Daily Coffee and Green Tea Consumption Is Inversely Associated with Body Mass Index, Body Fat Percentage, and Cardio-Ankle Vascular Index in Middle-Aged Japanese Women: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurements
2.2.1. Menopausal Status
2.2.2. Physical Assessments and Cardiovascular Parameters
2.2.3. Lifestyle Characteristics
2.2.4. Dietary Habits
2.3. Factors Associated with Body Composition/Cardiovascular Parameters
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 18 October 2019).
- Carr, M.C. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 2003, 88, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.M.; Vitale, C.; Tulli, A. Managing cardiovascular risk in menopausal women. Climacteric 2006, 9, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Lizcano, F.; Guzmán, G. Estrogen deficiency and the origin of obesity during menopause. BioMed Res. Int. 2014, 2014, 757461. [Google Scholar] [CrossRef]
- Collins, P.; Rosano, G.; Casey, C.; Daly, C.; Gambacciani, M.; Hadji, P.; Kaaja, R.; Mikkola, T.; Palacios, S.; Preston, R.; et al. Management of cardiovascular risk in the peri-menopausal woman: A consensus statement of European cardiologists and gynaecologists. Eur. Heart J. 2007, 28, 2028–2040. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Kobayashi, S.; Yamaguchi, T.; Hibi, M.; Fukuhara, I.; Osaki, N. Coffee abundant in chlorogenic acids reduces abdominal fat in overweight adults: A randomized, double-blind, controlled trial. Nutrients 2019, 11, 1617. [Google Scholar] [CrossRef] [Green Version]
- Nagao, T.; Hase, T.; Tokimitsu, I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity 2007, 15, 1473–1483. [Google Scholar] [CrossRef]
- Kokubo, Y.; Iso, H.; Saito, I.; Yamagishi, K.; Yatsuya, H.; Ishihara, J.; Inoue, M.; Tsugane, S. The impact of green tea and coffee consumption on the reduced risk of stroke incidence in Japanese population: The Japan public health center-based study cohort. Stroke 2013, 44, 1369–1374. [Google Scholar] [CrossRef]
- Suzuki, A.; Nomura, T.; Jokura, H.; Kitamura, N.; Saiki, A.; Fujii, A. Chlorogenic acid-enriched green coffee bean extract affects arterial stiffness assessed by the cardio-ankle vascular index in healthy men: A pilot study. Int. J. Food Sci. Nutr. 2019, 70, 901–908. [Google Scholar] [CrossRef]
- Khalesi, S.; Sun, J.; Buys, N.; Jamshidi, A.; Nikbakht-Nasrabadi, E.; Khosravi-Boroujeni, H. Green tea catechins and blood pressure: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Nutr. 2014, 53, 1299–1311. [Google Scholar] [CrossRef]
- Parsanathan, R.; Jain, S.K. Novel Invasive and Noninvasive Cardiac-Specific Biomarkers in Obesity and Cardiovascular Diseases. Metab. Syndr. Relat. Disord. 2020, 18, 10–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiki, A.; Sato, Y.; Watanabe, Y.; Imamura, H.; Yamaguchi, T.; Ban, N.; Kawana, H.; Nagumo, A.; Nagayama, D.; Ohira, M.; et al. The Role of a Novel Arterial Stiffness Parameter, Cardio-Ankle Vascular Index (CAVI), as a Surrogate Marker for Cardiovascular Diseases. J. Atheroscler. Thromb. 2016, 23, 155–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirai, K.; Saiki, A.; Nagayama, D.; Tatsuno, I.; Shimizu, K.; Takahashi, M. The Role of Monitoring Arterial Stiffness with Cardio-Ankle Vascular Index in the Control of Lifestyle-Related Diseases. Pulse 2015, 3, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez de Mejia, E.; Ramirez-Mares, M.V. Impact of caffeine and coffee on our health. Trends Endocrinol. Metab. 2014, 25, 489–492. [Google Scholar] [CrossRef]
