The Relationship between Body Composition and Muscle Tone in Children with Cerebral Palsy: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Subjects
2.3. Assessments
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Verschuren, O.; Smorenburg, A.R.P.; Luiking, Y.; Bell, K.; Barber, L.; Peterson, M.D. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: A narrative review of the literature. J. Cachexia Sarcopenia Muscle 2018, 9, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, L.; Molenaers, G.; Aertbeliën, E.; Van Campenhout, A.; Feys, H.; Nuttin, B.; Desloovere, K. Spasticity and its contribution to hypertonia in cerebral palsy. BioMed Res. Int. 2015, 2015, 317047. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Butler, E.E.; Rose, J. Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment. Front. Hum. Neurosci. 2017, 11, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Primers 2016, 7, 15082. [Google Scholar] [CrossRef]
- Dziuba, A.K.; Tylkowska, M.; Jaroszczuk, S. Index of mechanical work in gait of children with cerebral palsy. Acta Bioeng. Biomech. 2014, 16, 77–87. [Google Scholar]
- Türkoğlu, G.; Türkoğlu, S.; Çelik, C.; Uçan, H. Intelligence, Functioning, and Related Factors in Children with Cerebral Palsy. Noro Psikiyatr. Ars. 2017, 54, 33–37. [Google Scholar] [CrossRef]
- Rosińczuk, J.; Lach, K.; Kołtuniuk, A. Daily Functioning Problems in Children with Cerebral Palsy (CP) Aged 5 and More. J. Neurol. Neurosurg. Nurs. 2014, 3, 52–57. [Google Scholar] [CrossRef]
- Jesus, A.O.; Stevenson, R.D. Optimizing Nutrition and Bone Health in Children with Cerebral Palsy. Phys. Med. Rehabil. Clin. N. Am. 2020, 31, 25–37. [Google Scholar] [CrossRef]
- Kuperminc, M.N.; Gottrand, F.; Samson-Fang, L.; Ardvedson, J.; Bell, K.; Craig, G.M.; Sullivan, P.B. Nutritional management of children with cerebral palsy: A practical guide. Eur. J. Clin. Nutr. 2013, 67, S21–S23. [Google Scholar] [CrossRef] [Green Version]
- Brooks, J.; Day, S.; Shavelle, R.; Strauss, D. Low Weight, Morbidity, and Mortality in Children with Cerebral Palsy: New Clinical Growth Charts. Pediatrics 2011, 128, e299–e307. [Google Scholar] [CrossRef] [Green Version]
- Penagini, F.; Mameli, C.; Fabiano, V.; Brunetti., D.; Dilillo, D.; Zuccotti, G.V. Dietary Intakes and Nutritional Issues in Neurologically Impaired Children. Nutrients 2015, 13, 9400–9415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomoum, H.Y.; Badawy, N.B.; Hassan, N.E.; Alian, K.M. Anthropometry and body composition analysis in children with cerebral palsy. Clin. Nutr. 2010, 29, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Dionyssiotis, Y.; Samlidi, E.; Kapsokoulou, A.; Michalakopoulou, M.; Iatridou, G.; Papathanasiou, J. Assessment of Fitness in Cerebral Palsy: Focus in Body Composition and Balance. Rem. Open Access 2016, 1, 1014. [Google Scholar]
- Veugelers, R.; Penning, C.; van Gulik, M.E.; Tibboel, D.; Evenhuis, H.M. Feasibility of bioelectrical impedance analysis in children with a severe generalized cerebral palsy. Nutrition 2006, 22, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitney, D.G.; Gross-Richmond, P.; Hurvitz, E.A.; Peterson, M.D. Total and regional body fat status among children and young people with cerebral palsy: A scoping review. Clin. Obes. 2019, 9, e12327. [Google Scholar] [CrossRef]
- Garcia Iniguez, J.A.; Vasquez Garibay, E.M.; Garcia Contreras, A.A.; Romero Velarde, E.; Troyo Sanroman, R.; Hernandez Rocha, J.; Rea Rosas, A.; Rodriguez Leon, M.; Uribe Martinez, E. Energy expenditure is associated with age, anthropometric indicators and body composition in children with spastic cerebral palsy. Nutr. Hosp. 2018, 35, 909–913. [Google Scholar] [CrossRef]
- Liu, L.F.; Moyer-Mileur, L.; Gooch, J.; Samson-Fang, L. The contribution of tone to resting energy expenditure in children with moderate to severe cerebral palsy: Evaluation utilizing intrathecal baclofen injection. J. Pediatr. Rehabil. Med. 2008, 1, 163–167. [Google Scholar]
- Eileen Hogan, S. Energy Requirements of Children with Cerebral Palsy. Can. J. Diet. Pract. Res. 2004, 65, 124–130. [Google Scholar] [CrossRef]
- Bell, K.L.; Davies, P.S.W. Energy expenditure and physical activity of ambulatory children with cerebral palsy and of typically developing children. Am. J. Clin. Nutr. 2010, 92, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Lindén, O.; Hägglund, G.; Rodby-Bousquet, E.; Wagner, F. The development of spasticity with age in 4,162 children with cerebral palsy: A register-based prospective cohort study. Acta Orthop. 2019, 90, 286–291. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems ICD-10, 5th ed.; World Health Organization: Geneva, Switzerland, 2016; Available online: https://apps.who.int/iris/bitstream/handle/10665/246208/9789241549165-V3-eng.pdf?sequence=3&isAllowed=y (accessed on 3 December 2019).
