Estimation of Dietary Amino Acid Intake and Independent Correlates of Skeletal Muscle Mass Index among Korean Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Demographic and Lifestyle Information
2.3. Anthropometry and Dietary Assessment
2.4. Calculation of Skeletal Muscle Mass Index (SMI)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, S.W.; Wu, G. Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 2009, 37, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, W.; Liu, C.; Wang, B.; Wang, J.; Yin, Y. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 2013, 44, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Scott Freeman, H.H. Biological Science, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005; pp. 15–50. [Google Scholar]
- Tymoczko, J.L.; Berg, J.M.; Stryer, L. Biochemistry: A Short Course; W.H. Freeman: New York, NY, USA, 2010; pp. 35–45. [Google Scholar]
- Suga, H.; Asakura, K.; Kobayashi, S.; Nojima, M.; Sasaki, S. Association between habitual tryptophan intake and depressive symptoms in young and middle-aged women. J. Affect. Disord. 2018, 231, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Stamler, J.; Brown, I.J.; Daviglus, M.L.; Chan, Q.; Kesteloot, H.; Ueshima, H.; Zhao, L.; Elliott, P. Glutamic acid, the main dietary amino acid, and blood pressure: The INTERMAP Study (International Collaborative Study of Macronutrients, Micronutrients and Blood Pressure). Circulation 2009, 120, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Kalogeropoulou, D.; Lafave, L.; Schweim, K.; Gannon, M.C.; Nuttall, F.Q. Leucine, when ingested with glucose, synergistically stimulates insulin secretion and lowers blood glucose. Metabolism 2008, 57, 1747–1752. [Google Scholar] [CrossRef]
- McDonald, C.K.; Ankarfeldt, M.Z.; Capra, S.; Bauer, J.; Raymond, K.; Heitmann, B.L. Lean body mass change over 6 years is associated with dietary leucine intake in an older Danish population. Br. J. Nutr. 2016, 115, 1556–1562. [Google Scholar] [CrossRef] [Green Version]
- Luiking, Y.C.; Deutz, N.E.; Memelink, R.G.; Verlaan, S.; Wolfe, R.R. Postprandial muscle protein synthesis is higher after a high whey protein, leucine-enriched supplement than after a dairy-like product in healthy older people: A randomized controlled trial. Nutr. J. 2014, 13, 9. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health and Welfare The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2015; Ministry of Health and Welfare: Sejong, Korea, 2015; pp. 161–164.
- Korean Statistical Information Service. Projected Population by Age Group (Korea). Available online: http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA201&vw_cd=MT_ETITLE&list_id=A43&scrId=&seqNo=&language=en&obj_var_id=&itm_id=&conn_path=A6&path=%252Feng%252Fsearch%252FsearchList.do (accessed on 1 April 2020).
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zuniga, C.; Arai, H.; Boirie, Y.; Chen, L.K.; Fielding, R.A.; Martin, F.C.; Michel, J.P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef]
- Combaret, L.; Dardevet, D.; Bechet, D.; Taillandier, D.; Mosoni, L.; Attaix, D. Skeletal muscle proteolysis in aging. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 37–41. