Reference Values for Skeletal Muscle Mass – Current Concepts and Methodological Considerations
Abstract
:1. Introduction
2. Methods
Study Characteristics
3. Results
Combination of Measures for Muscle mass and Obesity
4. Discussion
4.1. Limitations of Proxies for Total Skeletal Muscle
4.2. Normalization of Skeletal Muscle Mass for Body Size and Obesity
5. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
Abbreviation
ALM | appendicular lean mass |
ASM | appendicular skeletal muscle mass |
ASMI | appendicular skeletal muscle mass index |
BIA | bioelectrical impedance analysis |
BMI | body mass index |
BSA | body surface area |
CART | classification and regression tree analysis |
CT | computed tomography |
DXA | dual X-ray absorptiometry |
FFM | fat-free mass |
FFMI | fat-free mass index |
FM | fat mass |
FMI | fat mass index |
FNIH | Foundation for the National Institutes of Health |
IOTF | International Obesity Taskforce |
L | lumbar vertebra |
L3 | third lumbar vertebra |
MRI | magnetic resonance imaging |
NA | not available |
NAKO | German National Cohort |
NHANES | National Health and Nutrition Examination Survey |
NIH | National Institutes of Health |
PMA | psoas muscle area |
PMI | psoas muscle index |
SAT | subcutaneous adipose tissue |
SD | standard deviation |
SEE | standard error of estimate |
SM | skeletal muscle mass |
SMI | skeletal muscle mass index |
SMA | skeletal muscle area |
T | thoracic vertebra |
TAMA | total abdominal muscle area |
TMA | thigh muscle area |
VAT | visceral adipose tissue |
VFA | visceral fat area |
WC | waist circumference |
WHO | World Health Organization |
References
- Bauer, J.; Morley, J.E.; Schols, A.M.W.J.; Ferrucci, L.; Cruz-Jentoft, A.J.; Dent, E.; Baracos, V.E.; Crawford, J.A.; Doehner, W.; Heymsfield, S.B.; et al. Sarcopenia: A Time for Action. An SCWD Position Paper. J. Cachexia Sarcopenia Muscle 2019, 10, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Hanai, T.; Shiraki, M.; Nishimura, K.; Ohnishi, S.; Imai, K.; Suetsugu, A.; Takai, K.; Shimizu, M.; Moriwaki, H. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition 2015, 31, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Lim, P.-S.; Hung, S.-C. Impact of Misclassification of Obesity by Body Mass Index on Mortality in Patients with CKD. Kidney Int. Rep. 2018, 3, 447–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caan, B.J.; Cespedes Feliciano, E.M.; Prado, C.M.; Alexeeff, S.; Kroenke, C.H.; Bradshaw, P.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Olobatuyi, T.A.; et al. Association of Muscle and Adiposity Measured by Computed Tomography with Survival in Patients with Nonmetastatic Breast Cancer. JAMA Oncol. 2018, 4, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, J.J.; Reif, R.L.; Bigam, D.L.; Baracos, V.E.; Eurich, D.T.; Sawyer, M.B. The Impact of Muscle and Adipose Tissue on Long-term Survival in Patients with Stage I to III Colorectal Cancer. Dis. Colon Rectum 2019, 62, 549–560. [Google Scholar] [CrossRef]
- Huang, B.-T.; Peng, Y.; Liu, W.; Zhang, C.; Huang, F.-Y.; Wang, P.-J.; Zuo, Z.-L.; Liao, Y.-B.; Chai, H.; Huang, K.-S.; et al. Lean mass index, body fat and survival in Chinese patients with coronary artery disease. QJM Int. J. Med. 2015, 108, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Medina-Inojosa, J.R.; Somers, V.K.; Thomas, R.J.; Jean, N.; Jenkins, S.M.; Gomez-Ibarra, M.A.; Supervia, M.; Lopez-Jimenez, F. Association Between Adiposity and Lean Mass with Long-Term Cardiovascular Events in Patients with Coronary Artery Disease: No Paradox. J. Am. Heart Assoc. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Lavie, C.J.; De Schutter, A.; Patel, D.A.; Romero-Corral, A.; Artham, S.M.; Milani, R.V. Body Composition and Survival in Stable Coronary Heart Disease: Impact of lean mass index and body fat in the “obesity paradox”. J. Am. Coll. Cardiol. 2012, 60, 1374–1380. [Google Scholar] [CrossRef] [Green Version]
- Toledo, D.O.; Carvalho, A.M.; Oliveira, A.M.R.R.; Toloi, J.M.; Silva, A.C.; Francisco de Mattos Farah, J.; Prado, C.M.; Silva, J.M. The use of computed tomography images as a prognostic marker in critically ill cancer patients. Clin. Nutr. ESPEN 2018, 25, 114–120. [Google Scholar] [CrossRef]
- Kou, H.-W.; Yeh, C.-H.; Tsai, H.-I.; Hsu, C.-C.; Hsieh, Y.-C.; Chen, W.-T.; Cheng, H.-T.; Yu, M.-C.; Lee, C.-W. Sarcopenia is an effective predictor of difficult-to-wean and mortality among critically ill surgical patients. PLoS ONE 2019, 14, e0220699. [Google Scholar] [CrossRef] [Green Version]
- Moisey, L.L.; Mourtzakis, M.; Cotton, B.A.; Premji, T.; Heyland, D.K.; Wade, C.E.; Bulger, E.; Kozar, R.A.; Nutrition and Rehabilitation Investigators Consortium (NUTRIC). Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit. Care 2013, 17, R206. [Google Scholar] [CrossRef] [Green Version]
- Jaitovich, A.; Khan, M.M.H.S.; Itty, R.; Chieng, H.C.; Dumas, C.L.; Nadendla, P.; Fantauzzi, J.P.; Yucel, R.M.; Feustel, P.J.; Judson, M.A. ICU Admission Muscle and Fat Mass, Survival, and Disability at Discharge: A Prospective Cohort Study. Chest 2019, 155, 322–330. [Google Scholar] [CrossRef]
- Carson, B.P. The Potential Role of Contraction-Induced Myokines in the Regulation of Metabolic Function for the Prevention and Treatment of Type 2 Diabetes. Front. Endocrinol. 2017, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Jun, H.-S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front. Physiol. 2019, 10, 42. [Google Scholar] [CrossRef]
- Bigaard, J.; Frederiksen, K.; Tjønneland, A.; Thomsen, B.L.; Overvad, K.; Heitmann, B.L.; Sørensen, T.I.A. Body Fat and Fat-Free Mass and All-Cause Mortality. Obes. Res. 2004, 12, 1042–1049. [Google Scholar] [CrossRef]
- Lee, D.H.; Giovannucci, E.L. Body composition and mortality in the general population: A review of epidemiologic studies. Exp. Biol. Med. 2018, 243, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Schweitzer, L.; Geisler, C.; Pourhassan, M.; Braun, W.; Glüer, C.-C.; Bosy-Westphal, A.; Müller, M.J. What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am. J. Clin. Nutr. 2015, 102, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, S.B.; Gonzalez, M.C.; Lu, J.; Jia, G.; Zheng, J. Skeletal muscle mass and quality: Evolution of modern measurement concepts in the context of sarcopenia. Proc. Nutr. Soc. 2015, 74, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Jung Lee, S.; Janssen, I.; Heymsfield, S.B.; Ross, R. Relation between whole-body and regional measures of human skeletal muscle. Am. J. Clin. Nutr. 2004, 80, 1215–1221. [Google Scholar] [CrossRef] [Green Version]
- Bahat, G.; Saka, B.; Tufan, F.; Akin, S.; Sivrikaya, S.; Yucel, N.; Erten, N.; Karan, M.A. Prevalence of sarcopenia and its association with functional and nutritional status among male residents in a nursing home in Turkey. Aging Male 2010, 13, 211–214. [Google Scholar] [CrossRef]
- Krzymińska-Siemaszko, R.; Fryzowicz, A.; Czepulis, N.; Kaluźniak-Szymanowska, A.; Dworak, L.B.; Wieczorowska-Tobis, K. The impact of the age range of young healthy reference population on the cut-off points for low muscle mass necessary for the diagnosis of sarcopenia. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4321–4332. [Google Scholar] [CrossRef]
- Alkahtani, S.A. A cross-sectional study on sarcopenia using different methods: Reference values for healthy Saudi young men. BMC Musculoskelet. Disord. 2017, 18, 119. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Nishiguchi, S.; Fukutani, N.; Tanigawa, T.; Yukutake, T.; Kayama, H.; Aoyama, T.; Arai, H. Prevalence of Sarcopenia in Community-Dwelling Japanese Older Adults. J. Am. Med. Dir. Assoc. 2013, 14, 911–915. [Google Scholar] [CrossRef]
- Janssen, I.; Baumgartner, R.N.; Ross, R.; Rosenberg, I.H.; Roubenoff, R. Skeletal Muscle Cutpoints Associated with Elevated Physical Disability Risk in Older Men and Women. Am. J. Epidemiol. 2004, 159, 413–421. [Google Scholar] [CrossRef]
- Tichet, J.; Vol, S.; Goxe, D.; Salle, A.; Berrut, G.; Ritz, P. Prevalence of sarcopenia in the French senior population. J. Nutr. Health Aging 2008, 12, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Masanés, F.; Culla, A.; Navarro-Gonzalez, M.; Navarro-Lopez, M.; Sacanella, E.; Torres, B.; Lopez-Soto, A. Prevalence of sarcopenia in healthy community-dwelling elderly in an urban area of Barcelona (Spain). J. Nutr. Health Aging 2012, 16, 184–187. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Jensen, B.; Braun, W.; Pourhassan, M.; Gallagher, D.; Müller, M.J. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur. J. Clin. Nutr. 2017, 71, 1061–1067. [Google Scholar] [CrossRef]
