Effects of an Omega-3 and Vitamin D Supplement on Fatty Acids and Vitamin D Serum Levels in Double-Blinded, Randomized, Controlled Trials in Healthy and Crohn’s Disease Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Capsules for the Intervention and Placebo
2.2. Outcome Measurements
2.3. Statistical Analysis
2.4. Trial Registration
3. Results
4. Discussion
4.1. EPA (C20:5), DHA (C22:6), and DPA (C22:5)
4.2. Omega-3 Index
4.3. Vitamin D
4.4. CRP
4.5. Calprotectin
4.6. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Demographics | Phenotypes | ||||||
---|---|---|---|---|---|---|---|
Number | % | Disease Location | Number | % | |||
Gender | Male | 7 | 28 | OGD | 0 | 0 | |
Female | 17 | 68 | Jejunal | 1 | 4 | ||
Age of diagnosis | % | Ileal | 9 | 36 | |||
<17 (A1) | 1 | 4 | Colonic | 7 | 28 | ||
17–40 (A2) | 22 | 92 | Ileal-Colonic | 6 | 24 | ||
>40 (A3) | 1 | 4 | Rectal | 1 | 4 | ||
Family history | Anal | 1 | 4 | ||||
Yes | 3 | 12 | Disease Behaviour | ||||
No | 5 | 20 | Inflammatory | 13 | 52 | ||
Missing | 17 | 68 | Stenotic | 10 | 40 | ||
Smoking status | Fistulating | 4 | 16 | ||||
Smoker | 2 | 8 | Peri-anal | 4 | 16 | ||
Ex-smoker | 7 | 28 | Other | 0 | 0 | ||
Non-smoker | 16 | 64 | Surgery | None | 9 | 36 | |
Infant History | Yes | 17 | 68 | ||||
Breast fed | 15 | 63 | EIM/Other disorders | ||||
Caesarean Section | 1 | 4 | Joints | 4 | 17 | ||
Abbreviation: | Skin | 3 | 13 | ||||
OGD: Oesophagogastroduodenoscopy | Eyes | 0 | 0 |
References
- Calder, P.C. Omega-3 Polyunsaturated Fatty Acids and Inflammatory Processes: Nutrition Or Pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, H.; Zhang, H.; Leak, R.K.; Shi, Y.; Hu, X.; Gao, Y.; Chen, J. Dietary Supplementation with Omega-3 Polyunsaturated Fatty Acids Robustly Promotes Neurovascular Restorative Dynamics and Improves Neurological Functions After Stroke. Exp. Neurol. 2015, 272, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.J.; Gregoire, B.R.; Michelsen, K.G.; Picklo, M.J. Increasing Dietary Fish Oil Reduces Adiposity and Mitigates Bone Deterioration in Growing C57BL/6 Mice Fed a High-Fat Diet. J. Nutr. 2020, 150, 99–107. [Google Scholar] [CrossRef]
- Berquin, I.M.; Edwards, I.J.; Chen, Y.Q. Multi-Targeted Therapy of Cancer by Omega-3 Fatty Acids. Cancer Lett. 2008, 269, 363–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massaro, M.; Scoditti, E.; Carluccio, M.A.; Montinari, M.R.; De Caterina, R. Omega-3 Fatty Acids, Inflammation and Angiogenesis: Nutrigenomic Effects as an Explanation for Anti-Atherogenic and Anti-Inflammatory Effects of Fish and Fish Oils. J. Nutrigenet. Nutr. 2008, 1, 4–23. [Google Scholar] [CrossRef] [PubMed]
- De Lorgeril, M.; Salen, P. New Insights into the Health Effects of Dietary Saturated and Omega-6 and Omega-3 Polyunsaturated Fatty Acids. BMC Med. 2012, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Patterson, E.; Wall, R.; Fitzgerald, G.; Ross, R.; Stanton, C. Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kwon, S.; Han, Y.; Hahm, K.; Kim, E. Omega-3 Polyunsaturated Fatty Acids as Potential Chemopreventive Agent for Gastrointestinal Cancer. J. Cancer Prev. 2013, 18, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.; Thomas, C.; Radcliffe, J.; Itsiopoulos, C. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease. BioMed Res. Int. 2015, 2015, 172801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardisson Korat, A.V.; Malik, V.S.; Furtado, J.D.; Sacks, F.; Rosner, B.; Rexrode, K.M.; Willett, W.C.; Mozaffarian, D.; Hu, F.B.; Sun, Q. Circulating very-Long-Chain SFA Concentrations are Inversely Associated with Incident Type 2 Diabetes in US Men and Women. J. Nutr. 2020, 150, 340–349. [Google Scholar] [CrossRef]
- Fletcher, J.; Cooper, S.C.; Ghosh, S.; Hewison, M. The Role of Vitamin D in Inflammatory Bowel Disease: Mechanism to Management. Nutrients 2019, 11, 1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koski, R.R. Omega-3-Acid Ethyl Esters (Lovaza) for Severe Hypertriglyceridemia. Pharm. Ther. 2008, 33, 271. [Google Scholar]
- National Institutes of Health. Omega-3 Fatty Acids. 2019. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/ (accessed on 19 April 2019).