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with Cerebral Palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, S.A.; Ryan, D.D.; Kay, R.M. Classification systems in cerebral palsy. Orthop. Clin. N. Am. 2010, 41, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.R. Measurement of spasticity. In Upper Motor Neurone Syndrome and Spasticity, 2nd ed.; Johnson, G.R., Barnes, M.P., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 79–95. [Google Scholar]
- Palisano, R.; Hanna, S.E.; Rosenbaum, P.; Russell, D.; Walter, S.D.; Wood, E.P.; Galuppi, B.E. Validation of a model of gross motor function for children with cerebral palsy. Phys. Ther. 2000, 80, 974–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, P.L.; Palisano, R.J.; Bartlett, D.J.; Galuppi, B.E.; Russel, D.J. Development of the gross motor function classification system for cerebral palsy. Dev. Med. Child Neurol. 2008, 50, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.S.; Chumlea, W.C.; Heymsfield, S.B.; Lukaski, H.C.; Schoeller, D.; Friedl, K.; Kuczmarski, R.J.; Flegal, K.M.; Johnson, C.L.; Hubbard, V.S. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am. J. Clin. Nutr. 2003, 77, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Kyle, U.G.; Bosaeus, I.; de Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gómez, J.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Yanovski, S.Z.; Hubbard, V.S.; Heymsfield, S.B.; Lukaski, H.C. Bioelectrical impedance analysis in body composition measurement: National institutes of health technology assessment conference statement. Am. J. Clin. Nutr. 1996, 64, 524S–532S. [Google Scholar]
- Kushner, R.F. Bioelectrical impedance analysis: A review of principles and applications. J. Am. Coll. Nutr. 1992, 11, 199–209. [Google Scholar]
- Lukaski, H.C.; Bolonchuk, W.W.; Hall, C.B.; Siders, W.A. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J. Appl. Physiol. 1986, 60, 1327–1332. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis-clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Martínez de Zabarte Fernández, J.M.; Ros Arnal, I.; Peña Segura, J.L.; García Romero, R.; Rodríguez Martínez, G. Nutritional status of a population with moderate-severe cerebral palsy: Beyond the weight. An. Pediatr. (Barc) 2019. [Google Scholar] [CrossRef]
- Jahan, I.; Muhit, M.; Karim, T.; Smithers-Sheedy, H.; Novak, I.; Jones, C.; Badawi, N.; Khandaker, G. What makes children with cerebral palsy vulnerable to malnutrition? Findings from the Bangladesh cerebral palsy register (BCPR). Disabil. Rehabil. 2019, 41, 2247–2254. [Google Scholar] [CrossRef] [PubMed]
- Adamu, A.S.; Sabo, U.A.; Gwarzo, G.D.; Belonwu, R.O. Nutritional status in cerebral palsy: A Cross-sectional comparative survey of children in Kano, Nigeria. Niger. Postgrad. Med. J. 2018, 25, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Aydin, K.; Turkish Cerebral Palsy Study Group. A multicenter cross-sectional study to evaluate the clinical characteristics and nutritional status of children with cerebral palsy. Clin. Nutr. ESPEN 2018, 26, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Choi, H.N.; Yim, J.E. Food Habits, Dietary Intake, and Body Composition in Children with Cerebral Palsy. Clin. Nutr. Res. 2018, 7, 266–275. [Google Scholar] [CrossRef]
