The Effects of Low- and High-Glycemic Index Sport Nutrition Bars on Metabolism and Performance in Recreational Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Preliminary Test
2.4. Experimental Test
2.5. Dietary and Physical Activity Monitoring
2.6. Statistical Analysis
3. Results
3.1. Blinding, Order Effects, and Adverse Events
3.2. Glucose and Insulin Responses
3.3. Serum NEFA and Substrate Oxidation
3.4. Skill Performance and Rating of Perceived Exertion
4. Discussion
5. Conclusions and Practical Application
Author Contributions
Funding
Conflicts of Interest
References
- Hermansen, L.; Hultman, E.; Saltin, B. Muscle glycogen during prolonged severe exercise. Acta Physiol. Scand. 1967, 71, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A. A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Med. 2014, 44 (Suppl. 1), S25–S33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balsom, P.; Gaitanos, G.; Soderlund, K.; Ekblom, B. High intensity exercise and muscle glycogen availability in humans. Acta Physiol. Scand. 1999, 165, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Balsom, P.; Wood, K.; Olsson, P.; Ekblom, B. Carbohydrate intake and multiple sprint sports: With special reference to football (soccer). Int. J. Sports Med. 1999, 20, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Hills, S.P.; Russell, M. Carbohydrates for soccer: A focus on skilled actions and half-time practices. Nutrients 2017, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Saltin, B. Metabolic fundamentals in exercise. Med. Sci. Sports Exerc. 1973, 5, 137–146. [Google Scholar] [CrossRef]
- Russell, M.; Sparkes, W.; Northeast, J.; Cook, C.J.; Love, T.D.; Bracken, R.M.; Kilduff, L.P. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J. Strength Cond. Res. 2016, 30, 2839–2844. [Google Scholar] [CrossRef] [Green Version]
- Little, J.P.; Chilibeck, P.D.; Bennett, C.; Zello, G.A. Food for endurance: The evidence, with a focus on the glycaemic index. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 1–13. [Google Scholar] [CrossRef]
- Burdon, C.A.; Spronk, I.; Lun Cheng, H.; O’Connor, H.T. Effect of glycemic index of a pre-exercise meal on endurance exercise performance: A systematic review and meta-analysis. Sports Med. 2017, 47, 1087–1101. [Google Scholar] [CrossRef]
- Heung-Sang Wong, S.; Sun, F.H.; Chen, Y.J.; Li, C.; Zhang, Y.J.; Ya-Jun Huang, W. Effect of pre-exercise carbohydrate diets with high vs low glycemic index on exercise performance: A meta-analysis. Nutr. Rev. 2017, 75, 327–338. [Google Scholar] [CrossRef]
- Sidossis, L.S.; Stuart, C.A.; Shulman, G.I.; Lopaschuk, G.D.; Wolfe, R.R. Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria. J. Clin. Investig. 1996, 98, 2244–2250. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.A.; Keenan, J.; Angus, D.J.; Campbell, S.E.; Garnham, A.P. Pre-exercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: Effect of glycemic index. J. Appl. Physiol. 2000, 89, 1845–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, E.J.; Williams, C.; Mash, L.E.; Phillips, B.; Nute, M.L. Influence of high-carbohydrate mixed meals with different glycemic indexes on substrate utilization during subsequent exercise in women. Am. J. Clin. Nutr. 2006, 84, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Nicholas, C.; Williams, C.; Took, A.; Hardy, L. The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise. Br. J. Nutr. 2003, 90, 1049–1056. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.E.; Brotherhood, J.P.; Brand, J.C. Carbohydrate feeding before exercise: Effect of glycemic index. Int. J. Sports Med. 1991, 12, 180–186. [Google Scholar] [CrossRef]
