Self-Reported Omega-3 Supplement Use Moderates the Association between Age and Exercising Cerebral Blood Flow Velocity in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment
2.2. Positron Emission Tomography (PET) Scan
2.3. Vascular Laboratory Visit
2.4. Demographic and Physiologic Characterization
2.5. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colussi, G.; Catena, C.; Novello, M.; Bertin, N.; Sechi, L.A. Impact of omega-3 polyunsaturated fatty acids on vascular function and blood pressure: Relevance for cardiovascular outcomes. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Amen, D.G.; Harris, W.S.; Kidd, P.M.; Meysami, S.; Raji, C.A. Quantitative Erythrocyte Omega-3 EPA Plus DHA Levels are Related to Higher Regional Cerebral Blood Flow on Brain SPECT. J. Alzheimer’s Dis. 2017, 58, 1189–1199. [Google Scholar] [CrossRef]
- Joris, P.J.; Mensink, R.; Adam, T.C.; Liu, T. Cerebral Blood Flow Measurements in Adults: A Review on the Effects of Dietary Factors and Exercise. Nutrients 2018, 10, 530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, P.; Reay, J.; Scholey, A.; Kennedy, D.O. Docosahexaenoic acid-rich fish oil modulates the cerebral hemodynamic response to cognitive tasks in healthy young adults. Boil. Psychol. 2012, 89, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Stavrinou, P.S.; Andreou, E.; Aphamis, G.; Pantzaris, M.; Ioannou, M.; Patrikios, I.; Giannaki, C.D. The Effects of a 6-Month High Dose Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins Supplementation on Cognitive Function and Functional Capacity in Older Adults with Mild Cognitive Impairment. Nutrients 2020, 12, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howe, P.; Evans, H.M.; Kuszewski, J.; Wong, R. Effects of Long Chain Omega-3 Polyunsaturated Fatty Acids on Brain Function in Mildly Hypertensive Older Adults. Nutrients 2018, 10, 1413. [Google Scholar] [CrossRef] [Green Version]
- Attwell, D.; Buchan, A.M.; Charpak, S.; Lauritzen, M.; MacVicar, B.; Newman, E.A. Glial and neuronal control of brain blood flow. Nature 2010, 468, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Xing, C.-Y.; Tarumi, T.; Liu, J.; Zhang, Y.; Turner, M.; Riley, J.; Tinajero, C.D.; Yuan, L.-J.; Zhang, R. Distribution of cardiac output to the brain across the adult lifespan. Br. J. Pharmacol. 2016, 37, 2848–2856. [Google Scholar] [CrossRef]
- Leenders, K.L.; Perani, D.; Lammertsma, A.A.; Heather, J.D.; Buckingham, P.; Jones, T.; Healy, M.J.R.; Gibbs, J.M.; Wise, R.J.S.; Hatazawa, J.; et al. Cerebral Blood Flow, Blood Volume and Oxygen Utilization. Brain 1990, 113, 27–47. [Google Scholar] [CrossRef]
- Alsop, D.C.; Detre, J.A.; Grossman, M. Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann. Neurol. 2000, 47, 93–100. [Google Scholar] [CrossRef]
- Binnewijzend, M.A.; Kuijer, J.; Benedictus, M.R.; Van Der Flier, W.M.; Wink, A.M.; Wattjes, M.P.; Van Berckel, B.N.M.; Scheltens, P.; Barkhof, F. Cerebral Blood Flow Measured with 3D Pseudocontinuous Arterial Spin-labeling MR Imaging in Alzheimer Disease and Mild Cognitive Impairment: A Marker for Disease Severity. Radiology 2013, 267, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.A.; Jahng, G.-H.; Weiner, M.W.; Miller, B.L.; Chui, H.C.; Jagust, W.J.; Gorno-Tempini, M.L.; Schuff, N. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: Initial experience. Radiology 2005, 234, 851–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roher, A.E.; Debbins, J.P.; Malek-Ahmadi, M.H.; Chen, K.; Pipe, J.G.; Maze, S.; Belden, C.; Maarouf, C.L.; Thiyyagura, P.; Mo, H.; et al. Cerebral blood flow in Alzheimer’s disease. Vasc. Heal. Risk Manag. 2012, 8, 599–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van De Haar, H.J.; Jansen, J.F.; Van Osch, M.J.P.; Van Buchem, M.A.; Muller, M.; Wong, S.M.; Hofman, P.A.; Burgmans, S.; Verhey, F.R.J.; Backes, W.H. Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging. Neurobiol. Aging 2016, 45, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Das, S.R.; Xie, S.X.; Arnold, S.E.; Detre, J.A.; Wolk, D.A.; Initiative, A.D.N. Arterial spin labeled MRI in prodromal Alzheimer’s disease: A multi-site study. NeuroImage Clin. 2013, 2, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Wolters, F.J.; Zonneveld, H.I.; Hofman, A.; Van Der Lugt, A.; Koudstaal, P.; Vernooij, M.W.; Ikram, M.A. Cerebral Perfusion and the Risk of Dementia. Circulation 2017, 136, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Perdomo, S.J.; Ward, J.; Liu, Y.; Vidoni, E.D.; Sisante, J.F.; Kirkendoll, K.; Burns, J.M.; Billinger, S.A. Cardiovascular Disease Risk Is Associated with Middle Cerebral Artery Blood Flow Velocity in Older Adults. Cardiopulm. Phys. Ther. J. 2019. [Google Scholar] [CrossRef]
- Kaufman, C.S.; Bai, S.X.; Ward, J.L.; Eickmeyer, S.M.; Billinger, S. Middle cerebral artery velocity dynamic response profile during exercise is attenuated following multiple ischemic strokes: A case report. Physiol. Rep. 2019, 7, e14268. [Google Scholar] [CrossRef]
- Kempf, K.S.; Whitaker, A.A.; Lui, Y.; Witte, E.; Perdomo, S.J.; Ward, J.L.; Eickmeyer, S.; Ledbetter, L.; Abraham, M.; Billinger, S.A. The Effect of Stroke on Middle Cerebral Artery Blood Flow Velocity Dynamics During Exercise. J. Neurol. Phys. Ther. 2019, 43, 212–219. [Google Scholar] [CrossRef]
- Sisante, J.-F.V.; Vidoni, E.D.; Kirkendoll, K.; Ward, J.; Liu, Y.; Kwapiszeski, S.; Maletsky, R.; Burns, J.M.; Billinger, S. Blunted cerebrovascular response is associated with elevated beta-amyloid. Br. J. Pharmacol. 2017, 39, 89–96. [Google Scholar] [CrossRef]
- Gorelick, P.B.; Furie, K.L.; Iadecola, C.; Smith, E.E.; Waddy, S.P.; Lloyd-Jones, D.; Bae, H.-J.; Bauman, M.A.; Dichgans, M.; Duncan, P.; et al. Defining Optimal Brain Health in Adults: A Presidential Advisory from the American Heart Association/American Stroke Association. Stroke 2017, 48, e284–e303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwatban, M.R.; Liu, Y.; Perdomo, S.J.; Ward, J.L.; Vidoni, E.D.; Burns, J.M.; Billinger, S. TCD Cerebral Hemodynamic Changes during Moderate-Intensity Exercise in Older Adults. J. Neuroimaging 2019, 30, 76–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Perdomo, S.J.; Ward, J.; Vidoni, E.D.; Sisante, J.F.; Kirkendoll, K.; Burns, J.M.; Billinger, S. Vascular Health is Associated with Amyloid-β in Cognitively Normal Older Adults. J. Alzheimer’s Dis. 2019, 70, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, A.V.; Sloan, M.A.; Tegeler, C.H.; Newell, D.N.; Lumsden, A.; Garami, Z.; Levy, C.R.; Wong, L.K.; Douville, C.; Kaps, M.; et al. Practice Standards for Transcranial