- Prado, C.M.; Siervo, M.; Mire, E.; Heymsfield, S.B.; Stephan, B.C.; Broyles, S.; Smith, S.R.; Wells, J.C.; Katzmarzyk, P.T. A population-based approach to define body-composition phenotypes. Am. J. Clin. Nutr. 2014, 99, 1369–1377. [Google Scholar] [CrossRef] [Green Version]
- Akhmedov, D.; Berdeaux, R. The effects of obesity on skeletal muscle regeneration. Front. Physiol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Invest. 2017, 127, 43–54. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus Report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Chen, L.-K.; Lee, W.-J.; Peng, L.-N.; Liu, L.-K.; Arai, H.; Akishita, M. Recent Advances in Sarcopenia Research in Asia: 2016 Update From the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2016, 17, 767.e1–767.e7. [Google Scholar] [CrossRef]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. J. Gerontol. A Biomed. Sci. Med Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imboden, M.T.; Swartz, A.M.; Finch, H.W.; Harber, M.P.; Kaminsky, L.A. Reference standards for lean mass measures using GE dual energy x-ray absorptiometry in Caucasian adults. PLoS ONE 2017, 12, e0176161. [Google Scholar] [CrossRef]
- Kruger, H.S.; Micklesfield, L.K.; Wright, H.H.; Havemann-Nel, L.; Goedecke, J.H. Ethnic-specific cut-points for sarcopenia: Evidence from black South African women. Eur. J. Clin. Nutr. 2015, 69, 843–849. [Google Scholar] [CrossRef]
- Alemán-Mateo, H.; Ruiz Valenzuela, R.E. Skeletal Muscle Mass Indices in Healthy Young Mexican Adults Aged 20–40 Years: Implications for Diagnoses of Sarcopenia in the Elderly Population. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Gould, H.; Brennan, S.L.; Kotowicz, M.A.; Nicholson, G.C.; Pasco, J.A. Total and Appendicular Lean Mass Reference Ranges for Australian Men and Women: The Geelong Osteoporosis Study. Calcif. Tissue Int. 2014, 94, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Marwaha, R.K.; Garg, M.K.; Bhadra, K.; Mithal, A.; Tandon, N. Assessment of lean (muscle) mass and its distribution by dual energy X-ray absorptiometry in healthy Indian females. Arch. Osteoporos. 2014, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wong, M.; Leung, J.; Lee, J.; Auyeung, T.W.; Woo, J. Incidence, reversibility, risk factors and the protective effect of high body mass index against sarcopenia in community-dwelling older Chinese adults: Sarcopenia incidence and its risk factors. Geriatr. Gerontol. Int. 2014, 14, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Lee, Y.; Chung, Y.-S.; Lee, D.-J.; Joo, N.-S.; Hong, D.; Song, G.; Kim, H.-J.; Choi, Y.J.; Kim, K.-M. Prevalence of Sarcopenia and Sarcopenic Obesity in the Korean Population Based on the Fourth Korean National Health and Nutritional Examination Surveys. J. Gerontol. A Biomed. Sci. Med. Sci. 2012, 67, 1107–1113. [Google Scholar] [CrossRef]
- Oliveira, R.J.; Bottaro, M.; Júnior, J.T.; Farinatti, P.T.V.; Bezerra, L.A.; Lima, R.M. Identification of sarcopenic obesity in postmenopausal women: A cutoff proposal. Braz. J. Med. Biol. Res. 2011, 44, 1171–1176. [Google Scholar] [CrossRef]
- Sanada, K.; Miyachi, M.; Tanimoto, M.; Yamamoto, K.; Murakami, H.; Okumura, S.; Gando, Y.; Suzuki, K.; Tabata, I.; Higuchi, M. A cross-sectional study of sarcopenia in Japanese men and women: Reference values and association with cardiovascular risk factors. Eur. J. Appl. Physiol. 2010, 110, 57–65. [Google Scholar] [CrossRef]
- Szulc, P.; Duboeuf, F.; Marchand, F.; Delmas, P.D. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: The MINOS study. Am. J. Clin. Nutr. 2004, 80, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.; Goodpaster, B.; Nevitt, M.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B.; et al. Sarcopenia: Alternative Definitions and Associations with Lower Extremity Function. J. Am. Geriatr. Soc. 2003, 51, 1602–1609. [Google Scholar] [CrossRef] [Green Version]
- Tankó, L.B.; Movsesyan, L.; Mouritzen, U.; Christiansen, C.; Svendsen, O.L. Appendicular lean tissue mass and the prevalence of sarcopenia among healthy women. Metabolism 2002, 51, 69–74. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of Sarcopenia among the Elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef]
- Kim, J.; Wang, Z.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. Am. Clin. Nutr. 2002, 76, 378–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahat, G.; Tufan, A.; Tufan, F.; Kilic, C.; Akpinar, T.S.; Kose, M.; Erten, N.; Karan, M.A.; Cruz-Jentoft, A.J. Cut-off points to identify sarcopenia according to European Working Group on Sarcopenia in Older People (EWGSOP) definition. Clin. Nutr. 2016, 35, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-I.; Chen, C.-Y.; Huang, K.-C.; Wu, C.-H.; Hsiung, C.A.; Hsu, C.-C.; Chen, C.-Y. Comparison of three BIA muscle indices for sarcopenia screening in old adults. Eur. Geriatr. Med. 2013, 4, 145–149. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Watanabe, M.; Sun, W.; Sugiura, Y.; Tsuda, Y.; Kimura, M.; Hayashida, I.; Kusabiraki, T.; Kono, K. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan. Arch. Gerontol. Geriatr. 2012, 55, e9–e13. [Google Scholar] [CrossRef]
- Chien, M.-Y.; Huang, T.-Y.; Wu, Y.-T. Prevalence of Sarcopenia Estimated Using a Bioelectrical Impedance Analysis Prediction Equation in Community-Dwelling Elderly People in Taiwan. J. Am. Geriatr. Soc. 2008, 56, 1710–1715. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Ufuk, F.; Herek, D. Reference Skeletal Muscle Mass Values at L3 Vertebrae Level Based on Computed Tomography in Healthy Turkish Adults. Int. J. Geront. 2019, 13, 221–225. [Google Scholar]
- Derstine, B.A.; Holcombe, S.A.; Ross, B.E.; Wang, N.C.; Su, G.L.; Wang, S.C. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci. Rep. 2018, 8, 11369. [Google Scholar] [CrossRef] [Green Version]
- van der Werf, A.; Langius, J.A.E.; de van der Schueren, M.A.E.; Nurmohamed, S.A.; van der Pant, K.A.M.I.; Blauwhoff-Buskermolen, S.; Wierdsma, N.J. Percentiles for skeletal muscle index, area and radiation attenuation based on computed tomography imaging in a healthy Caucasian population. Eur. J. Clin. Nutr. 2018, 72, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, J.; Shasthry, V.; Kaal, C.R.; Anand, L.; Bhardwaj, A.; Pandit, V.; Arora, A.; Rajesh, S.; Pamecha, V.; Jain, V.; et al. Characterization of body composition and definition of sarcopenia in patients with alcoholic cirrhosis: A computed tomography based study. Liver Int. 2017, 37, 1668–1674. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, W.Y.; Park, H.K.; Kim, M.C.; Jung, W.; Ko, B.S. Simple Age Specific Cutoff Value for Sarcopenia Evaluated by Computed Tomography. Ann. Nutr. Metab. 2017, 71, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Kubo, N.; Tamura, T.; Toyokawa, T.; Amano, R.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Maeda, K.; Hirakawa, K.; et al. Adverse Effects of Low Preoperative Skeletal Muscle Mass in Patients Undergoing Gastrectomy for Gastric Cancer. Ann. Surg. Oncol. 2017, 24, 2712–2719. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Kobayashi, A.; Hammad, A.; Tamai, Y.; Inagaki, N.; Uemoto, S. Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition 2016, 32, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.-L.; Huang, D.-D.; Pang, W.-Y.; Zhou, C.-J.; Wang, S.-L.; Lou, N.; Ma, L.-L.; Yu, Z.; Shen, X. Sarcopenia is an Independent Predictor of Severe Postoperative Complications and Long-Term Survival After Radical Gastrectomy for Gastric Cancer: Analysis from a Large-Scale Cohort. Medicine 2016, 95, e3164. [Google Scholar] [CrossRef] [PubMed]
- Iritani, S.; Imai, K.; Takai, K.; Hanai, T.; Ideta, T.; Miyazaki, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M.; Moriwaki, H. Skeletal muscle depletion is an independent prognostic factor for hepatocellular carcinoma. J. Gastroenterol. 2015, 50, 323–332. [Google Scholar] [CrossRef]
- Chiles Shaffer, N.; Ferrucci, L.; Shardell, M.; Simonsick, E.M.; Studenski, S. Agreement and Predictive Validity Using Less-Conservative Foundation for the National Institutes of Health Sarcopenia Project Weakness Cutpoints. J. Am. Geriatr. Soc. 2017, 65, 574–579. [Google Scholar] [CrossRef] [Green Version]