- Yates, C.M.; Calder, P.C.; Rainger, G. Pharmacology and Therapeutics of Omega-3 Polyunsaturated Fatty Acids in Chronic Inflammatory Disease. Pharmacol. Ther. 2014, 141, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Chiang, N.; Dalli, J.; Levy, B.D. Lipid Mediators in the Resolution of Inflammation. Cold Spring Harb Perspect. Biol. 2014, 7, a016311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, W.S. The Omega-3 Index as a Risk Factor for Coronary Heart Disease. Am. J. Clin. Nutr. 2008, 87, 1997S–2002S. [Google Scholar] [CrossRef] [PubMed]
- von Schacky, C. A Review of Omega-3 Ethyl Esters for Cardiovascular Prevention and Treatment of Increased Blood Triglyceride Levels. Vasc. Health Risk Manag. 2006, 2, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Agrawal, D.K. Vitamin D and Inflammatory Diseases. J. Inflamm. Res. 2014, 7, 69. [Google Scholar]
- Gocek, E.; Studzinski, G.P. Vitamin D and Differentiation in Cancer. Crit. Rev. Clin. Lab. Sci. 2009, 46, 190–209. [Google Scholar] [CrossRef] [Green Version]
- Haussler, M.R.; Whitfield, G.K.; Kaneko, I.; Haussler, C.A.; Hsieh, D.; Hsieh, J.; Jurutka, P.W. Molecular Mechanisms of Vitamin D Action. Calcif. Tissue Int. 2013, 92, 77–98. [Google Scholar] [CrossRef]
- Holick, M. (Ed.) Vitamin D and Health: Evolution, Biologic Functions, and Recommended Dietary Intakes for Vitamin D Chapter 1, 2nd ed.; Springer Science & Business Media, Springer Nature Switzerland AG: Basel, Switzerland, 2010; pp. 3–34. [Google Scholar]
- Vimaleswaran, K.S.; Cavadino, A.; Berry, D.J.; Jorde, R.; Dieffenbach, A.K.; Lu, C.; Alves, A.C.; Heerspink, H.J.L.; Tikkanen, E.; Eriksson, J. Association of Vitamin D Status with Arterial Blood Pressure and Hypertension Risk: A Mendelian Randomisation Study. Lancet Diabetes Endocrinol. 2014, 2, 719–729. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.L.; May, H.T.; Horne, B.D.; Bair, T.L.; Hall, N.L.; Carlquist, J.F.; Lappé, D.L.; Muhlestein, J.B.; Intermountain Heart Collaborative IHC Study Group. Relation of Vitamin D Deficiency to Cardiovascular Risk Factors, Disease Status, and Incident Events in a General Healthcare Population. Am. J. Cardiol. 2010, 106, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liao, A.P.; Xia, Y.; Li, Y.C.; Li, J.; Sartor, R.B.; Sun, J. Vitamin D Receptor Negatively Regulates Bacterial-Stimulated NF-κB Activity in Intestine. Am. J. Pathol. 2010, 177, 686–697. [Google Scholar] [CrossRef] [PubMed]
- Cheung, F.S.; Lovicu, F.J.; Reichardt, J.K. Current Progress in using Vitamin D and its Analogs for Cancer Prevention and Treatment. Expert Rev. Anti. Infect. Ther. 2012, 12, 811–837. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.V.; Trump, D.L.; Johnson, C.S.; Feldman, D. The Role of Vitamin D in Cancer Prevention and Treatment. Endocrinol. Metab. Clin. N. Am. 2010, 39, 401–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyssens, C.; Verlinden, L.; Verstuyf, A. Antineoplastic Effects of 1,25(OH)2D3 and its Analogs in Breast, Prostate and Colorectal Cancer. Endocr. Relat. Cancer 2013, 20, R31–R47. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.G.; Peng, X.; Alimirah, F.; Murillo, G.; Mehta, R. Vitamin D and Breast Cancer: Emerging Concepts. Cancer Lett. 2013, 334, 95–100. [Google Scholar] [CrossRef]
- Pereira, F.; Larriba, M.J.; Munoz, A. Vitamin D and Colon Cancer. Endocr. Relat. Cancer 2012, 19, R51–R71. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.Y.; Fu, T.; Lau, C.; Oh, D.H.; Bikle, D.D.; Asgari, M.M. Vitamin D in Cutaneous Carcinogenesis: Part, I. J. Am. Acad. Dermatol. 2012, 67, 803.e1–803.e12. [Google Scholar] [CrossRef] [Green Version]
- Trump, D.L.; Deeb, K.K.; Johnson, C.S. Vitamin D: Considerations in the Continued Development as an Agent for Cancer Prevention and Therapy. Cancer J. 2010, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Dabbas, B.; Laperriere, D.; Bitton, A.J.; Soualhine, H.; Tavera-Mendoza, L.E.; Dionne, S.; Servant, M.J.; Bitton, A.; Seidman, E.G. Direct and Indirect Induction by 1, 25-Dihydroxyvitamin D3 of the NOD2/CARD15-Defensin Β2 Innate Immune Pathway Defective in Crohn Disease. J. Biol. Chem. 2010, 285, 2227–2231. [Google Scholar] [CrossRef] [Green Version]
- Sands, B.E. Biomarkers of Inflammation in Inflammatory Bowel Disease. Gastroenterology 2015, 149, 1275–1285.e2. [Google Scholar] [CrossRef] [PubMed]
- van Rheenen, P.F.; Van de Vijver, E.; Fidler, V. Faecal Calprotectin for Screening of Patients with Suspected Inflammatory Bowel Disease: Diagnostic Meta-Analysis. BMJ 2010, 341, c3369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoepfer, A.M.; Beglinger, C.; Straumann, A.; Trummler, M.; Vavricka, S.R.; Bruegger, L.E.; Seibold, F. Fecal Calprotectin Correlates More Closely with the Simple Endoscopic Score for Crohn’s Disease (SES-CD) than CRP, Blood Leukocytes, and the CDAI. Am. J. Gastroenterol. 2010, 105, 162–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian New Zealand Clinical Trials Registry. Effects of a Combined Vitamin D, Omega 3, Co-Enzyme Q10, Zeaxanthin, Lutein and Astaxanthin Supplement (Lester’s Oil) on Healthy People. 2016. Available online: http://www.ANZCTR.org.au/ACTRN12616001316493.aspx (accessed on 28 September 2019).