- Wu, C.L.; Williams, C. A low glycemic index meal before exercise improves endurance running capacity in men. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 510–527. [Google Scholar] [CrossRef] [Green Version]
- Kaviani, M.; Chilibeck, P.D.; Jochim, J.; Gordon, J.; Zello, G.A. The glycemic index of sport nutrition bars affects performance and metabolism during cycling and next-day recovery. J. Hum. Kinet. 2019, 66, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Reilly, T. The Science of Training—Soccer; Routledge: London, UK, 2007. [Google Scholar]
- Bennett, C.B.; Chilibeck, P.D.; Barss, T.; Vatanparast, H.; Vandenberg, A.; Zello, G.A. Metabolism and performance during extended high-intensity intermittent exercise after consumption of low- and high-glycaemic index pre-exercise meals. Br. J. Nutr. 2012, 108, 81–90. [Google Scholar] [CrossRef]
- Little, J.P.; Chilibeck, P.D.; Ciona, D.; Vandenberg, A.; Zello, G.A. The effects of high and low glycemic index foods on high intensity intermittent exercise. Int. J. Sports Physiol. Perform. 2009, 4, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Little, J.P.; Chilibeck, P.D.; Ciona, D.; Forbes, S.; Rees, H.; Vandenberg, A.; Zello, G.A. Effect of Low- and High-Glycemic-Index Meals on Metabolism and Performance During High-Intensity, Intermittent Exercise. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 447–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, N. Eating before competing. Physiol. Sports Med. 1998, 26, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Manore, M.M.; Patton-Lopez, M.M.; Meng, Y.; Wong, S.S. Sport nutrition knowledge, behaviors and beliefs of high school soccer players. Nutrients 2017, 9, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currell, K.; Conway, S.; Jeukendrup, A.E. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 34–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsbottom, R.; Brewer, J.; Williams, C. A progressive shuttle run test to estimate maximal oxygen uptake. Br. J. Sports Med. 1988, 22, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholas, C.W.; Nuttall, F.E.; Williams, C. The Loughborough Intermittent Shuttle Test: A field test that simulates the activity pattern of soccer. J. Sports Sci. 2000, 18, 97–104. [Google Scholar] [CrossRef]
- Chilibeck, P.D.; Rooke, J.; Zello, G.A. Development of a lentil-based sports nutrition bar. Appl. Physiol. Nutr. Metab. 2011, 36, 308–309. [Google Scholar]
- Gretebeck, R.J.; Gretebeck, K.A.; Tittelbach, T.J. Glycemic index of popular sports drinks and energy foods. J. Am. Diet. Assoc. 2002, 102, 415–417. [Google Scholar] [CrossRef]
- Péronnet, F.; Massicotte, D. Table of nonprotein respiratory quotient: An update. Can. J. Sport Sci. 1991, 16, 23–29. [Google Scholar]
- Borg, G.A. Perceived exertion—Note on history and methods. Med. Sci. Sports Exerc. 1973, 5, 90–93. [Google Scholar] [CrossRef]
- Russell, M.; Kingsley, M. The efficacy of acute nutritional interventions on soccer skill performance. Sports Med. 2014, 44, 957–970. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, C.W.; Williams, C.; Boobis, L.H.; Little, N. Effect of ingesting a carbohydrate electrolyte beverage on muscle glycogen utilisation during high intensity, intermittent shuttle running. Med. Sci. Sports Exerc. 1999, 31, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Bendiksen, M.; Bischoff, R.; Randers, M.B.; Mohr, M.; Rollo, I.; Suetta, C.; Bangsbo, J.; Krustrup, P. The Copenhagen Soccer Test: Physiological response and fatigue development. Med. Sci. Sports Exerc. 2012, 44, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Wee, S.L.; Williams, C.; Tsintzas, K.; Boobis, L. Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J. Appl. Physiol. 2005, 99, 707–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romijn, J.A.; Coyle, E.F.; Sidossis, L.S.; Gastaldelli, A.; Horowitz, J.F.; Endert, E.; Wolfe, R.R. Regulation of Endogenous Fat and Carbohydrate-Metabolism in Relation to Exercise Intensity and Duration. Am. J. Physiol. 1993, 265, 380–391. [Google Scholar] [CrossRef] [Green Version]