- Martini, D.; Del Bo, C.; Tassotti, M.; Riso, P.; Del Rio, D.; Brighenti, F.; Porrini, M. Coffee consumption and oxidative stress: A review of human intervention studies. Molecules 2016, 21, 979. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, Y.; Ohie, T.; Yonekawa, Y.; Yonemoto, K.; Aizawa, H.; Mori, Y.; Watanabe, M.; Takeuchi, M.; Hasegawa, M.; Taguchi, C.; et al. Coffee and green tea as a large source of antioxidant polyphenols in the Japanese population. J. Agric. Food Chem. 2009, 57, 1253–1259. [Google Scholar] [CrossRef]
- Aoyagi, R.; Funakoshi-Tago, M.; Fujiwara, Y.; Tamura, H. Coffee inhibits adipocyte differentiation via inactivation of PPARγ. Biol. Pharm. Bull. 2014, 37, 1820–1825. [Google Scholar] [CrossRef] [Green Version]
- Soga, S.; Ota, N.; Shimotoyodome, A. Stimulation of postprandial fat utilization in healthy humans by daily consumption of chlorogenic acids. Biosci. Biotechnol. Biochem. 2014, 77, 1633–1636. [Google Scholar] [CrossRef]
- Ota, N.; Soga, S.; Murase, T.; Shimotoyodome, A.; Hase, T. Consumption of coffee polyphenols increases fat utilization in humans. J. Health Sci. 2010, 56, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Yun, N.; Kang, J.W.; Lee, S.M. Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: Molecular evidence of its antioxidant and anti-inflammatory properties. J. Nutr. Biochem. 2012, 23, 1249–1255. [Google Scholar] [CrossRef]
- Kajikawa, M.; Maruhashi, T.; Hidaka, T.; Nakano, Y.; Kurisu, S.; Matsumoto, T.; Iwamoto, Y.; Kishimoto, S.; Matsui, S.; Aibara, Y.; et al. Coffee with a high content of chlorogenic acids and low content of hydroxyhydroquinone improves postprandial endothelial dysfunction in patients with borderline and stage 1 hypertension. Eur. J. Nutr. 2019, 58, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Onakpoya, I.J.; Spencer, E.A.; Thompson, M.J.; Heneghan, C.J. The effect of chlorogenic acid on blood pressure: A systematic review and meta-analysis of randomized clinical trials. J. Hum. Hypertens. 2015, 29, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Martínez-López, S.; Sarriá, B.; Mateos, R.; Bravo-Clemente, L. Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: Results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. Eur. J. Nutr. 2019, 58, 865–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Rio, D.; Stewart, A.J.; Mullen, W.; Burns, J.; Lean, M.E.; Brighenti, F.; Crozier, A. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J. Agric. Food Chem. 2004, 52, 2807–2815. [Google Scholar] [CrossRef] [PubMed]
- Higdon, J.V.; Frei, B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef] [PubMed]
- Hibi, M.; Takase, H.; Iwasaki, M.; Osaki, N.; Katsuragi, Y. Efficacy of tea catechin-rich beverages to reduce abdominal adiposity and metabolic syndrome risks in obese and overweight subjects: A pooled analysis of 6 human trials. Nutr. Res. 2018, 55, 1–10. [Google Scholar] [CrossRef]