- Ferguson, L.; Laing, B.; Ellett, S. Medium Chain Triglyceride Oil, an Intended Placebo with Unexpected Adverse Effects. Ann. Clin. Lab. Res. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Turpeinen, A.; Merimaa, P. Functional Foods, 2nd ed.; Saarela, M., Ed.; Woodhead Publishing: Sawston Cambridge, UK, 2011; pp. 383–400. [Google Scholar]
- Marten, B.; Pfeuffer, M.; Schrezenmeir, J. Medium-Chain Triglycerides. Int. Dairy J. 2006, 16, 1374–1382. [Google Scholar] [CrossRef]
- Tsai, Y.; Park, S.; Kovacic, J.; Snook, J.T. Mechanisms Mediating Lipoprotein Responses to Diets with Medium-Chain Triglyceride and Lauric Acid. Lipids 1999, 34, 895–905. [Google Scholar] [CrossRef]
- Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D.J. Nanoemulsion Delivery Systems for Oil-Soluble Vitamins: Influence of Carrier Oil Type on Lipid Digestion and Vitamin D 3 Bioaccessibility. Food Chem. 2015, 187, 499–506. [Google Scholar] [CrossRef]
- Boisrame-Helms, J.; Said, A.; Burban, M.; Delabranche, X.; Stiel, L.; Zobairi, F.; Hasselmann, M.; Schini-Kerth, V.; Toti, F.; Meziani, F. Medium-Chain Triglyceride Supplementation Exacerbates Peritonitis-Induced Septic Shock in Rats: Role on Cell Membrane Remodeling. Shock 2014, 42, 548–553. [Google Scholar] [CrossRef] [Green Version]
- Traul, K.; Driedger, A.; Ingle, D.; Nakhasi, D. Review of the Toxicologic Properties of Medium-Chain Triglycerides. Food Chem. Toxicol. 2000, 38, 79–98. [Google Scholar] [CrossRef]
- Jørgensen, S.P.; Agnholt, J.; Glerup, H.; Lyhne, S.; Villadsen, G.E.; Hvas, C.L.; Bartels, L.E.; Kelsen, J.; Christensen, L.A.; Dahlerup, J.F. Clinical Trial: Vitamin D3 Treatment in Crohn’s Disease–A Randomized Double-blind Placebo-controlled Study. Aliment. Pharmacol. Ther. 2010, 32, 377–383. [Google Scholar] [CrossRef]
- Thies, F.; Nebe-von-Caron, G.; Powell, J.R.; Yaqoob, P.; Newsholme, E.A.; Calder, P.C. Dietary Supplementation with Eicosapentaenoic Acid, but Not with Other Long-Chain N-3 Or N-6 Polyunsaturated Fatty Acids, Decreases Natural Killer Cell Activity in Healthy Subjects Aged >55 Y. Am. J. Clin. Nutr. 2001, 73, 539–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katan, M.B.; Deslypere, J.P.; van Birgelen, A.P.; Penders, M.; Zegwaard, M. Kinetics of the Incorporation of Dietary Fatty Acids into Serum Cholesteryl Esters, Erythrocyte Membranes, and Adipose Tissue: An 18-Month Controlled Study. J. Lipid Res. 1997, 38, 2012–2022. [Google Scholar] [PubMed]
- Arterburn, L.M.; Hall, E.B.; Oken, H. Distribution, Interconversion, and Dose Response of N-3 Fatty Acids in Humans. Am. J. Clin. Nutr. 2006, 83, 1467S–1476S. [Google Scholar] [CrossRef] [PubMed]
- Subbaiah, P.V.; Kaufman, D.; Bagdade, J.D. Incorporation of Dietary N-3 Fatty Acids into Molecular Species of Phosphatidyl Choline and Cholesteryl Ester in Normal Human Plasma. Am. J. Clin. Nutr. 1993, 58, 360–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beermann, C.; Jelinek, J.; Reinecker, T.; Hauenschild, A.; Boehm, G.; Klör, H. Short Term Effects of Dietary Medium-Chain Fatty Acids and N-3 Long-Chain Polyunsaturated Fatty Acids on the Fat Metabolism of Healthy Volunteers. Lipids Health Dis. 2003, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, J.R. Intestinal Mucosal Barrier Function in Health and Disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef]
- Duvall, M.G.; Levy, B.D. DHA-and EPA-Derived Resolvins, Protectins, and Maresins in Airway Inflammation. Eur. J. Pharmacol. 2016, 785, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Vanden, H.J. Nutrigenomics and Nutrigenetics of Ω3 Polyunsaturated Fatty Acids. Prog. Mol. Biol. Transl. Sci. 2011, 108, 75–112. [Google Scholar]
- Calon, F.; Cole, G. Neuroprotective Action of Omega-3 Polyunsaturated Fatty Acids Against Neurodegenerative Diseases: Evidence from Animal Studies. Prostaglandins Leukot Essent Fatty Acids 2007, 77, 287–293. [Google Scholar] [CrossRef]
- Varnalidis, I.; Ioannidis, O.; Karamanavi, E.; Ampas, Z.; Poutahidis, T.; Taitzoglou, I.; Paraskevas, G.; Botsios, D. Omega 3 Fatty Acids Supplementation has an Ameliorative Effect in Experimental Ulcerative Colitis Despite Increased Colonic Neutrophil Infiltration. Rev. Esp. Enferm. Dig. 2011, 103, 511. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.; Kaur, G.; Larsen, A.; Loh, S.P.; Linderborg, K.; Weisinger, H.S.; Turchini, G.M.; Cameron-Smith, D.; Sinclair, A.J. A Short-Term N-3 DPA Supplementation Study in Humans. Eur. J. Nutr. 2013, 52, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Sinclair, A. Omega-3 Docosapentaenoic Acid (DPA): What is Known? Did EPA and DHA Overshadow the Health Benefits of DPA? 2012. Available online: http://www.nutritionremarks.com/2012/01/23/omega-3-docosapentaenoic-acid-dpa-what-is-known-3/ (accessed on 16 June 2019).