- Cawthon, P.M.; Peters, K.W.; Shardell, M.D.; McLean, R.R.; Dam, T.-T.L.; Kenny, A.M.; Fragala, M.S.; Harris, T.B.; Kiel, D.P.; Guralnik, J.M.; et al. Cutpoints for Low Appendicular Lean Mass That Identify Older Adults with Clinically Significant Weakness. J. Gerontol. A Biomed. Sci. Med. Sci. 2014, 69, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Biolo, G.; Di Girolamo, F.G.; Breglia, A.; Chiuc, M.; Baglio, V.; Vinci, P.; Toigo, G.; Lucchin, L.; Jurdana, M.; Pražnikar, Z.J.; et al. Inverse relationship between “a body shape index” (ABSI) and fat-free mass in women and men: Insights into mechanisms of sarcopenic obesity. Clin. Nutr. 2015, 34, 323–327. [Google Scholar] [CrossRef]
- Lim, K.I.; Yang, S.J.; Kim, T.N.; Yoo, H.J.; Kang, H.J.; Song, W.; Baik, S.H.; Choi, D.S.; Choi, K.M. The association between the ratio of visceral fat to thigh muscle area and metabolic syndrome: The Korean Sarcopenic Obesity Study (KSOS). Clin. Endocrinol. 2010, 73, 588–594. [Google Scholar] [CrossRef]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Sarcopenic Obesity and Risk of Cardiovascular Disease and Mortality: A Population-Based Cohort Study of Older Men. J. Am. Geriatr. Soc. 2014, 62, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Nishigori, T.; Tsunoda, S.; Okabe, H.; Tanaka, E.; Hisamori, S.; Hosogi, H.; Shinohara, H.; Sakai, Y. Impact of Sarcopenic Obesity on Surgical Site Infection after Laparoscopic Total Gastrectomy. Ann. Surg. Oncol. 2016, 23, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Pecorelli, N.; Carrara, G.; De Cobelli, F.; Cristel, G.; Damascelli, A.; Balzano, G.; Beretta, L.; Braga, M. Effect of sarcopenia and visceral obesity on mortality and pancreatic fistula following pancreatic cancer surgery. Br. J. Surg. 2016, 103, 434–442. [Google Scholar] [CrossRef]
- Cushen, S.J.; Power, D.G.; Murphy, K.P.; McDermott, R.; Griffin, B.T.; Lim, M.; Daly, L.; MacEneaney, P.; O’ Sullivan, K.; Prado, C.M.; et al. Impact of body composition parameters on clinical outcomes in patients with metastatic castrate-resistant prostate cancer treated with docetaxel. Clin. Nutr. ESPEN 2016, 13, e39–e45. [Google Scholar] [CrossRef] [PubMed]
- Muscariello, E.; Nasti, G.; Siervo, M.; Di Maro, M.; Lapi, D.; D’Addio, G.; Colantuoni, A. Dietary protein intake in sarcopenic obese older women. Clin. Interv. Aging 2016, 133. [Google Scholar] [CrossRef] [Green Version]
- Antoun, S.; Baracos, V.E.; Birdsell, L.; Escudier, B.; Sawyer, M.B. Low body mass index and sarcopenia associated with dose-limiting toxicity of sorafenib in patients with renal cell carcinoma. Ann. Oncol. 2010, 21, 1594–1598. [Google Scholar] [CrossRef]
- Barret, M.; Antoun, S.; Dalban, C.; Malka, D.; Mansourbakht, T.; Zaanan, A.; Latko, E.; Taieb, J. Sarcopenia Is Linked to Treatment Toxicity in Patients with Metastatic Colorectal Cancer. Nutr. Cancer 2014, 66, 583–589. [Google Scholar] [CrossRef]
- Huillard, O.; Mir, O.; Peyromaure, M.; Tlemsani, C.; Giroux, J.; Boudou-Rouquette, P.; Ropert, S.; Delongchamps, N.B.; Zerbib, M.; Goldwasser, F. Sarcopenia and body mass index predict sunitinib-induced early dose-limiting toxicities in renal cancer patients. Br. J. Cancer 2013, 108, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- De Rosa, E.; Santarpia, L.; Marra, M.; Sammarco, R.; Amato, V.; Onufrio, M.; De Simone, G.; Contaldo, F.; Pasanisi, F. Preliminary evaluation of the prevalence of sarcopenia in obese patients from Southern Italy. Nutrition 2015, 31, 79–83. [Google Scholar] [CrossRef]
- Kemmler, W.; von Stengel, S.; Engelke, K.; Sieber, C.; Freiberger, E. Prevalence of sarcopenic obesity in Germany using established definitions: Baseline data of the FORMOsA study. Osteoporos. Int. 2016, 27, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Baek, K.H.; Song, K.-H.; Il Kang, M.; Park, C.Y.; Lee, W.Y.; Oh, K.W. Vitamin D Deficiency Is Associated with Sarcopenia in Older Koreans, Regardless of Obesity: The Fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) 2009. J. Clin. Endocrinol. Metab. 2011, 96, 3250–3256. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, T.-N.; Kim, S.-H. Sarcopenic obesity is more closely associated with knee osteoarthritis than is nonsarcopenic obesity: A cross-sectional study. Arthritis Rheum. 2012, 64, 3947–3954. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R.; Gravenstein, K.S.; Metter, E.J.; Egan, J.M.; Ferrucci, L.; Chia, C.W. Selective Contribution of Regional Adiposity, Skeletal Muscle, and Adipokines to Glucose Disposal in Older Adults. J. Am. Geriatr. Soc. 2012, 60, 707–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.S.; Lee, S.-G.; Lee, Y.; Lim, J.-B.; Kim, J.-H. Homeostasis model assessment of insulin resistance in a general adult population in Korea: Additive association of sarcopenia and obesity with insulin resistance. Clin. Endocrinol. 2017, 86, 44–51. [Google Scholar] [CrossRef]
- Lee, Y.; Jung, K.S.; Kim, S.U.; Yoon, H.; Yun, Y.J.; Lee, B.-W.; Kang, E.S.; Han, K.-H.; Lee, H.C.; Cha, B.-S. Sarcopaenia is associated with NAFLD independently of obesity and insulin resistance: Nationwide surveys (KNHANES 2008–2011). J. Hepatol. 2015, 63, 486–493. [Google Scholar] [CrossRef]
- Oh, C.; Jho, S.; No, J.-K.; Kim, H.-S. Body composition changes were related to nutrient intakes in elderly men but elderly women had a higher prevalence of sarcopenic obesity in a population of Korean adults. Nutr. Res. 2015, 35, 1–6. [Google Scholar] [CrossRef]
- Chung, J.-Y.; Kang, H.-T.; Lee, D.-C.; Lee, H.-R.; Lee, Y.-J. Body composition and its association with cardiometabolic risk factors in the elderly: A focus on sarcopenic obesity. Arch. Gerontol. Geriatr. 2013, 56, 270–278. [Google Scholar] [CrossRef]
- Baek, J.; Park, D.; Kim, I.; Won, J.-U.; Hwang, J.; Roh, J. Autonomic dysfunction of overweight combined with low muscle mass. Clin. Auton. Res. 2013, 23, 325–331. [Google Scholar] [CrossRef]
- Baek, S.J.; Nam, G.E.; Han, K.D.; Choi, S.W.; Jung, S.W.; Bok, A.R.; Kim, Y.H.; Lee, K.S.; Han, B.D.; Kim, D.H. Sarcopenia and sarcopenic obesity and their association with dyslipidemia in Korean elderly men: The 2008–2010 Korea National Health and Nutrition Examination Survey. J. Endocrinol. Investig. 2014, 37, 247–260. [Google Scholar] [CrossRef]
- Lou, N.; Chi, C.-H.; Chen, X.-D.; Zhou, C.-J.; Wang, S.-L.; Zhuang, C.-L.; Shen, X. Sarcopenia in overweight and obese patients is a predictive factor for postoperative complication in gastric cancer: A prospective study. Eur. J. Surg. Oncol. 2017, 43, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.A.; Zunzunegui, M.V.; Vafaei, A.; da Câmara, S.M.A.; Oliveira, T.S.; Maciel, Á.C.C. Sarcopenic obesity and physical performance in middle aged women: A cross-sectional study in Northeast Brazil. BMC Public Health 2016, 16, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, B.; Lim, J.-Y.; Lee, J.; Choi, N.-K.; Ahn, Y.-O.; Park, B.-J. Prevalence Rate and Associated Factors of Sarcopenic Obesity in Korean Elderly Population. J. Korean Med. Sci. 2012, 27, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Shin, S.-Y.; Shin, M.-J. Sarcopenic obesity is associated with lower indicators of psychological health and quality of life in Koreans. Nutr. Res. 2015, 35, 384–392. [Google Scholar] [CrossRef] [PubMed]
- An, K.O.; Kim, J. Association of Sarcopenia and Obesity with Multimorbidity in Korean Adults: A Nationwide Cross-Sectional Study. J. Am. Med. Dir. Assoc. 2016, 17, 960.e1–960.e7. [Google Scholar] [CrossRef]
- Bahat, G.; Kilic, C.; Topcu, Y.; Aydin, K.; Karan, M.A. Fat percentage cutoff values to define obesity and prevalence of sarcopenic obesity in community-dwelling older adults in Turkey. Aging Male 2018, 1–7. [Google Scholar] [CrossRef]
- Ishii, S.; Chang, C.; Tanaka, T.; Kuroda, A.; Tsuji, T.; Akishita, M.; Iijima, K. The Association between Sarcopenic Obesity and Depressive Symptoms in Older Japanese Adults. PLoS ONE 2016, 11, e0162898. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.N.; Yang, S.J.; Yoo, H.J.; Lim, K.I.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Prevalence of sarcopenia and sarcopenic obesity in Korean adults: The Korean sarcopenic obesity study. Int. J. Obes. 2009, 33, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Hong, Y.; Shin, H.J.; Lee, W. Associations of Sarcopenia and Sarcopenic Obesity with Metabolic Syndrome Considering Both Muscle Mass and Muscle Strength. J. Prev. Med. Public Health 2016, 49, 35–44. [Google Scholar] [CrossRef]