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.N.; Park, M.S.; Lim, K.I.; Choi, H.Y.; Yang, S.J.; Yoo, H.J.; Kang, H.J.; Song, W.; Choi, H.; Baik, S.H.; et al. Relationships between sarcopenic obesity and insulin resistance, inflammation, and vitamin D status: The Korean Sarcopenic Obesity Study. Clin. Endocrinol. Oxf. 2013, 78, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Ottestad, I.; Ulven, S.M.; Oyri, L.K.L.; Sandvei, K.S.; Gjevestad, G.O.; Bye, A.; Sheikh, N.A.; Biong, A.S.; Andersen, L.F.; Holven, K.B. Reduced plasma concentration of branched-chain amino acids in sarcopenic older subjects: A cross-sectional study. Br. J. Nutr. 2018, 120, 445–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, I.; Yoshimura, Y. Effects of branched-chain amino acids and vitamin D supplementation on physical function, muscle mass and strength, and nutritional status in sarcopenic older adults undergoing hospital-based rehabilitation: A multicenter randomized controlled trial. Geriatr. Gerontol. Int. 2019, 19, 12–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.S.; Jacques, P.F. Total protein, animal protein and physical activity in relation to muscle mass in middle-aged and older Americans. Br. J. Nutr. 2013, 109, 1294–1303. [Google Scholar] [CrossRef] [Green Version]
- Son, J.; Yu, Q. Sarcopenic obesity can be negatively associated with active physical activity and adequate intake of some nutrients in Korean elderly: Findings from the Korea National Health and Nutrition Examination Survey (2008–2011). Nutr. Res. Pract. 2019, 13, 47–57. [Google Scholar] [CrossRef]
- Oh, C.; Jeon, B.H.; Reid Storm, S.N.; Jho, S.; No, J.K. The most effective factors to offset sarcopenia and obesity in the older Korean: Physical activity, vitamin D, and protein intake. Nutrition 2017, 33, 169–173. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Carlson, C.L.; Visser, M.; Kelley, D.E.; Scherzinger, A.; Harris, T.B.; Stamm, E.; Newman, A.B. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J. Appl. Physiol. 2001, 90, 2157–2165. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R., Jr.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, R.S., Jr. Compendium of physical activities: Classification of energy costs of human physical activities. Med. Sci. Sports Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef]
- Korea Health Industry Development Institute. Development of Nutrient Database; Korea Health Industry Development Institute: Cheongju, Korea, 2000; pp. 26–164. [Google Scholar]
- Rural Development Administration National Institute of Rural Agricultural Sciences. Food Composition Table, 7th ed.; Rural Development Administration National Institute of Rural Agricultural Sciences: Suwon, Korea, 1996; pp. 40–475. [Google Scholar]
- The Korean Nutrition Society. Computer Aided Nutritional Analysis Program 4.0. Available online: http://kns.or.kr/Center/CanPro.asp (accessed on 31 May 2019).
- Jun, S.; Shin, S.; Joung, H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br. J. Nutr. 2016, 115, 480–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.A. Adequacy of Protein Intake among Korean Elderly: An Analysis of the 2013–2014 Korea National Health and Nutrition Examination Survey Data. Korean J. Fam. Med. 2018, 39, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa-Takata, K.; Takimoto, H. Current protein and amino acid intakes among Japanese people: Analysis of the 2012 National Health and Nutrition Survey. Geriatr. Gerontol. Int. 2018, 18, 723–731. [Google Scholar] [CrossRef] [PubMed]
- McDonough, F.E.; Bodwell, C.E.; Staples, R.S.; Wells, P.A. Rat bioassays for methionine availability in 16 food sources. Plant Foods Hum. Nutr. 1989, 39, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Gorska-Warsewicz, H.; Laskowski, W. Food Products as Sources of Protein and Amino Acids-The Case of Poland. Nutrients 2018, 10, 1977. [Google Scholar] [CrossRef] [Green Version]
- Krajcovicova-Kudlackova, M.; Babinska, K.; Valachovicova, M. Health benefits and risks of plant proteins. Bratisl. Lek. Listy 2005, 106, 231–234. [Google Scholar]