- Snik, D.A.C.; de Roos, N.M. Criterion validity of assessment methods to estimate body composition in children with cerebral palsy: A systematic review. Ann. Phys. Rehabil. Med. 2019. [Google Scholar] [CrossRef]
- García-Contreras, A.A.; Vásquez-Garibay, E.M.; Romero-Velarde, E.; Ibarra-Gutierrez, A.I.; Troyo-Sanroman, R. Energy expenditure in children with cerebral palsy and moderate/severe malnutrition during nutritional recovery. Nutr. Hosp. 2015, 31, 2062–2069. [Google Scholar]
- Stallings, V.A.; Zemel, B.S.; Davies, J.C.; Cronk, C.E.; Charney, E.B. Energy expenditure of children and adolescents with severe disabilities: A cerebral palsy model. Am. J. Clin. Nutr. 1996, 64, 627–634. [Google Scholar] [CrossRef]
- Penagini, F.; Borsani, B.; Bosetti, A.; Mameli, C.; Dilillo, D.; Ramponi, G.; Motta, F.; Bedogni, G.; Zuccotti, G.V. Resting energy expenditure in children with cerebral palsy: Accuracy of available prediction formulae and development of a population-specific formula. Clin. Nutr. ESPEN 2018, 25, 44–49. [Google Scholar] [CrossRef]
- Whitney, D.G.; Hurvitz, E.A.; Ryan, J.M.; Devlin, M.J.; Caird, M.S.; French, Z.P.; Ellenberg, E.C.; Peterson, M.D. Noncommunicable disease and multimorbidity in young adults with cerebral palsy. Clin. Epidemiol. 2018, 10, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cremer, N.; Hurvitz, E.A.; Peterson, M.D. Multimorbidity in Middle-Aged Adults with Cerebral Palsy. Am. J. Med. 2017, 130, 744.e9–744.e15. [Google Scholar] [CrossRef] [Green Version]
- Whitney, D.G.; Miller, F.; Pohlig, R.T.; Modlesky, C.M. BMI does not capture the high fat mass index and low fat-free mass index in children with cerebral palsy and proposed statistical models that improve this accuracy. Int. J. Obes. 2019, 43, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Duran, I.; Schulze, J.; Martakis, K.; Stark, C.; Schoenau, E. Diagnostic performance of body mass index to identify excess body fat in children with cerebral palsy. Dev. Med. Child Neurol. 2018, 60, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Oftedal, S.; Davies, P.S.; Boyd, R.N.; Stevenson, R.D.; Ware, R.S.; Keawutan, P.; Benfer, K.A.; Bell, K.L. Body composition, diet, and physical activity: A longitudinal cohort study in preschoolers with cerebral palsy. Am. J. Clin. Nutr. 2017, 105, 369–378. [Google Scholar] [CrossRef]
- Patrick, J.; Boland, M.; Stoski, D.; Murray, G.E. Rapid correction of wasting in children with cerebral palsy. Dev. Med. Child Neurol. 1986, 28, 734–739. [Google Scholar] [CrossRef]
- Henderson, R.C.; Lark, R.K.; Gurka, M.J.; Worley, G.; Fung, E.B.; Conaway, M.; Stallings, V.A.; Stevenson, R.D. Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics 2002, 110, e5. [Google Scholar] [CrossRef] [Green Version]