- Gomez-Cabello, A.; Pedrero-Chamizo, R.; Olivares, P.R.; Luzardo, L.; Juez-Bengoechea, A.; Mata, E.; Albers, U.; Aznar, S.; Villa, G.; Espino, L.; et al. Prevalence of overweight and obesity in non-institutionalized people aged 65 or over from Spain: The elderly EXERNET multi-centre study: Adiposity and lifestyle in Spanish elderly. Obes. Rev. 2011, 12, 583–592. [Google Scholar] [CrossRef]
- Rolland, Y.; Lauwers-Cances, V.; Cristini, C.; van Kan, G.A.; Janssen, I.; Morley, J.E.; Vellas, B. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: The EPIDOS (EPIDemiologie de l’OSteoporose) Study. Am. J. Clin. Nutr. 2009, 89, 1895–1900. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual Energy X-Ray Absorptiometry Body Composition Reference Values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef] [PubMed]
- Snyder, W.S.C.; Cook, M.J.; Nasset, E.S.; Karhansen, L.R.; Howells, G.P.; Tipton, I.H. Report of the Task Group on Reference Men; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Schautz, B.; Later, W.; Heller, M.; Müller, M.J.; Bosy-Westphal, A. Total and regional relationship between lean and fat mass with increasing adiposity—Impact for the diagnosis of sarcopenic obesity. Eur. J. Clin. Nutr. 2012, 66, 1356–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linge, J.; Borga, M.; West, J.; Tuthill, T.; Miller, M.R.; Dumitriu, A.; Thomas, E.L.; Romu, T.; Tunón, P.; Bell, J.D.; et al. Body Composition Profiling in the UK Biobank Imaging Study. Obesity 2018, 26, 1785–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamberg, F.; Kauczor, H.-U.; Weckbach, S.; Schlett, C.L.; Forsting, M.; Ladd, S.C.; Greiser, K.H.; Weber, M.-A.; Schulz-Menger, J.; Niendorf, T.; et al. Whole-Body MR Imaging in the German National Cohort: Rationale, Design, and Technical Background. Radiology 2015, 277, 206–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, A.J.; Greig, C.A.; Baracos, V. The advantages and limitations of cross-sectional body composition analysis. Curr. Opin. Support. Palliat. Care 2011, 5, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.M.; Heymsfield, S.B. Lean Tissue Imaging: A New Era for Nutritional Assessment and Intervention. J. Parenter. Enter. Nutr. 2014, 38, 940–953. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Fuerst, T.; Lang, T.; Salamone, L.; Harris, T.B. Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health, Aging, and Body Composition Study--Dual-Energy X-ray Absorptiometry and Body Composition Working Group. J. Appl. Physiol. 1999, 87, 1513–1520. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.D.; Williamson, D.A.; Finnegan, T.P.; Lloyd, B.D.; Grady, J.N.; Diamond, T.H.; Smith, E.U.; Stavrinos, T.M.; Thompson, M.W.; Gwinn, T.H.; et al. Estimation of thigh muscle cross-sectional area by dual-energy X-ray absorptiometry in frail elderly patients. Am. J. Clin. Nutr. 2007, 86, 952–958. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, Z.; Zhang, J.; Hua, J.; He, W.; Zhu, S. Estimation of Total Body Skeletal Muscle Mass in Chinese Adults: Prediction Model by Dual-Energy X-Ray Absorptiometry. PLoS ONE 2013, 8, e53561. [Google Scholar] [CrossRef] [Green Version]
- Freda, P.U.; Shen, W.; Reyes-Vidal, C.M.; Geer, E.B.; Arias-Mendoza, F.; Gallagher, D.; Heymsfield, S.B. Skeletal Muscle Mass in Acromegaly Assessed by Magnetic Resonance Imaging and Dual-Photon X-Ray Absorptiometry. J. Clin. Endocrinol. Metab. 2009, 94, 2880–2886. [Google Scholar] [CrossRef] [PubMed]
- Bridge, P.; Pocock, N.A.; Nguyen, T.; Munns, C.; Cowell, C.T.; Forwood, N.; Thompson, M.W. Validation of Longitudinal DXA Changes in Body Composition From Pre- to Mid-Adolescence Using MRI as Reference. J. Clin. Densitom. 2011, 14, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Bredella, M.A.; Ghomi, R.H.; Thomas, B.J.; Torriani, M.; Brick, D.J.; Gerweck, A.V.; Misra, M.; Klibanski, A.; Miller, K.K. Comparison of DXA and CT in the Assessment of Body Composition in Premenopausal Women with Obesity and Anorexia Nervosa. Obesity 2010, 18, 2227–2233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilsborough, J.C.; Greenway, K.; Opar, D.; Livingstone, S.; Cordy, J.; Coutts, A.J. The accuracy and precision of DXA for assessing body composition in team sport athletes. J. Sports Sci. 2014, 32, 1821–1828. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.; Braun, W.; Geisler, C.; Both, M.; Klückmann, K.; Müller, M.J.; Bosy-Westphal, A. Limitations of Fat-Free Mass for the Assessment of Muscle Mass in Obesity. Obes. Facts 2019, 12, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Buckinx, F.; Landi, F.; Cesari, M.; Fielding, R.A.; Visser, M.; Engelke, K.; Maggi, S.; Dennison, E.; Al-Daghri, N.M.; Allepaerts, S.; et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J. Cachexia Sarcopenia Muscle 2018, 9, 269–278. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Schautz, B.; Later, W.; Kehayias, J.J.; Gallagher, D.; Müller, M.J. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur. J. Clin. Nutr. 2013, 67, S14–S21. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Merchant, A.T. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr. J. 2008, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Mourtzakis, M.; Prado, C.M.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St.-Onge, M.-P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef] [Green Version]
- Rutten, I.J.G.; Ubachs, J.; Kruitwagen, R.F.P.M.; Beets-Tan, R.G.H.; Olde Damink, S.W.M.; Van Gorp, T. Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer. J. Cachexia Sarcopenia Muscle 2017, 8, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Baracos, V.E. Psoas as a sentinel muscle for sarcopenia: A flawed premise. J. Cachexia Sarcopenia Muscle 2017, 8, 527–528. [Google Scholar] [CrossRef]
- Müller, M.J.; Braun, W.; Enderle, J.; Bosy-Westphal, A. Beyond BMI: Conceptual Issues Related to Overweight and Obese Patients. Obes. Facts 2016, 9, 193–205. [Google Scholar] [CrossRef]
- Maden-Wilkinson, T.M.; Degens, H.; Jones, D.A.; McPhee, J.S. Comparison of MRI and DXA to measure muscle size and age-related atrophy in thigh muscles. J. Musculoskelet. Neuronal Interact. 2013, 13, 320–328. [Google Scholar]
- Tavoian, D.; Ampomah, K.; Amano, S.; Law, T.D.; Clark, B.C. Changes in DXA-derived lean mass and MRI-derived cross-sectional area of the thigh are modestly associated. Sci. Rep. 2019, 9, 10028. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Müller, M.J. Identification of skeletal muscle mass depletion across age and BMI groups in health and disease—There is need for a unified definition. Int. J. Obes. 2015, 39, 379–386. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Heo, M.; Thomas, D.; Pietrobelli, A. Scaling of body composition to height: Relevance to height-normalized indexes. Am. J. Clin. Nutr. 2011, 93, 736–740. [Google Scholar] [CrossRef]
- Forbes, G.B. Lean Body Mass-Body Fat Interrelationships in Humans. Nutr. Rev. 2009, 45, 225–231. [Google Scholar] [CrossRef]
- Hulens, M.; Vansant, G.; Claessens, A.L.; Lysens, R.; Muls, E. Predictors of 6-min walk test results in lean, obese and morbidly obese women. Scand. J. Med. Sci. Sports 2003, 13, 98–105. [Google Scholar] [CrossRef]
- Baracos, V.E.; Arribas, L. Sarcopenic obesity: Hidden muscle wasting and its impact for survival and complications of cancer therapy. Ann. Oncol. 2018, 29, ii1–ii9. [Google Scholar] [CrossRef]
- Hattori, K.; Tatsumi, N.; Tanaka, S. Assessment of body composition by using a new chart method. Am. J. Hum. Biol. 1997, 9, 573–578. [Google Scholar] [CrossRef]
- Schutz, Y.; Kyle, U.; Pichard, C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 y. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Feliciano, E.M.C.; Kroenke, C.H.; Meyerhardt, J.A.; Prado, C.M.; Bradshaw, P.T.; Kwan, M.L.; Xiao, J.; Alexeeff, S.; Corley, D.; Weltzien, E.; et al. Association of Systemic Inflammation and Sarcopenia with Survival in Nonmetastatic Colorectal Cancer: Results From the C SCANS Study. JAMA Oncol. 2017, 3, e172319. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C.K.; Victora, C.G. Indices of whole-body and central adiposity for evaluating the metabolic load of obesity. Int. J. Obes. 2005, 29, 483–489. [Google Scholar] [CrossRef] [Green Version]