- Pereira, P.M.; Vicente, A.F. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [Green Version]
- van Vliet, S.; Burd, N.A.; van Loon, L.J. The Skeletal Muscle Anabolic Response to Plant-versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Grimby, G.; Saltin, B. The ageing muscle. Clin. Physiol. 1983, 3, 209–218. [Google Scholar] [CrossRef]
- Phillips, S.K.; Rook, K.M.; Siddle, N.C.; Bruce, S.A.; Woledge, R.C. Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin. Sci. 1993, 84, 95–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Rogol, A.D.; Roemmich, J.N.; Clark, P.A. Growth at puberty. J. Adolesc. Health 2002, 31, 192–200. [Google Scholar] [CrossRef]
- Haren, M.T.; Siddiqui, A.M.; Armbrecht, H.J.; Kevorkian, R.T.; Kim, M.J.; Haas, M.J.; Mazza, A.; Kumar, V.B.; Green, M.; Banks, W.A.; et al. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int. J. Androl. 2011, 34, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Doherty, T.J. Invited review: Aging and sarcopenia. J. Appl. Physiol. 2003, 95, 1717–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, K.S. Aging muscle. Am. J. Clin. Nutr. 2005, 81, 953–963. [Google Scholar] [CrossRef] [Green Version]
- Skinner, A.C.; Steiner, M.J.; Henderson, F.W.; Perrin, E.M. Multiple markers of inflammation and weight status: Cross-sectional analyses throughout childhood. Pediatrics 2010, 125, e801–e809. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Bouter, L.M.; McQuillan, G.M.; Wener, M.H.; Harris, T.B. Low-grade systemic inflammation in overweight children. Pediatrics 2001, 107, E13. [Google Scholar] [CrossRef] [Green Version]
- Erskine, R.M.; Tomlinson, D.J.; Morse, C.I.; Winwood, K.; Hampson, P.; Lord, J.M.; Onambele, G.L. The individual and combined effects of obesity- and ageing-induced systemic inflammation on human skeletal muscle properties. Int. J. Obes. 2017, 41, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Lang, C.H.; Frost, R.A.; Nairn, A.C.; MacLean, D.A.; Vary, T.C. TNF-alpha impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E336–E347. [Google Scholar] [CrossRef] [Green Version]
- Bori, Z.; Zhao, Z.; Koltai, E.; Fatouros, I.G.; Jamurtas, A.Z.; Douroudos, I.I.; Terzis, G.; Chatzinikolaou, A.; Sovatzidis, A.; Draganidis, D.; et al. The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle. Exp. Gerontol. 2012, 47, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holloszy, J.O. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 1967, 242, 2278–2282. [Google Scholar] [PubMed]
- Steffl, M.; Bohannon, R.W.; Sontakova, L.; Tufano, J.J.; Shiells, K.; Holmerova, I. Relationship between sarcopenia and physical activity in older people: A systematic review and meta-analysis. Clin. Interv. Aging 2017, 12, 835–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naseeb, M.A.; Volpe, S.L. Protein and exercise in the prevention of sarcopenia and aging. Nutr. Res. 2017, 40, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Bradlee, M.L.; Mustafa, J.; Singer, M.R.; Moore, L.L. High-Protein Foods and Physical Activity Protect Against Age-Related Muscle Loss and Functional Decline. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 73, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Daly, R.M.; O’Connell, S.L.; Mundell, N.L.; Grimes, C.A.; Dunstan, D.W.; Nowson, C.A. Protein-enriched diet, with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass and muscle strength and reduces circulating IL-6 concentrations in elderly women: A cluster randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 899–910. [Google Scholar] [CrossRef]