- Sung, K.H.; Chung, C.Y.; Lee, K.M.; Cho, B.C.; Moon, S.J.; Kim, J.; Park, M.S. Differences in Body Composition According to Gross Motor Function in Children With Cerebral Palsy. Arch. Phys. Med. Rehabil. 2017, 98, 2295–2300. [Google Scholar] [CrossRef]
- Oeffinger, D.J.; Gurka, M.J.; Kuperminc, M.; Hassani, S.; Buhr, N.; Tylkowski, C. Accuracy of skinfold and bioelectrical impedance assessments of body fat percentage in ambulatory individuals with cerebral palsy. Dev. Med. Child Neurol. 2014, 56, 475–481. [Google Scholar] [CrossRef] [Green Version]
Parameter | CP vs. Controls | |||||
---|---|---|---|---|---|---|
Boys | Girls | |||||
Effect Size (95% CI) | F(1, 149) | p Value | Effect Size (95% CI) | F(1, 81) | p Value | |
Weight (kg) | −6.6 (−9.9; −3.2) | 16.25 | 0.0002 *** | −5.8 (−9.7; −1.8) | 7.99 | 0.0059 ** |
Height (cm) | −5.8 (−8.7; −3.0) | 14.87 | 0.0001 *** | −7.0 (−10.3; −3.7) | 17.32 | 0.0001 *** |
BMI (kg/m2) | −1.6 (−2.6; −0.6) | 10.16 | 0.0017 ** | −0.8 (−2.4; 0.7) | 1.08 | 0.3022 |
R-resistance | 83.7 (54.7; 112.7) | 31.99 | <0.0001 *** | 41.4 (−2.0; 84.7) | 3.49 | 0.0652 |
Xc-reactance | 4.3 (1.0; 7.6) | 6.44 | 0.0122 * | 0.4 (−3.1; 4.0) | 0.06 | 0.8075 |
BMR | −452 (−621; −283) | 27.45 | <0.0001 *** | −306 (−494; −118) | 10.21 | 0.0020 ** |
Parameter | CP vs. Controls | ||
---|---|---|---|
Effect Size (95% CI) | F(1, 233) | p Value | |
FM (kg) | −0.9 (−2.4; 0.5) | 1.57 | 0.2109 |
FMpct (%) | −0.4 (−2.9; 2.0) | 0.12 | 0.7314 |
FFM (kg) | −5.3 (−7.0; −3.5) | 34.87 | <0.0001 *** |
FFMpct (%) | 0.3 (−2.1; 2.7) | 0.06 | 0.8135 |
MM (kg) | −4.0 (−5.4; −2.6) | 32.49 | <0.0001 *** |
MMpct (%) | −1.4 (−3.3; 0.5) | 1.99 | 0.1602 |
BCM (kg) | −3.3 (−4.4; −2.1) | 31.58 | <0.0001 *** |
BCMpct (%) | −1.9 (−3.1; −0.8) | 10.45 | 0.0014 ** |
BCMI (kg/m2) | −0.8 (−1.2; −0.5) | 20.24 | <0.0001 *** |
TBW (l) | −3.6 (−4.9; −2.3) | 30.70 | <0.0001 *** |
TBWpct (%) | 1.2 (−1.2; 3.6) | 0.93 | 0.3366 |
PA (°) | −0.3 (−0.5; −0.1) | 6.35 | 0.0124 * |
Parameter | CP vs. Controls | |||||
---|---|---|---|---|---|---|
Boys | Girls | |||||
Effect Size (95% CI) | F(1, 149) | p Value | Effect Size (95% CI) | F(1, 81) | p Value | |
FM (kg) | −0.5 (−2.3; 1.3) | 0.35 | 0.5542 | −1.7 (−4.1; 0.8) | 1.74 | 0.1908 |
FMpct (%) | −0.3 (−3.4; 2.8) | 0.04 | 0.8427 | −0.6 (−4.3; 3.0) | 0.12 | 0.7330 |
FFM (kg) | −5.9 (−8.1; −3.7) | 27.22 | <0.0001 *** | −4.1 (−6.2; −2.0) | 14.18 | 0.0003 *** |
FFMpct (%) | 0.1 (−2.9; 3.1) | 0.00 | 0.9486 | 0.6 (−3.0; 4.3) | 0.12 | 0.7330 |
MM (kg) | −4.5 (−6.2; −2.8) | 27.85 | <0.0001 *** | −3.0 (−4.9; −1.2) | 10.55 | 0.0017 ** |
MMpct (%) | −1.8 (−4.1; 0.5) | 2.24 | 0.1364 | −0.7 (−3.9; 2.4) | 0.21 | 0.6502 |
BCM (kg) | −3.7 (−5.1; −2.3) | 26.94 | <0.0001 *** | −2.5 (−4.1; −1.0) | 10.27 | 0.0019 ** |
BCMpct (%) | −2.1 (−3.5; −0.7) | 8.29 | 0.0046 ** | −1.6 (−3.5; 0.4) | 2.55 | 0.1145 |
BCMI (kg/m2) | −1.0 (−1.5; −0.6) | 24.95 | <0.0001 *** | −0.4 (−1.1; 0.2) | 1.69 | 0.1976 |