- Moon, H.S.; Chung, C.S.; Lee, H.G.; Kim, T.G.; Choi, Y.J.; Cho, C.S. Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity 2007, 15, 2571–2582. [Google Scholar] [CrossRef]
- Parsanathan, R.; Jain, S.K. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. Amino Acids 2018, 50, 909–921. [Google Scholar] [CrossRef]
- Parsanathan, R.; Jain, S.K. Glucose-6-phosphate dehydrogenase deficiency increases cell adhesion molecules and activates human monocyte-endothelial cell adhesion: Protective role of l-cysteine. Arch. Biochem. Biophys. 2019, 663, 11–21. [Google Scholar] [CrossRef]
- Li, Y.F.; Wang, H.; Fan, Y.; Shi, H.J.; Wang, Q.M.; Chen, B.R.; Khurwolah, M.R.; Long, Q.Q.; Wang, S.B.; Wang, Z.M.; et al. Epigallocatechin-3-Gallate Inhibits Matrix Metalloproteinase-9 and Monocyte Chemotactic Protein-1 Expression Through the 67-κDa Laminin Receptor and the TLR4/MAPK/NF-κB Signalling Pathway in Lipopolysaccharide-Induced Macrophages. Cell. Physiol. Biochem. 2017, 43, 926–936. [Google Scholar] [CrossRef]
- Williamson, G.; Dionisi, F.; Renouf, M. Flavanols from green tea and phenolic acids from coffee: Critical quantitative evaluation of the pharmacokinetic data in humans after consumption of single doses of beverages. Mol. Nutr. Food Res. 2011, 55, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, C.; Kishimoto, Y.; Fukushima, Y.; Kondo, K.; Yamakawa, M.; Wada, K.; Nagata, C. Dietary intake of total polyphenols and the risk of all-cause and specific-cause mortality in Japanese adults: The Takayama study. Eur. J. Nutr. 2020, 59, 1263–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control (n = 39) | CF (n = 76) | GT (n = 47) | CF + GT (n = 70) | p-Value | |
---|---|---|---|---|---|
Age and menopausal status | |||||
Age (years), mean (SD) | 51.2 (6.1) | 50.4 (3.8) | 52.0 (5.2) | 52.8 (5.3) | 0.027 a |
Menopausal status | |||||
Premenopause | 11 (28.2) | 31 (40.8) | 7 (14.9) | 17 (24.3) | |
Perimenopause | 8 (20.5) | 20 (26.3) | 6 (12.8) | 11 (15.7) | |
Postmenopause | 20 (51.3) | 25 (32.9) | 34 (72.3) | 42 (60.0) | 0.002 b |
Body composition, mean (SD) | |||||
Height (cm) | 157.8 (6.9) | 158.7 (5.1) | 155.5 (6.4) | 157.6 (4.9) | 0.028 a |
Body weight (kg) | 57.4 (12.7) | 53.9 (8.1) | 52.4 (9.6) | 52.1 (7.1) | 0.022 a |
Body mass index (kg/m2) | 23.0 (4.4) | 21.4 (3.2) | 21.6 (3.5) | 21.0 (2.7) | 0.027 a |
Body fat (%) | 30.5 (8.5) | 26.8 (7.0) | 27.2 (7.5) | 25.8 (6.6) | 0.014 a |
Fat mass (kg) | 18.5 (8.9) | 14.9 (6.2) | 14.8 (6.7) | 13.8 (5.1) | 0.005 a |
Muscle mass (kg) | 36.7 (4.2) | 36.7 (2.8) | 35.4 (3.7) | 36.1 (2.9) | 0.140 a |
Lean body mass (kg) | 38.9 (4.5) | 39.0 (3.1) | 37.6 (4.0) | 38.3 (3.2) | 0.140 a |
Cardiovascular parameters, mean (SD) | |||||
Systolic blood pressure (mmHg) | 131 (21) | 126 (18) | 126 (20) | 125 (16) | 0.371 a |
Diastolic blood pressure (mmHg) | 83 (14) | 80 (11) | 81 (13) | 80 (11) | 0.575 a |
Pulse rate (beats/minute) | 66 (16) | 64 (11) | 64 (11) | 64 (11) | 0.822 a |
Blood sugar level (mg/dL) | 98 (23) | 96 (8) | 100 (14) | 95 (8.4) | 0.319 a |
Cardio-ankle vascular index | 7.78 (0.84) | 7.45 (0.70) | 7.54 (0.65) | 7.50 (0.71) | 0.178 a |