- AgResearch. FAMEs Analysis. 2020. Available online: https://www.agresearch.o.nz/ (accessed on 10 March 2020).
- Mok, H.J.; Lee, J.W.; Bandu, R.; Kang, H.S.; Kim, K.; Kim, K.P. A Rapid and Sensitive Profiling of Free Fatty Acids using Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS) After Chemical Derivatization. RSC Adv. 2016, 6, 32130–32139. [Google Scholar] [CrossRef] [Green Version]
- Maunsell, Z.; Wright, D.J.; Rainbow, S.J. Routine Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry Assay for Simultaneous Measurement of the 25-Hydroxy Metabolites of Vitamins D2 and D3. Clin. Chem. 2005, 51, 1683–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, L.R.; Laing, B.; Marlow, G.; Bishop, K. The Role of Vitamin D in Reducing Gastrointestinal Disease Risk and Assessment of Individual Dietary Intake Needs: Focus on Genetic and Genomic Technologies. Mol. Nutr. Food Res. 2016, 60, 119–133. [Google Scholar] [CrossRef] [PubMed]
- LabPlus. C-Reactive Protein Analysis. 2020. Available online: http://www.labplus.co.nz/laboratory-services/ (accessed on 10 March 2020).
- Ng, V.K.; Cribbie, R.A. Using the Gamma Generalized Linear Model for Modeling Continuous, Skewed and Heteroscedastic Outcomes in Psychology. Curr. Psychol. 2017, 36, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Kenward, M.G.; Roger, J.H. The use of Baseline Covariates in Crossover Studies. Biostatistics 2010, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Stata Technical Support. Stata Statistical Software, 16th ed.; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Minihane, A.M.; Armah, C.K.; Miles, E.A.; Madden, J.M.; Clark, A.B.; Caslake, M.J.; Packard, C.J.; Kofler, B.M.; Lietz, G.; Curtis, P.J. Consumption of Fish Oil Providing Amounts of Eicosapentaenoic Acid and Docosahexaenoic Acid that can be obtained from the Diet Reduces Blood Pressure in Adults with Systolic Hypertension: A Retrospective Analysis. J. Nutr. 2016, 146, 516–523. [Google Scholar] [CrossRef]
- Cabré, E.; Manosa, M.; Gassull, M.A. Omega-3 Fatty Acids and Inflammatory Bowel Diseases—A Systematic Review. Br. J. Nutr. 2012, 107, S240–S252. [Google Scholar] [CrossRef] [Green Version]
- Marton, L.T.; Goulart, R.d.A.; de Carvalho, A.C.A.; Barbalho, S.M. Omega Fatty Acids and Inflammatory Bowel Diseases: An Overview. Int. J. Mol. Sci. 2019, 20, 4851. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, D.; Steg, G.; Miller, M.; Brinton, E.; Jacobson, T.; Ketchum, S.; Doyle, R.; Juliano, R.; Jiao, L.; Granowitz, C.; et al. Reduction of Cardiovascular Events with Icosapent Ethyl—Intervention Trial—REDUCE-IT. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- The Cleveland Clinic, IQVIA RDS Inc. NEWS Outcomes Study to Assess STatin Residual Risk Reduction with EpaNova in HiGh CV Risk PatienTs with Hypertriglyceridemia (STRENGTH). 2020. Available online: https://ichgcp.net/clinical-trials-registry/NCT02104817 (accessed on 10 March 2020).
- European Pharmaceutical Review. NEWS Phase III STRENGTH Trial for Epanova in Mixed Dyslipidaemia Will Close. 2020. Available online: https://www.europeanpharmaceuticalreview.com/news/110245/phase-iii-strength-trial-for-epanova-in-mixed-dyslipidaemia-will-close/ (accessed on 10 March 2020).
- Saitou, M.; Furuse, M.; Sasaki, H.; Schulzke, J.D.; Fromm, M.; Takano, H.; Noda, T.; Tsukita, S. Complex Phenotype of Mice Lacking Occludin, a Component of Tight Junction Strands. Mol. Biol. Cell 2000, 11, 4131–4142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Zhang, Q.; Wang, M.; Zhao, S.; Xu, G.; Li, J. N-3 Polyunsaturated Fatty Acids Prevent Disruption of Epithelial Barrier Function Induced by Proinflammatory Cytokines. Mol. Immunol. 2008, 45, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.L.; Petschow, B.W.; Shaw, A.L.; Weaver, E. Gut Barrier Dysfunction and Microbial Translocation in Cancer Cachexia: A New Therapeutic Target. Curr. Opin. Support. Palliat. Care 2013, 7, 361–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, C.A.; Lyra, A.C.; Rocha, R.; Santana, G.O. Risk Factors for Osteoporosis in Inflammatory Bowel Disease Patients. World J. Gastrointest. Pathophysiol. 2015, 6, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Faibish, D.; Fredman, G.; Herrera, B.S.; Chiang, N.; Serhan, C.N.; Van Dyke, T.E.; Gyurko, R. Resolvin E1 and Chemokine-Like Receptor 1 Mediate Bone Preservation. J. Immunol. 2013, 190, 689–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajarabille, N.; Díaz-Castro, J.; Hijano, S.; López-Frías, M.; López-Aliaga, I.; Ochoa, J.J. A New Insight to Bone Turnover: Role of-3 Polyunsaturated Fatty Acids. Sci. World J. 2013, 589641. [Google Scholar] [CrossRef] [Green Version]
- Trebble, T.M.; Arden, N.K.; Wootton, S.A.; Calder, P.C.; Mullee, M.A.; Fine, D.R.; Stroud, M.A. Fish Oil and Antioxidants Alter the Composition and Function of Circulating Mononuclear Cells in Crohn Disease. Am. J. Clin. Nutr. 2004, 80, 1137–1144. [Google Scholar] [CrossRef]