Doppler (TCD) Ultrasound. Part II. Clinical Indications and Expected Outcomes. J. Neuroimaging 2010, 22, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, A.V.; Sloan, M.A.; Wong, L.K.; Douville, C.; Razumovsky, A.Y.; Koroshetz, W.J.; Kaps, M.; Tegeler, C.H.; for the American Society of Neuroimaging Practice Guidelines Committee; Wong, K.S. Practice Standards for Transcranial Doppler Ultrasound: Part I-Test Performance. J. Neuroimaging 2007, 17, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B. ACSM’s Guidelines for Exercise Testing and Prescription 9th Ed. J. Can. Chiropr. Assoc. 2014, 58, 328. [Google Scholar]
- Brawner, C.A.; Ehrman, J.K.; Schairer, J.R.; Cao, J.J.; Keteyian, S.J. Predicting maximum heart rate among patients with coronary heart disease receiving β-adrenergic blockade therapy. Am. Hear. J. 2004, 148, 910–914. [Google Scholar] [CrossRef]
- Eknoyan, G. Adolphe Quetelet (1796 1874) the average man and indices of obesity. Nephrol. Dial. Transplant. 2007, 23, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Goff, D.C.; Lloyd-Jones, D.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk. Circulation 2013, 129, S49–S73. [Google Scholar] [CrossRef] [Green Version]
- Pizzini, A.; Lunger, L.; Sonnweber, T.; Weiss, G.; Tancevski, I. The Role of Omega-3 Fatty Acids in the Setting of Coronary Artery Disease and COPD: A Review. Nutrients 2018, 10, 1864. [Google Scholar] [CrossRef] [Green Version]
- Lopez, D.; Orta, X.; Casós, K.; Sáiz, M.P.; Puig-Parellada, P.; Farriol, M.; Mitjavila, M.T. Upregulation of endothelial nitric oxide synthase in rat aorta after ingestion of fish oil-rich diet. Am. J. Physiol. Circ. Physiol. 2004, 287, H567–H572. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.A.; Moss, M.B.; Mendes, I.K.S.; Aguila, M.B.; Mandarim-De-Lacerda, C.; Brunini, T.M.C.; Mendes-Ribeiro, A.C. Role of dietary fish oil on nitric oxide synthase activity and oxidative status in mice red blood cells. Food Funct. 2014, 5, 3208–3215. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, T.; Wissuwa, B.; Tian, Y.; Tajima, N.; Xu, R.; Bauer, M.; Heinemann, S.H.; Hou, S. Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels. Proc. Natl. Acad. Sci. USA 2013, 110, 4816–4821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, M.; Lyu, B.; Kishi, H.; Kobayashi, S. Omega-3 and omega-6 DPA equally inhibit the sphingosylphosphorylcholine-induced Ca2+-sensitization of vascular smooth muscle contraction via inhibiting Rho-kinase activation and translocation. Sci. Rep. 2017, 7, 36368. [Google Scholar] [CrossRef] [Green Version]
- Pase, M.; Grima, N.A.; Sarris, J. Do long-chain n-3 fatty acids reduce arterial stiffness? A meta-analysis of randomised controlled trials. Br. J. Nutr. 2011, 106, 974–980. [Google Scholar] [CrossRef] [Green Version]
- Stoodley, I.; Garg, M.L.; Scott, H.; MacDonald-Wicks, L.; Berthon, B.; Wood, L. Higher Omega-3 Index Is Associated with Better Asthma Control and Lower Medication Dose: A Cross-Sectional Study. Nutrients 2019, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Sawane, K.; Nagatake, T.; Hosomi, K.; Hirata, S.-I.; Adachi, J.; Abe, Y.; Isoyama, J.; Suzuki, H.; Matsunaga, A.; Fukumitsu, S.; et al. Dietary Omega-3 Fatty Acid Dampens Allergic Rhinitis via Eosinophilic Production of the Anti-Allergic Lipid Mediator 15-Hydroxyeicosapentaenoic Acid in Mice. Nutrients 2019, 11, 2868. [Google Scholar] [CrossRef] [Green Version]