- Bartali, B.; Frongillo, E.A.; Bandinelli, S.; Lauretani, F.; Semba, R.D.; Fried, L.P.; Ferrucci, L. Low nutrient intake is an essential component of frailty in older persons. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 589–593. [Google Scholar] [CrossRef]
- Jang, B.Y.; Bu, S.Y. Total energy intake according to the level of skeletal muscle mass in Korean adults aged 30 years and older: An analysis of the Korean National Health and Nutrition Examination Surveys (KNHANES) 2008–2011. Nutr. Res. Pract. 2018, 12, 222–232. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Suryawan, A.; Jeyapalan, A.S.; Orellana, R.A.; Wilson, F.A.; Nguyen, H.V.; Davis, T.A. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E868–E875. [Google Scholar] [CrossRef] [Green Version]
- Tischler, M.E.; Desautels, M.; Goldberg, A.L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J. Biol. Chem. 1982, 257, 1613–1621. [Google Scholar] [PubMed]
- Nissen, S.L.; Sharp, R.L. Effect of dietary supplements on lean mass and strength gains with resistance exercise: A meta-analysis. J. Appl. Physiol. 2003, 94, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, P.M.; Carrithers, J.A.; Godard, M.P.; Schulze, K.E.; Trappe, S.W. Beta-hydroxy-beta-methylbutyrate ingestion, Part I: Effects on strength and fat free mass. Med. Sci. Sports Exerc. 2000, 32, 2109–2115. [Google Scholar] [CrossRef] [PubMed]
- Korea Health Industry Development Institute. Quality Control and Operation Support on Nutrition Survey of the 4th Korea National Health & Nutrition Examination Survey; Korea Centers for Disease Control and Prevention: Cheongju, Korea, 2008; pp. 13–73. [Google Scholar]
Characteristics | Men | Women |
---|---|---|
N = 1424 | N = 1868 | |
Age (years) | 57.1 ± 0.1 | 56.7 ± 0.1 |
Education level | ||
Less than high school graduation | 710 (50.1) | 1304 (70.3) |
High school graduation or higher | 708 (49.9) | 550 (29.7) |
Body mass index (kg/m2) | 24.0 ± 0.1 | 24.3 ± 0.1 |
Smoking status | ||
Non-smokers | 862 (60.7) | 1794 (96.5) |
Smoker | 559 (39.3) | 66 (3.6) |
Household income | ||
Low | 343 (24.3) | 466 (25.2) |
Mid-low | 377 (26.7) | 459 (24.8) |
Mid-high | 355 (25.1) | 483 (26.1) |
High | 338 (23.9) | 441 (23.9) |
Physical activity level (METs-h/wk) 1 | ||
Low | 401 (28.3) | 683 (36.8) |
Middle | 468 (33.0) | 631 (34.0) |
High | 550 (38.8) | 541 (29.2) |
Alcohol consumption (yes) | ||
Non-drinker | 260 (18.4) | 808 (43.6) |
Drinker | 1157 (81.7) | 1045 (56.4) |
Skeletal muscle index (%) | 31.9 ± 0.1 | 24.8 ± 0.1 |
EAR | RNI | |||||
---|---|---|---|---|---|---|
Men | Women | Men | Women | |||
N = 1424 | N = 1868 | p | N = 1424 | N = 1868 | p | |
Essential amino acid (%) | ||||||
Histidine | 252.3 ± 3.6 | 209.5 ± 3.1 | <0.001 | 196.2 ± 2.9 | 179.5 ± 2.6 | <0.001 |
Isoleucine | 276.4 ± 3.7 | 253.3 ± 3.2 | <0.001 | 230.3 ± 3.0 | 202.6 ± 2.6 | <0.001 |
Leucine | 210.5 ± 2.8 | 188.2 ± 2.5 | <0.001 | 171.6 ± 2.3 | 153.9 ± 2.0 | <0.001 |
Lysine | 111.6 ± 2.2 | 95.0 ± 1.9 * | <0.001 | 87.7 ± 1.7 * | 74.3 ± 1.5 * | <0.001 |
Methionine | 102.3 ± 1.9 | 92.3 ± 1.7 * | <0.001 | 85.3 ± 1.5 * | 73.9 ± 1.3 * | <0.001 |
Phenylalanine | 100.6 ± 1.3 | 91.2 ± 1.1 * | <0.001 | 81.7 ± 1.0 * | 73.7 ± 0.9 * | <0.001 |
Threonine | 170.5 ± 3.0 | 151.7 ± 2.6 | <0.001 | 131.1 ± 2.3 | 121.4 ± 2.0 | <0.001 |
Tryptophan | 264.0 ± 3.6 | 195.1 ± 3.1 | <0.001 | 176.0 ± 2.4 | 130.1 ± 2.1 | <0.001 |
Valine | 306.2 ± 3.5 | 272.4 ± 3.0 | <0.001 | 245.0 ± 2.9 | 227.0 ± 2.5 | <0.001 |
Amino Acids | Contribution (%) | Intake (g/day) | Food Groups |
---|---|---|---|
Histidine | 25.5 | 0.38 ± 0.2 | Grain and grain products |
17.8 | 0.54 ± 0.6 | Meat and meat products | |
17.3 | 0.34 ± 0.6 | Fish and shellfish | |
13.0 | 0.19 ± 0.1 | Vegetables | |
6.5 | 0.14 ± 0.2 | Legumes and legume products | |