- Harris, W.S.; Von Schacky, C. The Omega-3 Index: A New Risk Factor for Death from Coronary Heart Disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef]
- Tan, Z.S.; Harris, W.S.; Beiser, A.S.; Au, R.; Himali, J.J.; Debette, S.; Pikula, A.; Decarli, C.; Wolf, P.A.; Vasan, R.S.; et al. Red Blood Cell Omega-3 Fatty Acid Levels and Markers of Accelerated Brain Aging. Neurology 2012, 78, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.; Gammack, J.K.; Van Niekerk, J.K.; Dangour, A. Omega 3 Fatty Acid for the Prevention of Dementia. Cochrane Database Syst. Rev. 2006, 25, CD005379. [Google Scholar]
- Lukaschek, K.; von Schacky, C.; Kruse, J.; Ladwig, K.H. Cognitive Impairment is Associated with a Low Omega-3 Index in the Elderly: Results from the KORA-Age Study. Dement. Geriatr. Cogn. Disord. 2016, 42, 236–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.; Procter, N.; Gordon, A.; Bogomolova, S.; O’Dea, K.; Strachan, J.; Ballestrin, M. People with Schizophrenia and Depression have a Low Omega-3 Index. Prostaglandins Leukot Essent Fatty Acids 2016, 110, 42–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarsetoey, H.; Aarsetoey, R.; Lindner, T.; Staines, H.; Harris, W.S.; Nilsen, D.W. Low Levels of the Omega-3 Index are Associated with Sudden Cardiac Arrest and Remain Stable in Survivors in the Subacute Phase. Lipids 2011, 46, 151–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xun, P.; Qin, B.; Song, Y.; Nakamura, Y.; Kurth, T.; Yaemsiri, S.; Djousse, L.; He, K. Fish Consumption and Risk of Stroke and its Subtypes: Accumulative Evidence from a Meta-Analysis of Prospective Cohort Studies. Eur. J. Clin. Nutr. 2012, 66, 1199–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G.; et al. Effect of N-3 Polyunsaturated Fatty Acids in Patients with Chronic Heart Failure (the GISSI-HF Trial): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2008, 372, 1223–1230. [Google Scholar] [PubMed]
- Mozaffarian, D.; Wu, J.H. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on Risk Factors, Molecular Pathways, and Clinical Events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- ORIGIN Trial Investigators. N–3 Fatty Acids and Cardiovascular Outcomes in Patients with Dysglycemia. N. Engl. J. Med. 2012, 2012, 309–318. [Google Scholar]
- Gidding, S.S.; Lichtenstein, A.H.; Faith, M.S.; Karpyn, A.; Mennella, J.A.; Popkin, B.; Rowe, J.; Van Horn, L.; Whitsel, L. Implementing American Heart Association Pediatric and Adult Nutrition Guidelines: A Scientific Statement from the American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity and Metabolism, Council on Cardiovascular Disease in the Young, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Cardiovascular Nursing, Council on Epidemiology and Prevention, and Council for High Blood Pressure Research. Circulation 2009, 119, 1161–1175. [Google Scholar]
- Public Health Committee Cancer Council Australia. Position Statement: Omega-3 Fatty Acids, Fish and Cancer Prevention. 2009. Available online: https://wiki.cancer.org.au/policy/Position_statement_-_Omega-3_fatty_acids,_fish_and_cancer_prevention (accessed on 10 March 2020).
- Wallin, A.; Di Giuseppe, D.; Orsini, N.; Patel, P.S.; Forouhi, N.G.; Wolk, A. Fish Consumption, Dietary Long-Chain N-3 Fatty Acids, and Risk of Type 2 Diabetes: Systematic Review and Meta-Analysis of Prospective Studies. Diabetes Care 2012, 35, 918–929. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J.; American Heart Association. Nutrition Committee. Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Marchioli, R.; Macchia, A.; Silletta, M.G.; Ferrazzi, P.; Gardner, T.J.; Latini, R.; Libby, P.; Lombardi, F.; O’Gara, P.T. Fish Oil and Postoperative Atrial Fibrillation: The Omega-3 Fatty Acids for Prevention of Post-Operative Atrial Fibrillation (OPERA) Randomized Trial. JAMA 2012, 308, 2001–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Risk and Prevention Study Collaborative Group. N-3 Fatty Acids in Patients with Multiple Cardiovascular Risk Factors. N. Engl. J. Med. 2013, 368, 1800–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, T.A. Omega-3 Fatty Acids and Cardiovascular Disease: Epidemiology and Effects on Cardiometabolic Risk Factors. Food Funct. 2014, 5, 2004–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojecky, V.; Matous, J.; Zadorova, Z.; Griva, M.; Kianicka, B.; Uher, M. Vitamin D Supplementation Dose Needs to be Higher in Patients with Inflammatory Bowel Disease: Interventional Study. Vnitr. Lek. 2019, 65, 470–474. [Google Scholar]
- Office of Dietary Supplements. Dietary Supplement Fact Sheet Vitamin D. 2020. Available online: https://odsod.nih.gov/factsheets/VitaminD-HealthProfessional/ (accessed on 28 September 2019).
