Impaired Gut–Systemic Signaling Drives Total Parenteral Nutrition-Associated Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Procurement, Surgery, and Nutrition Delivery
2.2. Nutrition
2.3. Animal Monitoring
2.4. Animal Euthanasia and Tissue Collection
2.5. Histology
2.5.1. Histology Scoring
2.5.2. Cytokeratin 7 (CK-7)
2.5.3. Cluster of Differentiation 3 (CD-3)
2.5.4. Sirius Red Staining
2.5.5. Liver Cholestasis Scoring
2.5.6. Morphometric Analysis of Small Bowel Epithelium
2.5.7. Muscularis Mucosa Assessment
2.5.8. Electron Microscopy
2.6. Tissue: RNA Extraction and Real Time PCR Analysis
2.7. Statistical Analysis
2.8. Sample Size
3. Results
3.1. Baseline Assessment and Weight Changes
3.2. Serum Bilirubin
3.3. Bile Deposits and Hepatic Serology
3.4. Hepatic Immunohistochemistry
3.5. Gut Morphology and Histology
3.6. Villous/Crypt Ratio
3.7. Gut-Systemic Signaling—Key Gut and Hepatobiliary Receptors and Transporters
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PN | parenteral nutrition |
JV | jugular vein |
DC | duodenal catheters |
USDA | United States Department of Agriculture |
CDCA | chenodeoxycholic acid |
BSEP | bile salt export pump |
FGF19 | fibroblast growth factor 19 |
FXR | farnesoid X receptor |
IFALD | intestinal failure-associated liver disease |
References
- Jain, A.K.; Wen, J.X.; Arora, S.; Blomenkamp, K.S.; Rodrigues, J.; Blaufuss, T.A.; Liou, V.; Burrin, D.G.; Long, J.P.; Teckman, J.H. Validating hyperbilirubinemia and gut mucosal atrophy with a novel ultramobile ambulatory total parenteral nutrition piglet model. Nutr. Res. 2015, 35, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Lauriti, G.; Zani, A.; Aufieri, R.; Cananzi, M.; Chiesa, P.L.; Eaton, S.; Pierro, A. Incidence, prevention, and treatment of parenteral nutrition-associated cholestasis and intestinal failure-associated liver disease in infants and children: A systematic review. JPEN J. Parenter. Enter. Nutr. 2014, 38, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.A. Preventing parenteral nutrition liver disease. Early Hum. Dev. 2010, 86, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Dudrick, S.J. Early developments and clinical applications of total parenteral nutrition. JPEN J. Parenter. Enter. Nutr. 2003, 27, 291–299. [Google Scholar] [CrossRef]
- Koseesirikul, P.; Chotinaruemol, S.; Ukarapol, N. Incidence and risk factors of parenteral nutrition-associated liver disease in newborn infants. Pediatrics Int. Off. J. Jpn. Pediatric Soc. 2012, 54, 434–436. [Google Scholar] [CrossRef]
- Wales, P.W.; Allen, N.; Worthington, P.; George, D.; Compher, C.; Teitelbaum, D. ASPEN Clinical Guidelines: Support of Pediatric Patients with Intestinal Failure at Risk of Parenteral Nutrition-Associated Liver Disease. JPEN J. Parenter. Enter. Nutr. 2014, 38, 538–557. [Google Scholar] [CrossRef]
- Kumar, J.A.; Teckman, J.H. Controversies in the Mechanism of Total Parenteral Nutrition Induced Pathology. Children 2015, 2, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Stoll, B.; Burrin, D.G.; Holst, J.J.; Moore, D.D. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G218–G224. [Google Scholar] [CrossRef] [Green Version]
- Dudrick, S.J.; Palesty, J.A. Historical highlights of the development of total parenteral nutrition. Surg. Clin. N. Am. 2011, 91, 693–717. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, K.J.; Choi, J.S.; Yang, H.R.; Moon, J.S.; Chang, J.Y.; Ko, J.S. Poor Prognostic Factors in Patients with Parenteral Nutrition-Dependent Pediatric Intestinal Failure. Pediatric Gastroenterol. Hepatol. Nutr. 2016, 19, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Kosters, A.; Karpen, S.J. The role of inflammation in cholestasis: Clinical and basic aspects. Semin. Liver Dis. 2010, 30, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denton, C.; Price, A.; Friend, J.; Manithody, C.; Blomenkamp, K.; Westrich, M.; Osei, H. Role of the Gut(-)Liver Axis in Driving Parenteral Nutrition-Associated Injury. Children 2018, 5, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.K.; le Roux, C.W.; Puri, P.; Tavakkoli, A.; Gletsu-Miller, N.; Laferrère, B.; Kellermayer, R.; DiBaise, J.K.; Martindale, R.G.; Wolfe, B.M. Proceedings of the 2017 ASPEN Research Workshop-Gastric Bypass: Role of the Gut. JPEN J. Parenter. Enter. Nutr. 2018, 42, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Arab, J.P.; Martin-Mateos, R.M.; Shah, V.H. Gut-liver axis, cirrhosis and portal hypertension: The chicken and the egg. Hepatol. Int. 2018, 12 (Suppl. 1), 24–33. [Google Scholar] [CrossRef]
- Marra, F.; Svegliati-Baroni, G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J. Hepatol. 2018, 68, 280–295. [Google Scholar] [CrossRef]