- Diaz, B.; Domingo, J.C.; Gregorio, D.; Manicardi, N.; Zabalza, A.; Cordobilla, B.; Jordà, A.; Ribera, O.; Iglesias, F.; Marí, M.; et al. A Nutraceutical Rich in Docosahexaenoic Acid Improves Portal Hypertension in a Preclinical Model of Advanced Chronic Liver Disease. Nutrients 2019, 11, 2358. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Roso, M.B.; Echeverry-Alzate, V.; Ruiz-Roso, B.; Quintela, J.C.; Ballesteros, S.; Lahera, V.; Heras, N.D.L.; Moreno, J.A.L.; Martín-Fernández, B. Low Phytanic Acid-Concentrated DHA Prevents Cognitive Deficit and Regulates Alzheimer Disease Mediators in an ApoE−/− Mice Experimental Model. Nutrients 2018, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Alex, A.; Abbott, K.A.; McEvoy, M.; Schofield, P.W.; Garg, M.L. Long-chain omega-3 polyunsaturated fatty acids and cognitive decline in non-demented adults: A systematic review and meta-analysis. Nutr. Rev. 2019. [Google Scholar] [CrossRef]
- Cook, R.L.; Parker, H.; Donges, C.E.; O’Dwyer, N.J.; Cheng, H.L.; Steinbeck, K.S.; Cox, E.P.; Franklin, J.L.; Garg, M.L.; O’Connor, H.T. Omega-3 polyunsaturated fatty acids status and cognitive function in young women. Lipids Health Dis. 2019, 18, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Del Moral, A.M.; Fortique, F. Omega-3 fatty acids and cognitive decline: A systematic review. Nutr. Hosp. 2019, 36, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Simonetto, M.; Infante, M.; Sacco, R.L.; Rundek, T.; Della-Morte, D. A Novel Anti-Inflammatory Role of Omega-3 PUFAs in Prevention and Treatment of Atherosclerosis and Vascular Cognitive Impairment and Dementia. Nutrients 2019, 11, 2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekikawa, A.; Cui, C.; Sugiyama, D.; Fabio, A.; Harris, W.S.; Zhang, X. Effect of High-Dose Marine Omega-3 Fatty Acids on Atherosclerosis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2019, 11, 2599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, J.L.; Craig, J.; Liu, Y.; Vidoni, E.D.; Maletsky, R.; Poole, D.C.; Billinger, S.A.; Malesky, R. Effect of healthy aging and sex on middle cerebral artery blood velocity dynamics during moderate-intensity exercise. Am. J. Physiol. Circ. Physiol. 2018, 315, H492–H501. [Google Scholar] [CrossRef] [PubMed]
- Brassard, P.; Ferland-Dutil, H.; Smirl, J.D.; Paquette, M.; Le Blanc, O.; Malenfant, S.; Ainslie, P.N. Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men. Am. J. Physiol. Circ. Physiol. 2017, 312, H701–H704. [Google Scholar] [CrossRef] [PubMed]
- Brothers, R.M.; Zhang, R. CrossTalk opposing view: The middle cerebral artery diameter does not change during alterations in arterial blood gases and blood pressure. J. Physiol. 2016, 594, 4077–4079. [Google Scholar] [CrossRef]
- Hoiland, R.L.; Ainslie, P.N. Rebuttal from Ryan L. Hoiland and Philip N. Ainslie. J. Physiol. 2016, 594, 4081. [Google Scholar] [CrossRef] [Green Version]
- Giller, C.A.; Bowman, G.; Dyer, H.; Mootz, L.; Krippner, W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery 1993, 32, 737–741, discussion 741–742. [Google Scholar] [CrossRef]