- Coin, A.; Sarti, S.; Ruggiero, E.; Giannini, S.; Pedrazzoni, M.; Minisola, S.; Rossini, M.; Del Puente, A.; Inelmen, E.M.; Manzato, E.; et al. Prevalence of Sarcopenia Based on Different Diagnostic Criteria Using DEXA and Appendicular Skeletal Muscle Mass Reference Values in an Italian Population Aged 20 to 80. J. Am. Med. Dir. Assoc. 2013, 14, 507–512. [Google Scholar] [CrossRef]
- Lee, W.-J.; Liu, L.-K.; Peng, L.-N.; Lin, M.-H.; Chen, L.-K. Comparisons of Sarcopenia Defined by IWGS and EWGSOP Criteria Among Older People: Results From the I-Lan Longitudinal Aging Study. J. Am. Med. Dir. Assoc. 2013, 14, 528.e1–528.e7. [Google Scholar] [CrossRef]
- Han, P.; Kang, L.; Guo, Q.; Wang, J.; Zhang, W.; Shen, S.; Wang, X.; Dong, R.; Ma, Y.; Shi, Y.; et al. Prevalence and Factors Associated with Sarcopenia in Suburb-dwelling Older Chinese Using the Asian Working Group for Sarcopenia Definition. J. Gerontol. A Biomed. Sci. Med. Sci. 2016, 71, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Yuki, A.; Ando, F.; Otsuka, R.; Matsui, Y.; Harada, A.; Shimokata, H. Epidemiology of sarcopenia in elderly Japanese. J. Phys. Fit. Sports Med. 2015, 4, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Ishii, S.; Tanaka, T.; Shibasaki, K.; Ouchi, Y.; Kikutani, T.; Higashiguchi, T.; Obuchi, S.P.; Ishikawa-Takata, K.; Hirano, H.; Kawai, H.; et al. Development of a simple screening test for sarcopenia in older adults. Geriatr. Gerontol. Int. 2014, 14, 93–101. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhu, X.; Zhang, X.; Li, H.; Du, Y.; Hong, W.; Xue, S.; Zhu, H. A cross-sectional study of loss of muscle mass corresponding to sarcopenia in healthy Chinese men and women: Reference values, prevalence, and association with bone mass. J. Bone Miner. Metab. 2014, 32, 78–88. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Wang, M.; Jiang, C.-M.; Zhang, Y.-M. Are current definitions of sarcopenia applicable for older Chinese adults? J. Nutr. Health Aging 2011, 15, 847–851. [Google Scholar] [CrossRef]
- Zoico, E.; Di Francesco, V.; Guralnik, J.M.; Mazzali, G.; Bortolani, A.; Guariento, S.; Sergi, G.; Bosello, O.; Zamboni, M. Physical disability and muscular strength in relation to obesity and different body composition indexes in a sample of healthy elderly women. Int. J. Obes. Relat. Metab. Disor. 2004, 28, 234–241. [Google Scholar] [CrossRef] [Green Version]
Reference | Device/Software | Parameter/Cut-Off by Gender | Reference Group Characteristics (Mean ± SD)/Diagnostic Criteria (→) | ||
---|---|---|---|---|---|
Alkahtani (2017) | Lunar iDXA General Electric machine, Healthcare | ASMI Class I and Class II sarcopenia men: 7.74 kg/m2 and 6.51 kg/m2 | n = 232 | Saudi Arabians | |
men | women | ||||
n | 232 | 0 | |||
Age (y) | 27.1 ± 4.2 | ||||
BMI (kg/m2) | 28.1 ± 5.5 | ||||
→ Class I sarcopenia: 1 SD below the means for young, healthy adults → Class II sarcopenia: 2 SDs below the means for young, healthy adults | |||||
Imboden et al. (2017) | GE Lunar Prodigy or iDXA | (a) ASMI men: 6.35 kg/m2 women: 4.92 kg/m2 | (a) n = 1246 | US population | |
men | women | ||||
n | 488 | 758 | |||
Age (y) | 20 to 39 | 20 to 39 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
(b) ASMI men: 7.40 kg/m2 women: 5.60 kg/m2 | (b) n = 351 | US population | |||
men | women | ||||
n | 168 | 183 | |||
Age (year) | 70 to 79 | 70 to 79 | |||
BMI (kg/m2) | NA | NA | |||
→ sex-specific lowest 20% of study group | |||||
Kruger et al. (2015) | Hologic Discovery-W, software version 12.7 for Cape Town QDR-4500A, software version 12.5:7 for Soweto | (a) ASMI women: 4.93 kg/m2 | (a) n = 238 | Black South Africans (Cape Town) | |
men | women | ||||
n | 0 | 238 | |||
Age (year) | 25.8 ± 5.9 | ||||
BMI (kg/m2) | 29.8 ± 8.0 | ||||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
(b) ASMI women: 4.95 kg/m2 | |||||
(b) n = 371 | Black South Africans (Soweto) | ||||
men | women | ||||
n | 0 | 371 | |||
Age (year) | 35.1 ± 3.2 | ||||
BMI (kg/m2) | 28.8 ± 6.2 | ||||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Alemán-Mateo & Ruiz Valenzuela (2014) | DPX-MD+, GE Lunar | ASMI men: 5.86 kg/m2 women: 4.72 kg/m2 SMI men: 6.63 kg/m2 women: 5.22 kg/m2 SM was predicted using Kim’s equation (Kim et al., 2002) | n = 216 | Mexicans | |
men | women | ||||
n | 136 | 80 | |||
Age (year) | 27.3 ± 5.0 | 28.2 ± 5.6 | |||
BMI (kg/m2) | 25.7 ± 3.6 | 23.2 ± 3.1 | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Gould et al. (2014) | DPX-L scanner, software version 1.31; Lunar or Prodigy Pro, Lunar | ASMI men: 6.94 kg/m2 women: 5.30 kg/m2 | n = 682 | study performed in southeastern Australia | |
men | women | ||||
n | 374 | 308 | |||
Age (year) | 20 to 39 | 20 to 39 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
Marwaha et al. (2014) | Prodigy Oracle, GE Lunar Corp. | (a) ASMI women: 4.42 kg/m2 | (a) n = 469 | Indians | |
men | women | ||||
n | 0 | 469 | |||
Age (year) | 20 to 39 | ||||
BMI (kg/m2) | NA | ||||
→ 2 SDs below the sex-specific means of young adults | |||||
(b) ASMI women: 5.11 kg/m2 | (b) n = 1045 | Indians | |||
men | women | ||||
n | 0 | 1045 | |||
Age (year) | 44.0 ± 17.1 | ||||
BMI (kg/m2) | 25.0 ± 5.2 | ||||
→ sex-specific lowest 20% of study group | |||||
Yu et al. (2014) | Hologic Delphi W4500 densitometer, auto whole body version 12.4 | ASMI men: 6.52 kg/m2 women: 5.44 kg/m2 | n = 4000 | Chinese (Hong Kong) | |
men | women | ||||
n | 2000 | 2000 | |||
Age (year) | 72.5 ± 5.2 | 72.5 ± 5.2 | |||
BMI (kg/m2) | 23.7 ± 3.3 | 23.7 ± 3.3 | |||
→ lowest quintile | |||||
Kim et al. (2012) | Hologic Discovery-W | ASMI Class I and Class II sarcopenia men: 7.50 kg/m2 and 6.58 kg/m2 women: 5.38 kg/m2 and 4.59 kg/m2 | n = 2513 | Koreans | |
men | women | ||||
n | 1245 | 1268 | |||
Age (year) | 31.0 ± 5.5 | 30.8 ± 5.6 | |||
BMI (kg/m2) | 24.0 ± 3.4 | 22.1 ± 3.5 | |||
→ Class I sarcopenia: 1-2 SDs below the sex-specific means for young, healthy adults → Class II sarcopenia: 2 SDs below the sex-specific means for young, healthy adults | |||||
Oliveira et al. (2011) | DPX-L, Lunar Radiation Corporation | ASMI women: 5.0 kg/m2 | n = 349 | Brazilians | |
men | women | ||||
n | 0 | 349 | |||
Age (year) | 29.0 ± 7.5 | ||||
BMI (kg/m2) | 23.5 ± 4.5 | ||||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Sanada et al. (2010) | Hologic QDR-4500A scanner, software version 11.2:3 | ASMI Class I and Class II sarcopenia men: 7.77 kg/m2 and 6.87 kg/m2 women: 6.12 kg/m2 and 5.46 kg/m2 | n = 529 | Japanese | |
men | women | ||||
n | 266 | 263 | |||
Age (year) | 28.2 ± 7.4 | 28.0 ± 7.0 | |||
BMI (kg/m2) | 23.0 ± 3.0 | 20.8 ± 2.6 | |||
→ Class I sarcopenia: 1 SD below the sex-specific means for young, healthy adults → Class II sarcopenia: 2 SDs below the sex-specific means for young, healthy adults | |||||
Szulc et al. (2004) | Hologic 1000W | ASMI men: 6.32 kg/m2 | n = 845 | study performed in France | |
men | women | ||||
n | 845 | 0 | |||
Age (year) | 64.0 ± 8.0 | ||||
BMI (kg/m2) | 28.0 ± 3.7 | ||||
→ lowest quartile | |||||
Newman et al. (2003) | QDR 4500A, Hologic, Inc. | ASMI men: 7.23 kg/m2 women: 5.67 kg/m2 Values recommended by the International Working Group on Sarcopenia (Fielding et al., 2011) | n = 2984 | study performed in USA (41% Blacks) | |
men | women | ||||
n | 1435 | 1549 | |||
Age (year) | 73.6 ± 2.9 | 73.6 ± 2.9 | |||
BMI (kg/m2) | 27.4 ± 4.8 | 27.4 ± 4.8 | |||
→ sex-specific lowest 20% of study group | |||||
Tankó et al. (2002) | QDR4500A scanner, Hologic, software version V8.10a:3 and DPX scanner, Lunar Radiation, software versions 3.1 and 3.2 | (a) ASMI women: 6.10 kg/m2 (b) ASMI women: 5.40 kg/m2 | n = 216 women | Danes | |
men | women | ||||
n | 0 | 216 | |||
Age (year) | 30.4 ± 5.3 | ||||
BMI (kg/m2) | NA | ||||
→ (a) 1-2 SDs below the sex-specific means for young, healthy, premenopausal women → (b) 2 SDs below the sex-specific means for young, healthy, premenopausal women | |||||
Baumgartner et al. (1998) | Lunar DPX | ASMI men: 7.26 kg/m2 women: 5.45 kg/m2 | n = 229 | US population (non-Hispanic white men and women) | |
men | women | ||||
n | 107 | 122 | |||
Age (year) | 28.7 ± 5.1 | 29.7 ± 5.9 | |||
BMI (kg/m2) | 24.6 ± 3.8 | 24.1 ± 5.4 | |||
→ 2 SDs below the sex-specific means of young, healthy adults |