TBW (l) | −4.2 (−5.8; −2.6) | 27.00 | <0.0001 *** | −2.6 (−4.0; −1.2) | 12.69 | 0.0006 *** |
TBWpct (%) | 1.1 (−1.9; 4.1) | 0.48 | 0.4900 | 1.4 (−2.1; 4.8) | 0.62 | 0.4345 |
PA (°) | −0.3 (−0.6; −0.1) | 6.96 | 0.0092 ** | −0.2 (−0.6; 0.2) | 0.79 | 0.3752 |
Parameter | Ashworth Index (2–4 vs. 0–1 pts) | ||
---|---|---|---|
Effect Size (95% CI) | F(1, 115) | p Value | |
FM (kg) | −2.7 (−4.8; −0.5) | 5.88 | 0.0168 * |
FMpct (%) | −0.9 (−4.7; 3.0) | 0.18 | 0.6680 |
FFM (kg) | −3.3 (−5.8; −0.9) | 6.96 | 0.0095 ** |
FFMpct (%) | 1.1 (−2.8; 4.9) | 0.31 | 0.5793 |
MM (kg) | −2.1 (−4.1; 0.0) | 3.97 | 0.0488 * |
MMpct (%) | 0.8 (−2.4; 4.0) | 0.25 | 0.6178 |
BCM (kg) | −1.7 (−3.4; 0.0) | 3.97 | 0.0486 * |
BCMpct (%) | −0.1 (−2.2; 1.9) | 0.01 | 0.9046 |
BCMI (kg/m2) | −0.4 (−1.0; 0.2) | 1.63 | 0.2049 |
TBW (l) | −2.7 (−4.6; −0.9) | 8.34 | 0.0046 ** |
TBWpct (%) | 0.1 (−3.8; 3.9) | 0.00 | 0.9790 |
PA (°) | 0.0 (−0.4; 0.4) | 0.04 | 0.8477 |
Parameter | GMFCS (level III-V vs. I-II) | ||
---|---|---|---|
Effect Size (95% CI) | F(1, 115) | p Value | |
FM (kg) | −1.2 (−3.8; 1.3) | 0.90 | 0.3453 |
FMpct (%) | 2.7 (−1.8; 7.1) | 1.38 | 0.2430 |
FFM (kg) | −6.2 (−8.9; −3.5) | 20.26 | <0.0001 *** |
FFMpct (%) | −2.5 (−6.8; 1.9) | 1.20 | 0.2749 |
MM (kg) | −4.6 (−6.8; −2.3) | 16.27 | 0.0001 *** |
MMpct (%) | −3.3 (−6.9; 0.3) | 3.14 | 0.0790 |
BCM (kg) | −3.8 (−5.6; −1.9) | 16.05 | 0.0001 *** |
BCMpct (%) | −2.4 (−4.7; 0.0) | 3.92 | 0.0501 |
BCMI (kg) | −0.9 (−1.5; −0.2) | 7.01 | 0.0092 ** |
TBW (l) | −4.9 (−6.9; −2.9) | 22.77 | <0.0001 *** |
TBWpct (%) | −2.6 (−7.0; 1.8) | 1.39 | 0.2407 |
PA (kg) | −0.4 (−0.9; 0.0) | 3.12 | 0.0801 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Więch, P.; Ćwirlej-Sozańska, A.; Wiśniowska-Szurlej, A.; Kilian, J.; Lenart-Domka, E.; Bejer, A.; Domka-Jopek, E.; Sozański, B.; Korczowski, B. The Relationship between Body Composition and Muscle Tone in Children with Cerebral Palsy: A Case-Control Study. Nutrients 2020, 12, 864. https://doi.org/10.3390/nu12030864
Więch P, Ćwirlej-Sozańska A, Wiśniowska-Szurlej A, Kilian J, Lenart-Domka E, Bejer A, Domka-Jopek E, Sozański B, Korczowski B. The Relationship between Body Composition and Muscle Tone in Children with Cerebral Palsy: A Case-Control Study. Nutrients. 2020; 12(3):864. https://doi.org/10.3390/nu12030864
Chicago/Turabian StyleWięch, Paweł, Agnieszka Ćwirlej-Sozańska, Agnieszka Wiśniowska-Szurlej, Justyna Kilian, Ewa Lenart-Domka, Agnieszka Bejer, Elżbieta Domka-Jopek, Bernard Sozański, and Bartosz Korczowski. 2020. "The Relationship between Body Composition and Muscle Tone in Children with Cerebral Palsy: A Case-Control Study" Nutrients 12, no. 3: 864. https://doi.org/10.3390/nu12030864
APA StyleWięch, P., Ćwirlej-Sozańska, A., Wiśniowska-Szurlej, A., Kilian, J., Lenart-Domka, E., Bejer, A., Domka-Jopek, E., Sozański, B., & Korczowski, B. (2020). The Relationship between Body Composition and Muscle Tone in Children with Cerebral Palsy: A Case-Control Study. Nutrients, 12(3), 864. https://doi.org/10.3390/nu12030864