- O’Sullivan, F.; Raftery, T.; van Weele, M.; van Geffen, J.; McNamara, D.; O’Morain, C.; Mahmud, N.; Kelly, D.; Healy, M.; O’Sullivan, M. Sunshine is an Important Determinant of Vitamin D Status Even among High-dose Supplement Users: Secondary Analysis of a Randomized Controlled Trial in Crohn’s Disease Patients. Photochem. Photobiol. 2019, 95, 1060–1067. [Google Scholar] [CrossRef]
- Shils, M.E.; Shike, M. Modern Nutrition in Health and Diseases; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Manson, J.E.; Bassuk, S.S.; Buring, J.E.; VITAL Research Group. Principal Results of the VITamin D and OmegA-3 TriaL (VITAL) and Updated Meta-Analyses of Relevant Vitamin D Trials. J. Steroid Biochem. Mol. Biol. 2019, 198, 105522. [Google Scholar] [CrossRef]
- Ardesia, M.; Ferlazzo, G.; Fries, W. Vitamin D and Inflammatory Bowel Disease. Biomed. Res. Int. 2015, 470805, 1–16. [Google Scholar] [CrossRef]
- Janssen, C.E.; Globig, A.M.; Busse Grawitz, A.; Bettinger, D.; Hasselblatt, P. Seasonal Variability of Vitamin D Status in Patients with Inflammatory Bowel Disease—A Retrospective Cohort Study. PLoS ONE 2019, 14, e0217238. [Google Scholar] [CrossRef]
- Eloranta, J.J.; Wenger, C.; Mwinyi, J.; Hiller, C.; Gubler, C.; Vavricka, S.R.; Fried, M.; Kullak-Ublick, G.A. Association of a Common Vitamin D-Binding Protein Polymorphism with Inflammatory Bowel Disease. Pharmacogenet. Genom. 2011, 21, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Zhang, Z.; Musch, M.W.; Ning, G.; Sun, J.; Hart, J.; Bissonnette, M.; Li, Y.C. Novel Role of the Vitamin D Receptor in Maintaining the Integrity of the Intestinal Mucosal Barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G208–G216. [Google Scholar] [CrossRef] [Green Version]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arihiro, S.; Nakashima, A.; Matsuoka, M.; Suto, S.; Uchiyama, K.; Kato, T.; Mitobe, J.; Komoike, N.; Itagaki, M.; Miyakawa, Y. Randomized Trial of Vitamin D Supplementation to Prevent Seasonal Influenza and Upper Respiratory Infection in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2019, 25, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health New Zealand. Vitamin D Status of New Zealand Adults; Ministry of Health New Zealand: Wellington, New Zealand, 2014. [Google Scholar]
- Chang, P.; Terbach, N.; Plant, N.; Chen, P.E.; Walker, M.C.; Williams, R.S. Seizure Control by Ketogenic Diet-Associated Medium Chain Fatty Acids. Neuropharmacology 2013, 69, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.M.; Wang, H.S. Medium-Chain Triglyceride Ketogenic Diet, an Effective Treatment for Drug-Resistant Epilepsy and a Comparison with Other Ketogenic Diets. Biomed. J. 2013, 36, 9–15. [Google Scholar] [CrossRef]
- Groesbeck, D.K. Long-Term use of the Ketogenic Diet in the Treatment of Epilepsy. Dev. Med. Child Neurol. 2006, 48, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Sampath, A.; Kossoff, E.H.; Furth, S.L.; Pyzik, P.L.; Vining, E.P. Kidney Stones and the Ketogenic Diet: Risk Factors and Prevention. J. Child Neurol. 2007, 22, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.J.; Halstead, L.R.; DeVivo, D.C. Disordered Mineral Metabolism Produced by Ketogenic Diet Therapy. Calcif. Tissue Int. 1979, 28, 17–22. [Google Scholar] [CrossRef]
- Xu, X.; Ding, J.; Wu, X.; Huang, Z.; Kong, G.; Liu, Q.; Yang, Z.; Huang, Z.; Zhu, Q. Bone Microstructure and Metabolism Changes Under the Combined Intervention of Ketogenic Diet with Intermittent Fasting: An in Vivo Study of Rats. Exp. Anim. 2019, 68, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Holmberg, I.; Aksnes, L.; Berlin, T.; Lindbäck, B.; Zemgals, J.; Lindeke, B. Absorption of a Pharmacological Dose of Vitamin D3 from Two Different Lipid Vehicles in Man: Comparison of Peanut Oil and a Medium Chain Triglyceride. Biopharm. Drug Dispos. 1990, 11, 807–815. [Google Scholar] [CrossRef]
- Evans, S.R. Clinical Trial Structures. J. Exp. Stroke Transl. Med. 2010, 3, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.A.; Kimlin, M.G. Vitamin D, Aging, and the 2005 Dietary Guidelines for Americans. Nutr. Rev. 2006, 64, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Optimal Vitamin D Status for the Prevention and Treatment of Osteoporosis. Drugs Aging 2007, 24, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Laing, B.; and Ferguson, L.R. Genetic Variations in Vitamin D Metabolism Genes and the Microbiome, in the Presence of Adverse Environmental Changes, Increase Immune Dysregulation. Austin. J. Nutr. Metab. 2015, 2, id1026. [Google Scholar]
- Ridker, P.M. High-Sensitivity C-Reactive Protein, Inflammation, and Cardiovascular Risk: From Concept to Clinical Practice to Clinical Benefit. Am. Heart J. 2004, 148, S19–S26. [Google Scholar] [CrossRef]
- Wells, G.; Becker, J.C.; Teng, J.; Dougados, M.; Schiff, M.; Smolen, J.; Aletaha, D.; van Riel, P.L. Validation of the 28-Joint Disease Activity Score (DAS28) and European League Against Rheumatism Response Criteria Based on C-Reactive Protein Against Disease Progression in Patients with Rheumatoid Arthritis, and Comparison with the DAS28 Based on Erythrocyte Sedimentation Rate. Ann. Rheum. Dis. 2009, 68, 954–960. [Google Scholar]
- Sipponen, T.; Savilahti, E.; Kolho, K.; Nuutinen, H.; Turunen, U.; Färkkilä, M. Crohn’s Disease Activity Assessed by Fecal Calprotectin and Lactoferrin: Correlation with Crohn’s Disease Activity Index and Endoscopic Findings. Inflamm. Bowel Dis. 2008, 14, 40–46. [Google Scholar] [CrossRef]
- Laing, B. Key Genotypes and the Response to Nutrient Supplementation in Crohn’s Disease. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 2018. Available online: https://researchspace.auckland.ac.nz/handle/2292/37385 (accessed on 28 September 2019).