Reference | Device/Software | Parameter/Cut-Off by Gender | Reference Group Characteristics (Mean ± SD)/Diagnostic Criteria (→) | ||
---|---|---|---|---|---|
Krzymińska-Siemaszko et al. (2019) | InBody 170 analyzer, Biospace Co. | ASMI men: 7.35 kg/m2 (20–30 y), 7.38 kg/m2 (18–40 y, 18–39 y, 20–35 y), 7.40 kg/m2 (20–39 y, 20–40 y) women: 5.51 kg/m2 (20–30 y), 5.56 kg/m2 (18–40 y), 5.53 kg/m2 (18–39 y), 5.59 kg/m2 (20–39 y), 5.60 kg/m2 (20–40 y), 5.58 kg/m2 (20–35 y) Authors recommended the highest cut-off points, i.e., 5.60 kg/m2 in women and 7.40 kg/m2 in men | n = 1512 | study performed in Poland (Caucasians) | |
men | women | ||||
n | 635 | 877 | |||
Age (year) | 24.2 ± 5.3 | 28.4 ± 6.8 | |||
BMI (kg/m2) | NA | NA | |||
total n for men and women depends on age range | |||||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Alkahtani (2017) | Tanita MC-980MA, Tanita Corporation Inbody 770, Inbody Co. | ASMI Class I and Class II sarcopenia men: 8.68 kg/m2 and 7.45 kg/m2 ASMI Class I and Class II sarcopenia men: 7.29 kg/m2 and 6.42 kg/m2 | n = 232 | Saudi Arabians | |
men | women | ||||
n | 232 | 0 | |||
Age (year) | 27.1 ± 4.2 | ||||
BMI (kg/m2) | 28.1 ± 5.5 | ||||
→ Class I sarcopenia: 1 SD below the means for young, healthy adults → Class II sarcopenia: 2 SDs below the means for young, healthy adults | |||||
Bahat et al. (2016) | Tanita BC 532 model body analysis monitor | SMI men: 9.2 kg/m2 women: 7.4 kg/m2 SM (kg) = 0.566 x FFM | n = 301 | study performed in Turkey | |
men | women | ||||
n | 187 | 114 | |||
Age (year) | 26.8 ± 4.5 | 25.9 ± 4.7 | |||
BMI (kg/m2) | 25.5 ± 3.6 | 22.4 ± 3.4 | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Chang et al. (2013) | Tanita BC-418 | ASMI men: 6.76 kg/m2 women: 5.28 kg/m2 SMI men: 7.70 kg/m2 women: 5.67 kg/m2 SM by Janssen et al. (2000) equation | n = 998 | Taiwanese | |
men | women | ||||
n | 498 | 500 | |||
Age (year) | 23.1 ± 3.0 | 23.1 ± 2.7 | |||
BMI (kg/m2) | 22.2 ± 3.1 | 20.2 ± 2.6 | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Yamada et al. (2013) | Inbody 720, Biospace Co. | ASMI men: 6.75 kg/m2 women: 5.07 kg/m2 | n = 38,099 | Japanese | |
men | women | ||||
n | 19,797 | 18,302 | |||
Age (year) | 18 to 40 | 18 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
Masanés et al. (2012) | RJL Systems BIA 101 | SMI men: 8.25 kg/m2 women: 6.68 kg/m2 SM by Janssen et al. (2000) equation | n = 230 | study performed in Spain | |
men | women | ||||
n | 110 | 120 | |||
Age (year) | 28.6 ± 5.0 | 28.2 ± 6.0 | |||
BMI (kg/m2) | 24.6 ± 2.6 | 21.9 ± 2.2 | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Tanimoto et al. (2012) | Tanita MC-190 | ASMI men: 7.0 kg/m2 women: 5.8 kg/m2 | n = 1719 | Japanese | |
men | women | ||||
n | 838 | 881 | |||
Age (year) | 26.6 ± 6.7 | 28.5 ± 7.3 | |||
BMI (kg/m2) | 22.4 ± 3.2 | 20.8 ± 2.9 | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Chien et al. (2008) | Maltron BioScan 920 | SMI men: 8.87 kg/m2 women: 6.42 kg/m2 SM by Janssen et al. (2000) equation | n = 200 | Taiwanese | |
men | women | ||||
n | 100 | 100 | |||
Age (year) | 26.7 ± 5.7 | 27.6 ± 5.9 | |||
BMI (kg/m2) | 23.2 ± 3.5 | 20.6 ± 2.5 | |||
→ 2 SDs or more below the sex-specific means of young, healthy adults | |||||
Tichet et al. (2008) | Impedimed multifrequency analyser | SMI men: 8.60 kg/m2 women: 6.20 kg/m2 SM by Janssen et al. (2000) equation | n = 782 | French people | |
men | women | ||||
n | 394 | 388 | |||
Age (year) | 30.2 ± 6.1 | 29.2 ± 6.3 | |||
BMI (kg/m2) | 23.9 ± 3.0 | 22.5 ± 3.4 | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Janssen et al. (2004) | Valhalla 1990B Bio-Resistance Body Composition Analyzer | SMI moderate and severe sarcopenia men: 8.51–10.75 kg/m2 and ≤8.50 kg/m2 women: 5.76–6.75 kg/m2 and ≤5.75 kg/m2 SM by Janssen et al. (2000) equation | n = 4499 | US population (non-Hispanic White, non-Hispanic Black and Mexican American) | |
men | women | ||||
n | 2223 | 2276 | |||
Age (year) | 70.0 ± 7.0 | 71.0 ± 8.0 | |||
BMI (kg/m2) | 26.6 ± 4.3 | 27.0 ± 5.5 | |||
→ receiver operating characteristics |
Reference | Device/Software | Parameter/Cut-Off by Gender | Reference Group Characteristics (Mean ± SD)/Diagnostic Criteria (→) | ||
---|---|---|---|---|---|
Ufuk & Herek (2019) | lumbar CT images (16-detector row, Brilliance) | CT L3 SMI men: 44.98 cm2/m2 women: 36.05 cm2/m2 CT L3 PMI men: 2.63 cm2/m2 women: 2.02 cm2/m2 | n = 270 | healthy Turkish population | |
men | women | ||||
n | 134 | 136 | |||
Age (year) | 44.3 ± 11.2 | 45.0 ± 8.6 | |||
BMI (kg/m2) | 26.4 ± 3.5 | 25.4 ± 3.6 | |||
→ 2 SDs below the sex-specific means of young adults | |||||
Derstine et al. (2018) | lumbar CT images (GE Discovery or LightSpeed scanner) | (a) CT L3 SMI men: 45.4 cm2/m2 women: 34.4 cm2/m2 | (a) n = 727 | healthy US population | |
men | women | ||||
n | 317 | 410 | |||
Age (year) | 18 to 40 | 18 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
(b) CT T10 SMI men: 28.8 cm2/m2 women: 20.4 cm2/m2 | (b) n = 278 | healthy US population | |||
men | women | ||||
n | 122 | 156 | |||
Age (year) | 18 to 40 | 18 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
(c) CT T11 SMI men: 27.6 cm2/m2 women: 19.2 cm2/m2 | (c) n = 577 | healthy US population | |||
men | women | ||||
n | 241 | 366 | |||
Age (year) | 18 to 40 | 18 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
(d) CT T12 SMI men: 28.8 cm2/m2 women: 20.8 cm2/m2 | (d) n = 700 | healthy US population | |||
men | women | ||||
n | 299 | 401 | |||
Age (year) | 18 to 40 | 18 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
(e) CT L1 SMI men: 34.6 cm2/m2 women: 25.9 cm2/m2 | (e) n = 724 | healthy US population | |||
men | women | ||||
n | 315 | 409 | |||
Age (year) | 18 to 40 | 18 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
(f) CT L2 SMI men: 40.1 cm2/m2 women: 30.4 cm2/m2 | (f) n = 726 | healthy US population | |||
men | women | ||||
n | 315 | 411 | |||
Age (year) | 18 to 40 | 18 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
(g) CT L4 SMI men: 41.3 cm2/m2 women: 34.2 cm2/m2 | (g) n = 704 | healthy US population | |||
men | women | ||||
n | 305 | 399 | |||
Age (year) | 18 to 40 | 18 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
(h) CT L5 SMI men: 39.0 cm2/m2 women: 30.6 cm2/m2 | (h) n = 506 | healthy US population | |||
men | women | ||||
n | 211 | 295 | |||
Age (year) | 18 to 40 | 18 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
van der Werf et al. (2018) | lumbar CT images (64-row CT scanner, Sensation 64, Siemens or CT Brilliance 64, Philips) | CT L3 SMI men: 44.6 cm2/m2 women: 34.0 cm2/m2 | n = 300 | healthy Caucasian population | |
men | women | ||||
n | 126 | 174 | |||
Age (y) | 20 to 60 | 20 to 60 | |||
BMI (kg/m2) | NA | NA | |||
→ 5th percentile | |||||
Benjamin et al. (2017) | lumbar CT images (Discovery 750 HD 64-row spectral CT scanner) | CT L3 SMI men: 36.54 cm2/m2 women: 30.21 cm2/m2 | n = 275 | healthy Asian Indians | |
men | women | ||||
n | 139 | 136 | |||
Age (year) | 32.2 ± 9.8 | 32.2 ± 9.8 | |||
BMI (kg/m2) | 24.2 ± 3.2 | 24.2 ± 3.2 | |||
→ 2 SDs below the sex-specific means of young adults | |||||
Kim et al. (2017) | lumbar CT images (64-slice multidetector CT scanner, Brilliance 64, Philips Healthcare) | CT L3 PMI men: 5.92 cm2/m2 (20–39 y), 4.74 cm2/m2 (40–49 y), 4.22 cm2/m2 (50–59 y), 3.74 cm2/m2 (60–69 y), 3.32 cm2/m2 (70–89 y) women: 4.0 cm2/m2 (20–39 y), 2.88 cm2/m2 (40–49 y), 2.43 cm2/m2 (50–59 y), 2.20 cm2/m2 (60–69 y), 1.48 cm2/m2 (70–89 y) | n = 1422 | study performed in Korea | |
men | women | ||||
n | 550 | 872 | |||
Age (year) | 52.4 ± 12.0 | 53.3 ± 12.2 | |||
BMI (kg/m2) | 24.5 ± 3.1 | 22.8 ± 3.2 | |||
total n for men and women depends on age range | |||||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Sakurai et al. (2017) | lumbar CT images | CT L3 SMI men: 43.2 cm2/m2 women: 34.6 cm2/m2 | n = 569 patients with gastric cancer | study performed in Japan | |
men | women | ||||
n | 396 | 173 | |||
Age (year) | 66.7 ± 11.2 | 66.7 ± 11.2 | |||
BMI (kg/m2) | 22.0 ± 3.4 | 22.0 ± 3.4 | |||
→ lowest sex-specific quartile | |||||
Hamaguchi et al. (2016) | lumbar CT images (Aquilion 64, Toshiba Medical Systems) | CT L3 PMI men: 6.36 cm2/m2 women: 3.92 cm2/m2 | n = 230 | healthy Asian population | |
men | women | ||||
n | 116 | 114 | |||
Age (year) | 20 to 49 | 20 to 49 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young adults | |||||