- Coyle, E.F.; Jeukendrup, A.E.; Wagenmakers, A.J.M.; Saris, W.H.M. Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am. J. Physiol. Endocrinol. Metabol. 1997, 273, E268–E275. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Regulation of fat metabolism in skeletal muscle. Ann. N.Y. Acad. Sci. 2002, 967, 217–235. [Google Scholar] [CrossRef]
- Kolkhorst, F.W.; MacTaggart, J.N.; Hansen, M.R. Effect of a sports food bar on fat utilisation and exercise duration. Can. J. Appl. Physiol. 1998, 23, 271–278. [Google Scholar] [CrossRef]
- Oliver, S.K.; Tremblay, M.S. Effects of a sports nutrition bar on endurance running performance. J. Strength Cond. Res. 2002, 16, 152–156. [Google Scholar]
- Rauch, H.G.; Hawley, J.A.; Woodey, M.; Noakes, T.D.; Dennis, S.C. Effects of ingesting a sports bar versus glucose polymer on substrate utilisation and ultra-endurance performance. Int. J. Sports Med. 1999, 20, 252–257. [Google Scholar] [CrossRef]
Description | Low-GI | High-GI |
---|---|---|
Energy (kcal) | 758 | 761 |
Fat (g) | 19 | 20 |
Total Carbohydrate (g) | 127 | 116 |
Available carbohydrate (g), i.e., Total carbohydrate minus fiber | 105 | 105 |
Protein (g) | 39 | 31 |
Glycemic index | 45 | 101 |
Condition | Low-GI | High-GI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time (Min) | 12 | 30 | 45 | 54 | 72 | 90 | 12 | 30 | 45 | 54 | 72 | 90 | |
Ball Dribbling (s) | 14.0 ± 2.6 | 12.8 ± 2.3 | 11.8 ± 2.0 | 12.2 ± 2.2 | 12.6 ± 1.9 | 12.3 ± 2.1 | 13.8 ± 2.6 | 13.1 ± 2.3 | 12.1 ± 2.2 | 12.6 ± 1.9 | 12.1 ± 2.4 | 12.7 ± 2.7 | |
Heading (cm) | 20.5 ± 6.5 | 24.4 ± 4.1 | 24.1 ± 4.4 | 23.3 ± 3.5 | 24.7 ± 4.3 * | 23.3 ± 0.9 | 20.3 ± 7.9 | 23.8 ± 4.8 | 23.5 ± 5.2 | 22.5 ± 5.2 | 22.2 ± 4.9 | 22.5 ± 5.1 | |
Kicking (arbitrary units) | 10.0 ± 5.7 | 11.8 ± 3.0 | 11.1 ± 5.5 | 13.1 ± 7.1 | 12.4 ± 4.0 | 9.1 ± 4.3 | 10.8 ± 6.5 | 10.1 ± 5.4 | 9.3 ± 5.9 | 9.0 ± 2.3 | 12.1 ± 4.5 | 12.8 ± 6.2 | |
Agility (s) | 6.1 ± 0.4 | 6.0 ± 0.6 | 6.0 ± 0.6 | 5.9 ± 0.5 | 5.7 ± 0.4 * | 6.0 ± 0.6 | 6.1 ± 0.4 | 6.1 ± 0.6 | 5.9 ± 0.6 | 6.1 ± 0.5 | 6.1 ± 0.6 | 5.8 ± 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaviani, M.; Chilibeck, P.D.; Gall, S.; Jochim, J.; Zello, G.A. The Effects of Low- and High-Glycemic Index Sport Nutrition Bars on Metabolism and Performance in Recreational Soccer Players. Nutrients 2020, 12, 982. https://doi.org/10.3390/nu12040982
Kaviani M, Chilibeck PD, Gall S, Jochim J, Zello GA. The Effects of Low- and High-Glycemic Index Sport Nutrition Bars on Metabolism and Performance in Recreational Soccer Players. Nutrients. 2020; 12(4):982. https://doi.org/10.3390/nu12040982
Chicago/Turabian StyleKaviani, Mojtaba, Philip D. Chilibeck, Spencer Gall, Jennifer Jochim, and Gordon A. Zello. 2020. "The Effects of Low- and High-Glycemic Index Sport Nutrition Bars on Metabolism and Performance in Recreational Soccer Players" Nutrients 12, no. 4: 982. https://doi.org/10.3390/nu12040982
APA StyleKaviani, M., Chilibeck, P. D., Gall, S., Jochim, J., & Zello, G. A. (2020). The Effects of Low- and High-Glycemic Index Sport Nutrition Bars on Metabolism and Performance in Recreational Soccer Players. Nutrients, 12(4), 982. https://doi.org/10.3390/nu12040982