Measure | Details |
---|---|
Eicosapentaenoic acid (EPA) | µg/mL, C20:5 |
Docosapentaenoic acid (DPA) | µg/mL, C22:5 |
Docosahexaenoic acid (DHA) | µg/mL, C22:6 |
Omega-3 index (using serum measures) | µg/mL, sum of EPA and DHA |
Calprotectin | µg/g |
C-reactive protein | mg/L, reference range 0.5–5 |
Vitamin D | nmol/L, serum 25(OH)D |
Measure, Units | Group A n (%) or Median (Q1, Q3) | Group B n (%) or Median (Q1, Q3) |
---|---|---|
Healthy Participants | N = 15 | N = 14 |
Male | 6 (40%) | 8 (57%) |
Past Smoker | 4 (27%) | 1 (7%) |
Non-European Ethnicity | 4 (27%) | 4 (29%) |
Age, years | 48.2 (26, 54) | 50.9 (26.8, 54.3) |
Height, cm | 171 (163, 176) | 173 (167, 178) |
Weight, kg | 69.7 (59.3, 84.1) | 75.1 (58.9, 95.8) |
BMI, kg/m2 | 23.2 (21.5, 28.0) | 24.1 (21.0, 27.7) |
Crohn’s Disease Participants | N = 13 | N = 12 |
Male | 4 (31%) | 3 (25%) |
Past Smoker | 3 (23%) | 4 (33%) |
Non-European Ethnicity | 0 | 0 |
Age, years | 49.0 (43.0, 58.0) | 46.5 (42.0, 51.0) |
Height, cm | 168 (163, 179) | 165 (161, 174) |
Weight, kg | 81.4 (75.0, 88.8) | 78.1 (68.8, 81.1) |
BMI, kg/m2 | 27.3 (23.6, 29.0) | 26.6 (24.8, 30.0) |
Measure | Group | T1, Median (Q1, Q3) * | T2, Median (Q1, Q3) | T3, Median (Q1, Q3) | T4, Median (Q1, Q3) |
---|---|---|---|---|---|
Healthy Participants | (N = 29) | (N = 29) | (N = 28) | (N = 27) | |
EPA, µg/mL | A | 29.3 (23.0, 40.1) | 26.6 (19.9, 32.2) | 24.6 (17.4, 28.4) | 66.4 (58.9, 72.6) |
B | 28.4 (22.3, 34.0) | 75.6 (61.8, 106) | 32.5 (27.4, 40.1) | 33.8 (19.0, 40.1) | |
DPA, µg/g | A | 18.5 (14.1, 20.9) | 16.0 (11.6, 18.5) | 14.5 (13.1, 17.6) | 21.2 (17.0, 22.5) |
B | 15.9 (14.8, 19.8) | 19.5 (17.1, 26.1) | 16.6 (14.1, 18.5) | 17.2 (14.5, 19.1) | |
DHA, µg/g | A | 63.0 (55.6, 95.3) | 59.5 (51.7, 75.4) | 59.9 (53.2, 71.9) | 81.3 (76.4, 93.8) |
B | 60.1 (42.5, 79.9) | 85.7 (76.2, 101) | 57.8 (52.0, 84.3) | 63.3 (47.9, 71.6) | |
Omega-3 index (EPA + DHA), µg/mLUsing serum measures | A | 88.7 (80.5, 128) | 86.6 (70.3, 106) | 79.2 (73.9, 98.0) | 156 (120, 163) |
B | 87.2 (72.8, 110) | 162 (140, 206) | 89.4 (79.5, 119) | 88.8 (72.5, 122) | |
Vitamin D -25(OH)D, nmol/L | A | 70.0 (63.0, 76.0) | 62.0 (59.0, 70.0) | 58.5 (49.0, 67.0) | 64.0 (54.0, 68.0) |
B | 62.0 (56.0, 67.0) | 65.0 (61.0, 75.0) | 58.0 (50.0, 66.0) | 46.0 (40.0, 64.0) | |
Calprotectin, µg/g | A | 32.0 (20.4, 62.9) | 25.2 (23.1, 43.9) | 18.2 (10.4, 33.6) | 38.0 (20.1, 49.5) |
B | 28.7 (20.6, 38.6) | 34.6 (26.9, 59.3) | 26.4 (17.4, 33.8) | 24.6 (19.7, 49.7) | |
CRP, mg/L | A | 0.5 (0.5, 0.5) | 0.5 (0.5, 1.0) | 0.5 (0.5, 2.0) | 0.5 (0.5, 0.5) |
B | 0.5 (0.5, 2.0) | 0.5 (0.5, 3.0) | 0.5 (0.5, 1.0) | 0.5 (0.5, 2.0) | |
Crohn’s Disease Participants | (N = 24) | (N = 24) | (N = 24) | (N = 24) | |
EPA, µg/mL | A | 30.6 (26.1, 38.2) | 57.0 (44.1, 60.3) | 40.1 (31.5, 46.3) | 69.4 (58.2, 94.0) |
B | 20.3 (17.9, 35.7) | 55.7 (34.4, 68.5) | 29.1 (14.8, 36.2) | 54.7 (26.0, 69.5) | |
DPA, µg/g | A | 15.7 (14.2, 22.4) | 20.7 (14.9, 27.2) | 19.9 (14.5, 22.9) | 22.6 (16.8, 29.8) |
B | 14.1 (11.9, 18.4) | 16.8 (14.7, 23.8) | 13.1 (11.1, 21.3) | 16.6 (14.2, 21.8) | |
DHA, µg/g | A | 55.1 (38.6, 69.8) | 63.6 (55.2, 76.2) | 59.5 (57.8, 77.3) | 80.8 (71.3, 88.8) |
B | 51.2 (38.7, 55.8) | 71.8 (56.7, 89.7) | 50.1 (36.5, 64.3) | 56.8 (43.8, 75.8) | |
Omega-3 index (EPA + DHA), µg/m Using serum measures | A | 83.5 (74.2, 107.9) | 114 (104, 149) | 104 (89.0, 119) | 146 (132, 184) |
B | 75.4 (54.0, 83.1) | 130 (95.0, 157) | 87.0 (57.2, 104) | 75.4 (54.0, 83.1) | |