Zhuang et al. (2016) | lumbar CT images | CT L3 SMI men: 40.8 cm2/m2 women: 34.9 cm2/m2 | n = 937 patients with gastric cancer | study performed in China | |
men | women | ||||
n | 730 | 207 | |||
Age (year) | 64.0 ± 15.0 | 64.0 ± 15.0 | |||
BMI (kg/m2) | 21.9 ± 3.0 | 21.9 ± 3.0 | |||
→ optimal stratification | |||||
Iritani et al. (2015) | lumbar CT images | CT L3 SMI men: 36.0 cm2/m2 women: 29.0 cm2/m2 | n = 217 patients with hepatocellular carcinoma | study performed in Japan | |
men | women | ||||
n | 146 | 71 | |||
Age (year) | 27 to 90 | 27 to 90 | |||
BMI (kg/m2) | 13.4 to 35.9 | 13.4 to 35.9 | |||
→ optimal stratification |
Reference | Device/Software | Parameter/Cut-Off by Gender | Reference Group Characteristics (Mean ± SD)/Diagnostic Criteria (→) | ||
---|---|---|---|---|---|
Prado et al. (2008) | CT images | CT L3 SMI: men: ≤52.4 cm2/m2 women: ≤38.5 cm2/m2 + BMI ≥ 30 kg/m2 | n = 250 obese patients with cancers of the respiratory tract and gastrointestinal locations | study performed in Canada | |
men | women | ||||
n | 136 | 114 | |||
Age (year) | 64.6 ± 10.2 | 63.2 ± 10.5 | |||
BMI (kg/m2) | 33.9 ± 4.4 | 34.7 ± 4.3 | |||
→ optimal stratification | |||||
Martin et al. (2013) | CT images | CT L3 SMI: men: <43 cm2/m2 women: <41 cm2/m2 for BMI < 25 kg/m2 men: <53 cm2/m2 for BMI ≥ 25 kg/m2 | n = 1473 patients with cancers of the respiratory tract and gastrointestinal locations | study performed in Canada | |
men | women | ||||
n | 828 | 645 | |||
Age (year) | 64.7 ± 11.2 | 64.8 ± 11.5 | |||
BMI (kg/m2) | 26.0 ± 4.9 | 25.1 ± 5.8 | |||
→ optimal stratification | |||||
Muscariello et al. (2016) | BIA (RJL 101, Akern SRL) | (a) SMI + BMI < 25 kg/m2 Class I and Class II sarcopenia women: 7.4 and 6.8 kg/m2 | (a) n = 313 | study performed in Italy | |
men | women | ||||
n | 0 | 313 | |||
Age (year) | 28.5 ± 7.6 | ||||
BMI (kg/m2) | 24.1 ± 2.5 | ||||
→ Class I sarcopenia: 1 SD below the sex-specific means of young adults | |||||
→ Class II sarcopenia: 2 SDs below the sex-specific means of young adults | |||||
(b) SMI + BMI ≥ 30 kg/m2 Class I and Class II sarcopenia women: 8.3 and 7.3 kg/m2 SM by Janssen et al. (2000) equation | (b) n = 361 | study performed in Italy | |||
men | women | ||||
n | 0 | 361 | |||
Age (year) | 30.9 ± 7.9 | ||||
BMI (kg/m2) | 35.1 ± 4.6 | ||||
→ Class I sarcopenia: 1 SD below the sex-specific means of young adults | |||||
→ Class II sarcopenia: 2 SDs below the sex-specific means of young adults | |||||
Nishigori et al. (2016) | CT images | CT L3 SMI (Prado et al. 2008): men: ≤52.4 cm2/m2 women: ≤38.5 cm2/m2 + visceral fat area (VFA) ≥100 cm2 in both sexes | reference group characteristic CT L3 SMI see Prado et al. (2008) | ||
Pecorelli et al. (2016) | CT images | (a) CT L3 SMI (Prado et al. 2008): men: ≤52.4 cm2/m2 women: ≤38.5 cm2/m2 + (b) visceral fat area/total abdominal muscle area ratio (VFA/TAMA) men & women: 3.2 | (a) reference group characteristic CT L3 SMI see Prado et al. (2008) | ||
(b) n = 202 patients with resectable pancreas, periampullary | study performed in Italy | ||||
men | women | ||||
n | 108 | 94 | |||
Age (year) | 66.8 ± 10.7 | 66.8 ± 10.7 | |||
BMI (kg/m2) | 23.6 ± 3.7 | 23.6 ± 3.7 | |||
→ optimal stratification | |||||
Kwon et al. (2017) | DXA (Discovery QDR 4500, Hologic) | ASM (as % of body weight) men: 30.98% women: 24.81% + BMI ≥ 25 kg/m2 (based on the definition in the Asian-Pacific region) | n = 3550 | Koreans | |
men | women | ||||
n | 1668 | 1882 | |||
Age (year) | 20 to 39 | 20 to 39 | |||
BMI (kg/m2) | NA | NA | |||
→ 1 SD below the sex-specific means of young adults | |||||
Chiles Shaffer et al. (2017) | DXA (Lunar Prodigy Advance with GE EnCore 2006 version 10.51.0006) | ASM adjusted for BMI men: <0.725 kg/m2 women: <0.591 kg/m2 | n = 545 | study performed in US | |
men | women | ||||
n | 287 | 258 | |||
Age (year) | 79.2 ± 7.2 | 77.7 ± 7.3 | |||
BMI (kg/m2) | 27.2 ± 3.8 | 27.0 ± 5.2 | |||
→ CART analysis | |||||
An & Kim (2016) | DXA (Discovery-W, Hologic) | ASM (as % of body weight) men: 30.1% women: 21.2% + WC ≥ 90 cm in men WC ≥ 80 cm in women (sex-specific cut-off for Asians) | n = 5944 | study performed in Korea | |
men | women | ||||
n | 2502 | 3334 | |||
Age (year) | 20 to 39 | 20 to 39 | |||
BMI (kg/m2) | NA | NA | |||
→ 1 SD below the sex-specific means of young adults | |||||
Cho et al. (2015) | (a) DXA (Discovery-W, Hologic) | (a) ASM (as % of body weight) men: 30.3% women: 23.8% + WC ≥ 90 cm in men WC ≥ 85 cm in women | (a) n = 4987 | Koreans | |
men | women | ||||
n | 2123 | 2864 | |||
Age (year) | 20 to 39 | 20 to 39 | |||
BMI (kg/m2) | NA | NA | |||
→ 1 SD below the sex-specific means of young, healthy adults | |||||
Oh et al. (2015) | DXA (Lunar Corp.) | ASM (as % of body weight) men: 44% women: 52% + BMI ≥ 25 kg/m2 | n = 1746 | Koreans | |
men | women | ||||
n | 748 | 998 | |||
Age (year) | 20 to 39 | 20 to 39 | |||
BMI (kg/m2) | NA | NA | |||
→ 1 SD below the sex-specific means of young, healthy adults | |||||
Lee et al. (2015) | DXA (Discovery QDR 4500, Hologic) | ASM (as % of body weight) men: 32.2% women: 25.5% + BMI ≥ 25 kg/m2 (based on the criteria of the Asian-Pacific region) | n = 2200 | Koreans | |
men | women | ||||
n | 960 | 1240 | |||
Age (year) | 20 to 30 | 20 to 30 | |||
BMI (kg/m2) | NA | NA | |||
→ 1 SD below the sex-specific means of young, healthy adults | |||||
Baek et al. (2014) | DXA (Lunar Corp.) | ASMI men: 6.96 kg/m2 women: 4.96 kg/m2 ASM (as % of body weight) men: 30.65% women: 23.90% + BMI ≥ 25 kg/m2 (IOTF-proposed classification of BMI for Asia) | n = 4192 | Koreans | |
men | women | ||||
n | 1699 | 2493 | |||
Age (year) | 20 to 39 | 20 to 39 | |||
BMI (kg/m2) | NA | NA | |||
→ 1 SD below the sex-specific means of young, healthy adults | |||||
Cawthon et al. (2014) | DXA (QDR 4500, Hologic 2000, Lunar Prodigy) | ASM adjusted for BMI men: <0.789 women: <0.512 recommended by FNIH (Studenski et al., 2014) | n = 11,270 | study performed in US | |
men | women | ||||
n | 7582 | 3688 | |||
Age (year) | 65 to 80 | 65 to 80 | |||
BMI (kg/m2) | NA | NA | |||
→ CART analysis plus sensitivity analyses | |||||
Chung et al. (2013) | (a) DXA (fan-beam technology, Lunar Corp.) | (a) ASM (as % of body weight) men: 32.5% women: 25.7% + BMI ≥ 25 kg/m2 (IOTF-proposed classification of BMI for Asia) | (a) n = 2781 | study performed in Korea | |
men | women | ||||
n | 1155 | 1626 | |||
Age (year) | 20 to 39 | 20 to 39 | |||
BMI (kg/m2) | NA | NA | |||
→ 1 SD below the sex-specific means of young, healthy adults | |||||
Hwang et al. (2012) | DXA (Discovery-W, Hologic) | ASM (as % of body weight) men: 29.53%women: 23.20% + WC ≥ 90 cm in men WC ≥ 85 cm in women (Korean abdominal obesity criteria; Lee et al., 2007) | n = 2269 | Koreans | |
men | women | ||||
n | 1003 | 1266 | |||
Age (year) | 30.7 ± 5.5 | 31.0 ± 5.5 | |||
BMI (kg/m2) | 24.1 ± 3.5 | 22.1 ± 3.6 | |||
→ 2 SDs below the sex-specific means of young adults | |||||
Lee et al. (2012) | DXA (Discovery-W, Hologic) | ASM (as % of body weight) men: 26.8% women: 21.0% + BMI ≥ 27.5 kg/m2 | n = 2113 | Koreans | |
men | women | ||||
n | 902 | 1211 | |||
Age (year) | 20 to 40 | 20 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Kim et al. (2012) | DXA (Discovery-W, Hologic) | ASM (as % of body weight) Class II sarcopenia men: 29.1% women: 23.0% ASMI Class II sarcopenia men: 6.58 kg/m2 women: 4.59 kg/m2 + WC ≥ 90 cm in men (Lee et al., 2007) WC ≥ 85 cm in women | n = 2513 | Koreans | |
men | women | ||||
n | 1245 | 1268 | |||
Age (year) | 31.0 ± 5.5 | 30.8 ± 5.6 | |||
BMI (kg/m2) | 24.0 ± 3.4 | 22.1 ± 3.5 | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Kim et al. (2011) | DXA (Lunar Corp.) | ASM (as % of body weight) men: 29.5% women: 23.2% + BMI ≥ 27.5 kg/m2 | n = 2392 | study performed in Korea | |
men | women | ||||
n | 1054 | 1338 | |||
Age (year) | 20 to 40 | 20 to 40 | |||
BMI (kg/m2) | NA | NA | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
Kim et al. (2009) | DXA (Discovery A, Hologic) | (a) ASMI men: 8.81 kg/m2 women: 7.36 kg/m2 + (b) FM men: 20.21% women: 31.71% | n = 526 | Koreans | |
men | women | ||||
n | 198 | 328 | |||
Age (year) | 52.2 ± 14.4 | 51.2 ± 14.8 | |||
BMI (kg/m2) | 25.2 ± 3.1 | 23.9 ± 3.7 | |||
→ (a) lower two quintiles | |||||
→ (b) two highest quintiles | |||||