- Schreiber, S.J.; Gottschalk, S.; Weih, M.; Villringer, A.; Valdueza, J.M. Assessment of blood flow velocity and diameter of the middle cerebral artery during the acetazolamide provocation test by use of transcranial Doppler sonography and MR imaging. Am. J. Neuroradiol. 2000, 21, 1207–1211. [Google Scholar]
- Serrador, J.M.; Picot, P.A.; Rutt, B.K.; Shoemaker, J.K.; Bondar, R.L. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 2000, 31, 1672–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdueza, J.M.; O Balzer, J.; Villringer, A.; Vogl, T.J.; Kutter, R.; Einhäupl, K.M. Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: Assessment with MR and transcranial Doppler sonography. Am. J. Neuroradiol. 1997, 18, 1929–1934. [Google Scholar] [PubMed]
Omega-3 “No” (n = 44) | Omega-3 “Yes” (n = 46) | All Participants (n = 90) | p | |
---|---|---|---|---|
Sex, n female [% female] | 33 [75%] | 29 [63%] | 62 [69%] | 0.221 |
Age, years | 71.2 [4.6] | 70.5 [5.0] | 70.8 [4.8] | 0.335 |
Education, years | 16.8 [2.7] | 16.6 [2.6] | 16.7 [2.6] | 0.738 |
ASCVD Risk Score, % | 16.2 [10.3] | 15.8 [8.9] | 16.0 [9.5] | 0.837 |
Body Mass Index, kg/m2 | 26.2 [4.3] | 27.4 [4.2] | 26.8 [4.3] | 0.083 |
Amyloid-β (Aβ) Load, SUVR | 1.04 [0.17] | 1.02 [0.15] | 1.03 [0.16] | 0.994 |
Target Exercising Watts | 58.3 [21.4] | 65.1 [21.9] | 61.8 [21.8] | 0.136 |
Exercising PETCO2, mmHg | 38.2 [4.1] | 37.3 [4.2] | 37.7 [4.2] | 0.286 |
Exercising MAP, mmHg | 105.7 [24.1] | 103.3 [15.8] | 104.5 [20.3] | 0.948 |
ACE inhibitor use, n [%] | 3 [7%] | 6 [13%] | 9 [10%] | 0.486 |
ARB use, n [%] | 6 [14%] | 8 [17%] | 14 [16%] | 0.623 |
Beta-blocker use, n [%] | 6 [14%] | 6 [13%] | 12 [13%] | 0.934 |
CCB use, n [%] | 4 [9%] | 7 [15%] | 11 [12%] | 0.375 |
Thiazide use, n [%] | 1 [2%] | 1 [2%] | 2 [2%] | 1.000 |
Statin use, n [%] | 17 [39%] | 23 [50%] | 40 [44%] | 0.278 |
Variable | B | SEB | β | p-Value |
---|---|---|---|---|
Intercept | 66.306 | 7.893 | 0.000 * | |
Amyloid-β (Aβ) Load | −14.262 | 7.588 | −0.193 | 0.064 |
Omega-3 supplement use | 0.689 | 2.358 | 0.030 | 0.771 |
Age | −0.436 | 0.250 | −0.180 | 0.085 |
Omega-3 supplement use × Age | 1.253 | 0.496 | 0.258 | 0.013 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaufman, C.S.; Vidoni, E.D.; Burns, J.M.; Alwatban, M.R.; Billinger, S.A. Self-Reported Omega-3 Supplement Use Moderates the Association between Age and Exercising Cerebral Blood Flow Velocity in Older Adults. Nutrients 2020, 12, 697. https://doi.org/10.3390/nu12030697
Kaufman CS, Vidoni ED, Burns JM, Alwatban MR, Billinger SA. Self-Reported Omega-3 Supplement Use Moderates the Association between Age and Exercising Cerebral Blood Flow Velocity in Older Adults. Nutrients. 2020; 12(3):697. https://doi.org/10.3390/nu12030697
Chicago/Turabian StyleKaufman, Carolyn S., Eric D. Vidoni, Jeffrey M. Burns, Mohammed R. Alwatban, and Sandra A. Billinger. 2020. "Self-Reported Omega-3 Supplement Use Moderates the Association between Age and Exercising Cerebral Blood Flow Velocity in Older Adults" Nutrients 12, no. 3: 697. https://doi.org/10.3390/nu12030697
APA StyleKaufman, C. S., Vidoni, E. D., Burns, J. M., Alwatban, M. R., & Billinger, S. A. (2020). Self-Reported Omega-3 Supplement Use Moderates the Association between Age and Exercising Cerebral Blood Flow Velocity in Older Adults. Nutrients, 12(3), 697. https://doi.org/10.3390/nu12030697