Ankle-brachial pressure index | 1.11 (0.06) | 1.11 (0.06) | 1.12 (0.07) | 1.10 (0.05) | 0.475 a |
Basal metabolism, mean (SD) | |||||
Resting energy expenditure (kcal/day) | 1669 (527) | 1628 (385) | 1618 (419) | 1512 (393) | 0.220 a |
Dietary intake, mean (SD) | |||||
Energy intake (kcal/day) | 1490 (532) | 1638 (394) | 1735 (544) | 1786 (468) | 0.013 a |
Lifestyle characteristics, number (%) | |||||
Smoking habit | |||||
Yes | 2 (5.1) | 10 (13.2) | 0 (0) | 4 (5.7) | |
No | 37 (94.9) | 66 (86.8) | 47 (100) | 66 (94.3) | 0.037 b |
Frequency of alcohol consumption | |||||
Every day | 3 (7.7) | 13 (17.1) | 7 (14.9) | 2 (2.9) | |
Sometimes | 14 (35.9) | 28 (36.8) | 8 (17.0) | 21 (30.0) | |
Nondrinker | 22 (56.4) | 35 (46.1) | 32 (68.1) | 47 (67.1) | 0.015 b |
Regular exercise habit | |||||
≥3 times/week | 1 (2.6) | 8 (10.5) | 6 (12.8) | 5 (7.1) | |
1–2 times/week | 18 (46.2) | 13 (17.1) | 12 (25.5) | 18 (25.7) | |
None | 20 (51.3) | 55 (72.4) | 29 (61.7) | 47 (67.1) | 0.039 b |
Model | Group | BMI ≥ 25 | BF% ≥ 30 | ||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||
Model 1 | CF | 0.26 | 0.10–0.72 | <0.01 | 0.42 | 0.19–0.93 | <0.05 |
GT | 0.53 | 0.20–1.44 | 0.2 | 0.49 | 0.20–1.15 | 0.1 | |
CF + GT | 0.21 | 0.07–0.62 | <0.01 | 0.34 | 0.15–0.78 | <0.05 | |
Model 2 | CF | 0.25 | 0.09–0.69 | <0.01 | 0.43 | 0.19–0.95 | <0.05 |
GT | 0.57 | 0.21–1.56 | 0.3 | 0.46 | 0.19–1.12 | 0.09 | |
CF + GT | 0.21 | 0.07–0.64 | <0.01 | 0.35 | 0.15–0.80 | <0.05 | |
Model 3 | CF | 0.14 | 0.05–0.46 | <0.01 | 0.33 | 0.14–0.82 | <0.05 |
GT | 0.38 | 0.12–1.18 | 0.09 | 0.36 | 0.14–0.96 | <0.05 | |
CF + GT | 0.15 | 0.05–0.50 | <0.01 | 0.30 | 0.12–0.74 | <0.01 |
Model | Group | CAVI ≥ 8.0 | ||
---|---|---|---|---|
OR | 95% CI | p-Value | ||
Model 1 | CF | 0.47 | 0.12–1.94 | 0.3 |
GT | 0.23 | 0.02–2.39 | 0.2 | |
CF + GT | 0.21 | 0.03–1.33 | 0.1 | |
Model 2 | CF | 0.38 | 0.08–1.91 | 0.2 |
GT | 0.13 | 0.01–1.66 | 0.1 | |
CF + GT | 0.12 | 0.02–1.00 | <0.05 | |
Model 3 | CF | 0.37 | 0.05–2.53 | 0.3 |
GT | 0.11 | 0.01–2.27 | 0.2 | |
CF + GT | 0.05 | 0.003–0.743 | <0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yonekura, Y.; Terauchi, M.; Hirose, A.; Odai, T.; Kato, K.; Miyasaka, N. Daily Coffee and Green Tea Consumption Is Inversely Associated with Body Mass Index, Body Fat Percentage, and Cardio-Ankle Vascular Index in Middle-Aged Japanese Women: A Cross-Sectional Study. Nutrients 2020, 12, 1370. https://doi.org/10.3390/nu12051370
Yonekura Y, Terauchi M, Hirose A, Odai T, Kato K, Miyasaka N. Daily Coffee and Green Tea Consumption Is Inversely Associated with Body Mass Index, Body Fat Percentage, and Cardio-Ankle Vascular Index in Middle-Aged Japanese Women: A Cross-Sectional Study. Nutrients. 2020; 12(5):1370. https://doi.org/10.3390/nu12051370
Chicago/Turabian StyleYonekura, Yuka, Masakazu Terauchi, Asuka Hirose, Tamami Odai, Kiyoko Kato, and Naoyuki Miyasaka. 2020. "Daily Coffee and Green Tea Consumption Is Inversely Associated with Body Mass Index, Body Fat Percentage, and Cardio-Ankle Vascular Index in Middle-Aged Japanese Women: A Cross-Sectional Study" Nutrients 12, no. 5: 1370. https://doi.org/10.3390/nu12051370