Isoleucine | 43.9 | 1.03 ± 0.5 | Grain and grain products |
14.2 | 0.44 ± 0.9 | Fish and shellfish | |
12.8 | 0.62 ± 0.7 | Meat and meat products | |
8.1 | 0.28 ± 0.3 | Legumes and legume products | |
7.0 | 0.16 ± 0.1 | Vegetables | |
Leucine | 44.2 | 1.74 ± 0.7 | Grain and grain products |
14.5 | 0.76 ± 1.6 | Fish and shellfish | |
13.7 | 1.11 ± 1.3 | Meat and meat products | |
8.7 | 0.50 ± 0.5 | Legumes and legume products | |
6.2 | 0.24 ± 0.2 | Vegetables | |
Lysine | 27.7 | 0.75 ± 1.3 | Fish and shellfish |
25.6 | 1.08 ± 1.2 | Meat and meat products | |
13.1 | 0.27 ± 0.2 | Grain and grain products | |
11.7 | 0.35 ± 0.4 | Legumes and legume products | |
7.1 | 0.14 ± 0.1 | Vegetables | |
Methionine | 31.0 | 0.27 ± 0.1 | Grain and grain products |
24.8 | 0.29 ± 0.5 | Fish and shellfish | |
18.1 | 0.32 ± 0.4 | Meat and meat products | |
5.3 | 0.07 ± 0.1 | Legumes and legume products | |
5.2 | 0.04 ± 0.1 | Vegetables | |
Phenylalanine | 44.8 | 1.00 ± 0.4 | Grain and grain products |
13.1 | 0.39 ± 0.8 | Fish and shellfish | |
12.2 | 0.56 ± 0.6 | Meat and meat products | |
9.6 | 0.31 ± 0.3 | Legumes and legume products | |
7.0 | 0.16 ± 0.1 | Vegetables | |
Threonine | 21.2 | 0.41 ± 0.7 | Fish and shellfish |
20.8 | 0.30 ± 0.2 | Grain and grain products | |
20.0 | 0.59 ± 0.7 | Meat and meat products | |
12.3 | 0.26 ± 0.3 | Legumes and legume products | |
9.2 | 0.13 ± 0.1 | Vegetables | |
Tryptophan | 26.4 | 0.12 ± 0.1 | Grain and grain products |
19.6 | 0.12 ± 0.2 | Fish and shellfish | |
14.0 | 0.15 ± 0.2 | Meat and meat products | |
11.5 | 0.08 ± 0.1 | Legumes and legume products | |
9.8 | 0.04 ± 0.1 | Vegetables | |
Valine | 50.8 | 1.60 ± 0.7 | Grain and grain products |
11.5 | 0.48 ± 0.9 | Fish and shellfish | |
11.0 | 0.72 ± 0.8 | Meat and meat products | |
7.5 | 0.23 ± 0.2 | Vegetables | |
6.4 | 0.30 ± 0.4 | Legumes and legume products |
Variables | β-Coefficient | p |
---|---|---|
Sex, men | 6.99 | <0.001 |
Age (years) | −0.05 | <0.001 |
Education level | ||
High school graduation or higher | −0.19 | 0.12 |
Body mass index (kg/m2) | −0.41 | <0.001 |
Smoking status | ||
Smoker | −0.20 | 0.16 |
Household income | ||
High | 0.06 | 0.77 |
Mid-high | 0.15 | 0.42 |
Mid-low | 0.08 | 0.62 |
Physical activity level (METs-h/week) 1 | ||
High | 0.58 | <0.001 |
Middle | 0.77 | 0.003 |
Alcohol consumption (yes) | 0.07 | 0.55 |
Energy intake (kcal/day) | 0.0005 | <0.001 |
Essential amino acid intake (g/day) 2 | −0.04 | 0.59 |
Non-essential amino acid intake (g/day) 3 | 0.03 | 0.68 |
Branched-chain amino acid intake (g/day) 4 | 0.31 | 0.01 |
Aromatic amino acid intake (g/day) 5 | −0.24 | 0.37 |
Polar amino acid intake (g/day) 6 | 0.01 | 0.88 |
Non-polar amino acid intake (g/day) 7 | −0.10 | 0.23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, M.; Park, H.; Park, K. Estimation of Dietary Amino Acid Intake and Independent Correlates of Skeletal Muscle Mass Index among Korean Adults. Nutrients 2020, 12, 1043. https://doi.org/10.3390/nu12041043
Chae M, Park H, Park K. Estimation of Dietary Amino Acid Intake and Independent Correlates of Skeletal Muscle Mass Index among Korean Adults. Nutrients. 2020; 12(4):1043. https://doi.org/10.3390/nu12041043
Chicago/Turabian StyleChae, Minjeong, Hyoungsu Park, and Kyong Park. 2020. "Estimation of Dietary Amino Acid Intake and Independent Correlates of Skeletal Muscle Mass Index among Korean Adults" Nutrients 12, no. 4: 1043. https://doi.org/10.3390/nu12041043
APA StyleChae, M., Park, H., & Park, K. (2020). Estimation of Dietary Amino Acid Intake and Independent Correlates of Skeletal Muscle Mass Index among Korean Adults. Nutrients, 12(4), 1043. https://doi.org/10.3390/nu12041043