Rolland et al. (2009) | (a) DXA (Lunar DPX, Lunar Corp.) | (a) ASMI women: 5.45 kg/m2 (Baumgartner et al., 1998) + | (a) n = 122 | US population (non-Hispanic white men and women) | |
men | women | ||||
n | 0 | 122 | |||
Age (year) | 29.7 ± 5.9 | ||||
BMI (kg/m2) | 24.1 ± 5.4 | ||||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
(b) DXA (QDR 4500 W, Hologic) | (b) FM women: 40% | (b) n = 1308 | study performed in France | ||
men | women | ||||
n | 0 | 1308 | |||
Age (year) | ≥75 | ||||
BMI (kg/m2) | NA | ||||
→ 60th percentile of the healthy study sample | |||||
Baumgartner et al. (1998) | DXA (Lunar DPX, Lunar Corp.) | (a) ASMI men: 7.26 kg/m2 women: 5.45 kg/m2 + (b) FM men: 27% women: 38% | n = 229 | US population (non-Hispanic white men and women) | |
men | women | ||||
n | 107 | 122 | |||
Age (year) | 28.7 ± 5.1 | 29.7 ± 5.9 | |||
BMI (kg/m2) | 24.6 ± 3.8 | 24.1 ± 5.4 | |||
(a) → 2SDs below the sex-specific means of young, healthy adults (b) → >sex-specific median | |||||
Bahat et al. (2016); Bahat et al. (2018) | BIA (Tanita-BC532) | (a) SMI men: 9.2 kg/m2 women: 7.4 kg/m2 SM (kg) = 0.566 × FFM + | (a) n = 301 | study performed in Turkey | |
men | women | ||||
n | 187 | 114 | |||
Age (year) | 26.8 ± 4.5 | 25.9 ± 4.7 | |||
BMI (kg/m2) | 25.5 ± 3.6 | 22.4 ± 3.4 | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
(b) FM men: 27.3% women: 40.7% | (b) n = 992 | study performed in Turkey | |||
men | women | ||||
n | 308 | 684 | |||
Age (year) | 75.2 ± 7.2 | 75.2 ± 7.2 | |||
BMI (kg/m2) | 27.7 ± 4.3 | 30.7 ± 5.6 | |||
→ above 60th percentile | |||||
Ishii et al. (2016) | (a) BIA (Tanita MC-190) | (a) ASMI men: 7.0 kg/m2 women: 5.8 kg/m2 + | (a) n = 1719 | Japanese | |
men | women | ||||
n | 838 | 881 | |||
Age (year) | 26.6 ± 6.7 | 28.5 ± 7.3 | |||
BMI (kg/m2) | 22.4 ± 3.2 | 20.8 ± 2.9 | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
(b) BIA (InBody 430, Biospace) | (b) FM men: 29.7% women: 37.2% | (b) n = 1731 | Japanese | ||
men | women | ||||
n | 875 | 856 | |||
Age (year) | ≥ 65 | ≥ 65 | |||
BMI (kg/m2) | NA | NA | |||
→ highest quintile | |||||
Moreira et al. (2016) | BIA (InBody R20, Biospace) | ASMI women: 6.08 kg/m2 + WC ≥ 88 cm in women (Brazilian obesity guidelines) | n = 491 | study performed in Northeast Brazil (Whites, Blacks, Pardo) | |
men | women | ||||
n | 0 | 491 | |||
Age (year) | 50.0 ± 5.6 | ||||
BMI (kg/m2) | 29.0 ± 4.8 | ||||
→ 20th percentile | |||||
Kemmler et al. (2016) | BIA (InBody 770, Biospace) | (a) ASMI women: 5.66 kg/m2 | (a) n = 689 | study performed in Germany (Caucasians) | |
men | women | ||||
n | 0 | 689 | |||
Age (year) | 18 to 35 | ||||
BMI (kg/m2) | NA | ||||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
(b) ASMI women: 5.99 kg/m2 + BMI ≥ 30 kg/m2 (NIH) FM ≥ 35% (WHO) | (b) n = 1325 | study performed in Germany (Caucasians) | |||
men | women | ||||
n | 0 | 1325 | |||
Age (year) | 76.4 ± 4.9 | ||||
BMI (kg/m2) | 26.7 ± 4.3 | ||||
→ lowest quintile | |||||
Lee et al. (2016) | BIA (InBody 720, Biospace) | (a) SMI (as % of body weight) men: 38.2 % women: 32.2% SM by Janssen et al. (2000) equation + | (a) n = 273 | study performed in Korea | |
men | women | ||||
n | 157 | 116 | |||
Age (year) | 25.5 ± 2.9 | 26.1 ± 4.6 | |||
BMI (kg/m2) | 24.1 ± 3.0 | 20.7 ± 2.6 | |||
→ 2 SDs below the sex-specific means of young, healthy adults | |||||
(b) FM men: 25.8% women: 36.5% | (b) n = 309 | study performed in Korea | |||
men | women | ||||
n | 85 | 224 | |||
Age (year) | 70.7 ± 6.3 | 66.4 ± 7.2 | |||
BMI (kg/m2) | NA | NA | |||
→ two highest quintiles | |||||
Biolo et al. (2015) | BIA (Human IM-Plus, DS, Dieto System, BIA 101, Akern Srl, Tanita BC418MA, Tanita Corp.) | FM/FFM ratio > 0.8 | n = 200 | study performed in Italy and Slovenia | |
men | women | ||||
n | 89 | 111 | |||
Age (year) | 48.0 ± 12.0 | 51.0 ± 12.0 | |||
BMI (kg/m2) | 35.6 ± 6.2 | 35.5 ± 5.4 | |||
De Rosa et al. (2015) | BIA (Human IM Plus II–DS Medical) | SMI moderate and severe sarcopenia men: 8.44–9.53 kg/m2 and ≤8.43 kg/m2 women: 6.49–7.32 kg/m2 and ≤6.48 kg/m2 SMI (as % of body weight) moderate and severe sarcopenia men: 28.8–35.6% and ≤28.7% women: 23.1–28.4% and ≤23.0% SM by Janssen et al. (2000) equation + BMI ≥ 30 kg/m2 | n = 500 | Italians | |
men | women | ||||
n | 100 | 400 | |||
Age (year) | 27.0 ± 7.0 | 25.0 ± 6.0 | |||
BMI (kg/m2) | 25.8 ± 5.7 | 25.2 ± 5.7 | |||
→ moderate sarcopenia: within 1 to 2 SDs below the sex-specific means of young, healthy adults → severe sarcopenia: 2 SDs below the sex-specific means of young, healthy adults | |||||
Atkins et al. (2014) | BIA (Bodystat 500, Bodystat Ltd.) | FFMI men: ≤16.7 kg/m2 FFM (equation by Deurenberg et al., 1991) + FMI > 11.1 kg/m2 | n = 4045 | study performed in UK (> 99 % white Europeans) | |
men | women | ||||
n | 4045 | 0 | |||
Age (year) | 60 to 79 | ||||
BMI (kg/m2) | NA | ||||
→ lowest two-fifths of FFMI | |||||
Baek et al. (2013) | BIA (InBody 520, Biospace) | ASMI men: 10.70 kg/m2 women: 8.60 kg/m2 + BMI > 25 kg/m2 (WHO definition) | n = 1150 | study performed in Korea | |
men | women | ||||
n | 618 | 532 | |||
Age (year) | 43.6 ± 11.5 | 43.6 ± 11.5 | |||
BMI (kg/m2) | 24.6 ± 3.3 | 24.6 ± 3.3 | |||
→ 50th percentile of healthy study sample | |||||
Gomez-Cabello et al. (2011) | BIA (Tanita BC 418-MA) | (a) SMI men: 8.61 kg/m2 women: 6.19 kg/m2 (b) FM men: 30.33% women: 40.9% SM by Janssen et al. (2000) equation | n = 3136 | Spaniards | |
men | women | ||||
n | 678 | 2198 | |||
Age (year) | 72.4 ± 5.5 | 72.1 ± 5.2 | |||
BMI (kg/m2) | NA | NA | |||
→ (a) two lower quintiles → (b) two highest quintiles | |||||
Lou et al. (2017) | CT images | CT L3 SMI (Zhuang et al., 2016) men: ≤40.8 cm2/m2 women: ≤34.9 cm2/m2 + BMI ≥ 23 kg/m2 (WHO definition for Asians) | Predefined cut-off values for sarcopenia and obesity | ||
Ramachandran et al. (2012) | CT images (Somatom Sensation 10 CT scanner) | adjusted thigh muscle area: men: 110.7 cm2 women: 93.8 cm2 + (1) BMI ≥ 27 kg/m2 (2) WC ≥ 102 cm for men WC ≥ 88 cm for women | n = 539 | study performed in US | |
men | women | ||||
n | 280 | 259 | |||
Age (year) | 71.1 ± 0.4 | 71.1 ± 0.4 | |||
BMI (kg/m2) | NA | NA | |||
→ lowest sex-specific tertile | |||||
Lim et al. (2010) | CT images (Brilliance 64, Philips) | Visceral fat area (VFA)/thigh muscle area (TMA) men: 0.93 women: 0.90 | n = 264 | Koreans | |
men | women | ||||
n | 126 | 138 | |||
Age (year) | 20 to 88 | 20 to 88 | |||
BMI (kg/m2) | NA | NA | |||
→ VFA/TMA median higher 50th percentile of the healthy study sample |
BMI (kg/m2) | FMIDXA (kg/m2) (Kelly et al., 2009) | FFMIDXA (kg/m2) (Modified according to Kelly et al., 2009) | SMIMRI (kg/m2) (1.5 T Siemens Avanto MRI Scanner) | SMIBIA_median (kg/m2) (mBCA 515, Seca) | SMIBIA_-2SDs (kg/m2) (mBCA 515, Seca) | |
---|---|---|---|---|---|---|
Caucasian men | <18.5 | <2.9 | 15.6 | 8.6 | >7.6 | |
>25 | >6.0 | 19.0 | 9.85 | 9.7 | >8.7 | |
>30 | >8.9 | 21.1 | 10.71 | 10.5 | >9.5 | |
>35 | >11.9 | 23.1 | 12.15 | 11.4 | >10.3 | |
>40 | >15.0 | 25.0 | 13.67 | 12.2 | >11.2 | |
Caucasian women | <18.5 | <4.9 | 13.6 | 6.65 | 6.7 | >5.7 |
>25 | >9.2 | 15.8 | 7.49 | 7.7 | >6.8 | |
>30 | >12.9 | 17.1 | 8.15 | 8.5 | >7.6 | |
>35 | >16.8 | 18.2 | 8.99 | 9.3 | >8.4 | |
>40 | >20.6 | 19.4 | 9.74 | 10.1 | >9.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walowski, C.O.; Braun, W.; Maisch, M.J.; Jensen, B.; Peine, S.; Norman, K.; Müller, M.J.; Bosy-Westphal, A. Reference Values for Skeletal Muscle Mass – Current Concepts and Methodological Considerations. Nutrients 2020, 12, 755. https://doi.org/10.3390/nu12030755
Walowski CO, Braun W, Maisch MJ, Jensen B, Peine S, Norman K, Müller MJ, Bosy-Westphal A. Reference Values for Skeletal Muscle Mass – Current Concepts and Methodological Considerations. Nutrients. 2020; 12(3):755. https://doi.org/10.3390/nu12030755
Chicago/Turabian StyleWalowski, Carina O., Wiebke Braun, Michael J. Maisch, Björn Jensen, Sven Peine, Kristina Norman, Manfred J. Müller, and Anja Bosy-Westphal. 2020. "Reference Values for Skeletal Muscle Mass – Current Concepts and Methodological Considerations" Nutrients 12, no. 3: 755. https://doi.org/10.3390/nu12030755
APA StyleWalowski, C. O., Braun, W., Maisch, M. J., Jensen, B., Peine, S., Norman, K., Müller, M. J., & Bosy-Westphal, A. (2020). Reference Values for Skeletal Muscle Mass – Current Concepts and Methodological Considerations. Nutrients, 12(3), 755. https://doi.org/10.3390/nu12030755