Vitamin D -25(OH)D, nmol/L | A | 78.0 (73.0, 87.0) | 78.0 (74.0, 95.0) | 67.0 (58.0, 79.0) | 68.0 (60.0, 79.0) |
B | 87.0 (75.0, 94.0) | 85.0 (76.0, 94.0) | 70.0 (60.0, 77.0) | 63.0 (51.0, 69.0) | |
Calprotectin, µg/g | A | 108 (77.3, 219) | 120 (65.9, 823) | 458 (140, 722) | 116 (65.4, 179) |
B | 147 (81.7, 189) | 235 (68.8, 414) | 140 (48.3, 333) | 121 (53.3, 709) | |
CRP, mg/L | A | 2.0 (0.9, 3.5) | 1.2 (0.6, 4.5) | 1.4 (0.9, 4.2) | 1.3 (1.1, 4.8) |
B | 1.2 (0.5, 3.8) | 2.2 (0.5, 6.1) | 0.8 (0.5, 4.1) | 1.9 (0.5, 4.6) |
Outcome Measure | Treatment Effect; LO vs. Placebo | Period Effect; Period 2 vs. Period 1 | Carry-Over Effect * | |||
---|---|---|---|---|---|---|
Marginal Mean Difference (95% CI) | p-Value | Marginal Mean Difference (95% CI) | p-value | Treatment-by-Period Interaction (95% CI) | p-Value | |
Healthy Participants, N = 29 ** | ||||||
EPA, µg/mL | 47.0 (35.8, 58.3) | <0.001 | −2.19 (−12.6, 8.18) | 0.68 | 0.75 (0.55, 1.01) | 0.06 |
DPA, µg/mL | 4.36 (3.17, 5.55) | <0.001 | 0.22 (−0.90, 1.33) | 0.71 | 0.89 (0.70, 1.13) | 0.34 |
DHA, µg/mL | 22.0 (16.0, 28.0) | <0.001 | 0.15 (−6.01, 6.32) | 0.96 | 0.82 (0.67, 1.02) | 0.07 |
Omega-3 index, µg/mL + | 67.8 (52.8, 82.8) | <0.001 | −2.42 (−17.6, 12.7) | 0.75 | 0.81 (0.65, 1.00) | 0.05 |
Vitamin D -25(OH)D, nmol/L | 10.0 (6.34, 13.7) | <0.001 | −10.7 (−14.3, −7.01) | <0.001 | 1.08 (0.94, 1.24) | 0.27 |
Calprotectin, µg/g | 9.83 (−3.33, 23.0) | 0.14 | 3.65 (−9.83, 17.1) | 0.6 | 0.99 (0.40, 2.47) | 0.99 |
Crohn’s Disease Participants, N = 24 *** | ||||||
EPA, µg/mL | 19.3 (9.26, 29.4) | <0.001 | 0.54 (−9.47, 10.6) | 0.92 | 1.06 (0.48, 2.34) | 0.89 |
DPA, µg/mL | 2.18 (0.66, 3.70) | 0.005 | 0.29 (−1.22, 1.80) | 0.70 | 0.99 (0.70, 1.39) | 0.93 |
DHA, µg/mL | 14.2 (4.04, 24.3) | 0.006 | −3.10 (−13.3, 7.14) | 0.55 | 0.82 (0.54, 1.24) | 0.34 |
Omega-3 index, µg/mL | 33.0 (13.7, 52.3) | 0.001 | −2.66 (−22.1, 16.8) | 0.79 | 0.90 (0.49, 1.63) | 0.72 |
Vitamin D -25(OH)D, nmol/L | 4.69 (0.53, 8.86) | 0.03 | −20.5 (−24.7, −16.2) | <0.001 | 1.23 (1.05, 1.44) | 0.01 |
Calprotectin, µg/g | −96.9 (−570, 376) | 0.67 | 40.2 (−423, 503) | 0.87 | 0.27 (0.06, 1.26) | 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brennan Laing, B.; Cavadino, A.; Ellett, S.; Ferguson, L.R. Effects of an Omega-3 and Vitamin D Supplement on Fatty Acids and Vitamin D Serum Levels in Double-Blinded, Randomized, Controlled Trials in Healthy and Crohn’s Disease Populations. Nutrients 2020, 12, 1139. https://doi.org/10.3390/nu12041139
Brennan Laing B, Cavadino A, Ellett S, Ferguson LR. Effects of an Omega-3 and Vitamin D Supplement on Fatty Acids and Vitamin D Serum Levels in Double-Blinded, Randomized, Controlled Trials in Healthy and Crohn’s Disease Populations. Nutrients. 2020; 12(4):1139. https://doi.org/10.3390/nu12041139
Chicago/Turabian StyleBrennan Laing, Bobbi, Alana Cavadino, Stephanie Ellett, and Lynnette R. Ferguson. 2020. "Effects of an Omega-3 and Vitamin D Supplement on Fatty Acids and Vitamin D Serum Levels in Double-Blinded, Randomized, Controlled Trials in Healthy and Crohn’s Disease Populations" Nutrients 12, no. 4: 1139. https://doi.org/10.3390/nu12041139
APA StyleBrennan Laing, B., Cavadino, A., Ellett, S., & Ferguson, L. R. (2020). Effects of an Omega-3 and Vitamin D Supplement on Fatty Acids and Vitamin D Serum Levels in Double-Blinded, Randomized, Controlled Trials in Healthy and Crohn’s Disease Populations. Nutrients, 12(4), 1139. https://doi.org/10.3390/nu12041139