demers-Mathieu, V.; Underwood, M.A.; Beverly, R.L.; Nielsen, S.D.; Dallas, D.C. Comparison of Human Milk Immunoglobulin Survival during Gastric Digestion between Preterm and Term Infants. Nutrients 2018, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Demers-Mathieu, V.; Huston, K.R.; Markell, M.A.; McCulley, A.E.; Martin, L.R.; Spooner, M.; Dallas, C.D. Differences in Maternal Immunoglobulins within Mother’s Own Breast Milk and Donor Breast Milk and across Digestion in Preterm Infants. Nutrients 2019, 11, 920. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.K.; Hollander, G.A.; McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 2015, 282, 20143085. [Google Scholar] [CrossRef]
- Groer, M.; Davis, M.; Steele, K. Associations between Human Milk SIgA and Maternal Immune, Infectious, Endocrine, and Stress Variables. J. Hum. Lact. 2004, 20, 153–158. [Google Scholar] [CrossRef]
- Rohmah, H.; Hafsah, T.; Rakhmilla, L.E. Role of Exclusive Breastfeeding in Preventing Diarrhea. Althea Med. J. 2015, 2, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Jakaitis, B.M.; Denning, P.W. Human breast milk and the gastrointestinal innate immune system. Clin. Perinatol. 2014, 41, 423–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatrics 1998, 102, 531–537.
- Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug Discov. 2009, 8, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, R. Glycosylation of natural and recombinant antibody molecules. Adv. Exp. Med. Biol. 2005, 564, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Demers-Mathieu, V.; Qu, Y.; Underwood, M.A.; Borghese, R.; Dallas, D.C. Premature Infants have Lower Gastric Digestion Capacity for Human Milk Proteins than Term Infants. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Dallas, D.C.; Underwood, M.A.; Zivkovic, A.M.; German, J.B. Digestion of Protein in Premature and Term Infants. J. Nutr. Disord. Ther. 2012, 2, 112. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Jiang, L.; Pan, L.Z.; LaBarre, M.J.; Anderson, D.; Reff, M. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FCγRIII. Biotechnol. Bioeng. 2001, 74, 288–294. [Google Scholar] [CrossRef]
- Lim, A.; Reed-Bogan, A.; Harmon, B.J. Glycosylation profiling of a therapeutic recombinant monoclonal antibody with two N-linked glycosylation sites using liquid chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer. Anal. Biochem. 2008, 375, 163–172. [Google Scholar] [CrossRef]
- Hiatt, A.; Bohorova, N.; Bohorov, O.; Goodman, C.; Kim, D.; Pauly, M.H.; Velasco, J.; Whaley, K.J.; Piedra, P.A.; Gilbert, B.E.; et al. Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy. Proc. Natl. Acad. Sci. USA 2014, 111, 5992–5997. [Google Scholar] [CrossRef] [Green Version]
Demographics | Infant 1 | Infant 2 | Infant 3 |
---|---|---|---|
Gestational age (GA) at birth, weeks | 31.6 | 31.6 | 27.1 |
Corrected Gestational age, weeks | 36.2 | 36.3 | 38 |
Postnatal age at feeding, days | 33 | 34 | 76 |
Bodyweight, kg | 2.45 | 2.82 | 2.7 |
Length, cm | 47 | 42 | 45 |
Head circumference, cm | 35 | 35.5 | 32 |
Total kilocalories intake, kcal/kg/day | 147 | 165 | 120 |
Feed sources | Mother’s milk fortified 1 | Mother’s milk fortified 1 | Formula |
Parameters | Palivizumab IgG | Palivizumab IgA | Palivizumab sIgA | |||
---|---|---|---|---|---|---|
Gastric | Intestinal | Gastric | Intestinal | Gastric | Intestinal | |
Precision (% CV) | 19.59 | 27.77 | 11.75 | 13.86 | 11.83 | 15.25 |
LLOQ (ng/mL) | 1 | 1 | 25 | 25 | 5 | 5 |
ULOQ (ng/mL) | 100 | 100 | 250 | 250 | 250 | 250 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lueangsakulthai, J.; Sah, B.N.P.; Scottoline, B.P.; Dallas, D.C. Survival of Recombinant Monoclonal Antibodies (IgG, IgA and sIgA) Versus Naturally-Occurring Antibodies (IgG and sIgA/IgA) in an Ex Vivo Infant Digestion Model. Nutrients 2020, 12, 621. https://doi.org/10.3390/nu12030621
Lueangsakulthai J, Sah BNP, Scottoline BP, Dallas DC. Survival of Recombinant Monoclonal Antibodies (IgG, IgA and sIgA) Versus Naturally-Occurring Antibodies (IgG and sIgA/IgA) in an Ex Vivo Infant Digestion Model. Nutrients. 2020; 12(3):621. https://doi.org/10.3390/nu12030621
Chicago/Turabian StyleLueangsakulthai, Jiraporn, Baidya Nath P. Sah, Brian P. Scottoline, and David C. Dallas. 2020. "Survival of Recombinant Monoclonal Antibodies (IgG, IgA and sIgA) Versus Naturally-Occurring Antibodies (IgG and sIgA/IgA) in an Ex Vivo Infant Digestion Model" Nutrients 12, no. 3: 621. https://doi.org/10.3390/nu12030621
APA StyleLueangsakulthai, J., Sah, B. N. P., Scottoline, B. P., & Dallas, D. C. (2020). Survival of Recombinant Monoclonal Antibodies (IgG, IgA and sIgA) Versus Naturally-Occurring Antibodies (IgG and sIgA/IgA) in an Ex Vivo Infant Digestion Model. Nutrients, 12(3), 621. https://doi.org/10.3390/nu12030621