- Konturek, P.C.; Harsch, I.A.; Konturek, K.; Schink, M.; Konturek, T.; Neurath, M.F.; Zopf, Y. Gut(-)Liver Axis: How Do Gut Bacteria Influence the Liver? Med. Sci 2018, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Rochling, F.A.; Catron, H.A. Intestinal failure-associated liver disease: Causes, manifestations and therapies. Curr. Opin. Gastroenterol. 2018, 35, 126–133. [Google Scholar] [CrossRef]
- Courtney, C.M.; Warner, B.W. Pediatric intestinal failure-associated liver disease. Curr. Opin. Pediatrics. 2017, 29, 363–370. [Google Scholar] [CrossRef]
- Jain, A.K.; Wen, J.X.; Blomenkamp, K.S.; Arora, S.; Blaufuss, T.A.; Rodrigues, J.; Long, J.P.; Neuschwander-Tetri, B.A.; Teckman, J.H. Oleanolic Acid Improves Gut Atrophy Induced by Parenteral Nutrition. JPEN J. Parenter. Enter. Nutr. 2016. [Google Scholar] [CrossRef] [Green Version]
- Price, A.; Blomenkamp, K.; Manithody, C.; Saxena, S.; Abraham, S.M.; Greenspon, J.; Villalona, G.A.; Jain, A.K. Developing a Novel Ambulatory Total Parenteral Nutrition-Dependent Short Bowel Syndrome Animal Model. J. Surg. Res. 2019, 234, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Villalona, G.; Price, A.; Blomenkamp, K.; Manithody, C.; Saxena, S.; Ratchford, T.; Westrich, M.; Kakarla, V.; Pochampally, S.; Phillips, W.; et al. No Gut No Gain! Enteral Bile Acid Treatment Preserves Gut Growth but Not Parenteral Nutrition-Associated Liver Injury in a Novel Extensive Short Bowel Animal Model. JPEN J. Parenter. Enter. Nutr. 2018, 42, 1238–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.K.; Sharma, A.; Arora, S.; Blomenkamp, K.; Jun, I.C.; Luong, R.; Westrich, D.J.; Mittal, A.; Buchanan, P.M.; Guzman, M.A.; et al. Preserved Gut Microbial Diversity Accompanies Upregulation of TGR5 and Hepatobiliary Transporters in Bile Acid-Treated Animals Receiving Parenteral Nutrition. JPEN J. Parenter. Enter. Nutr. 2017, 41, 198–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Lee, S.J.; Park, J.B.; Kim, K.H.; Lee, W.R.; Kim, J.Y.; An, H.J.; Park, K.K. Immunohistochemical study for the origin of ductular reaction in chronic liver disease. Int. J. Clin. Exp. Pathol. 2014, 7, 4076–4085. [Google Scholar] [PubMed]
- Ernst, L.M.; Spinner, N.B.; Piccoli, D.A.; Mauger, J.; Russo, P. Interlobular bile duct loss in pediatric cholestatic disease is associated with aberrant cytokeratin 7 expression by hepatocytes. Pediatric Dev. Pathol. 2007, 10, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, M.; Shinkai, T.; Puri, P.; Stringer, M.D. Increased CXCR3 expression associated with CD3-positive lymphocytes in the liver and biliary remnant in biliary atresia. J. Pediatric Surg. 2006, 41, 950–954. [Google Scholar] [CrossRef]
- Fiel, M.I.; Sauter, B.; Wu, H.S.; Rodriguez-Laiz, G.; Gondolesi, G.; Iyer, K.; Schiano, T.D. Regression of hepatic fibrosis after intestinal transplantation in total parenteral nutrition liver disease. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2008, 6, 926–933. [Google Scholar] [CrossRef]
- Vogel, B.; Siebert, H.; Hofmann, U.; Frantz, S. Determination of collagen content within picrosirius red stained paraffin-embedded tissue sections using fluorescence microscopy. MethodsX 2015, 2, 124–134. [Google Scholar] [CrossRef]
- Alkharfy, T.M.; Ba-Abbad, R.; Hadi, A.; Sobaih, B.H.; AlFaleh, K.M. Total parenteral nutrition-associated cholestasis and risk factors in preterm infants. Saudi J. Gastroenterol. 2014, 20, 293–296. [Google Scholar] [CrossRef]
- Manithody, C.; Denton, C.; Price, A.; Blomenkamp, K.; Patel, Y.; Welu, A.; Glbert, E.; Madnawat, H.; Jain, S.; Villalona, G.A.; et al. Development and validation of an ambulatory piglet model for short bowel syndrome with ileo-colonic anastomosis. Exp. Biol Med. 2020. [Google Scholar] [CrossRef]
- Allan, P.; Lal, S. Intestinal failure: A review. F1000Res. 2018, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Shekhara, M.; Van, N.; Vidul, M.; Jain, S.; Samaddar, A.; Armstrong, A.; Jain, A. Role of Bile Acids and Gut Microbiota in Parenteral Nutrition Associated Injury. J. Hum. Nutr. 2020, 4. [Google Scholar] [CrossRef] [Green Version]
- Javid, P.J.; Collier, S.; Richardson, D.; Iglesias, J.; Gura, K.; Lo, C.; Kim, H.B.; Duggan, C.P.; Jaksic, T. The role of enteral nutrition in the reversal of parenteral nutrition-associated liver dysfunction in infants. J. Pediatric Surg. 2005, 40, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Omata, J.; Fukatsu, K.; Murakoshi, S.; Noguchi, M.; Miyazaki, H.; Moriya, T.; Okamoto, K.; Fukazawa, S.; Akase, T.; Saitoh, D.; et al. Enteral refeeding rapidly restores PN-induced reduction of hepatic mononuclear cell number through recovery of small intestine and portal vein blood flows. JPEN J. Parenter. Enter. Nutr. 2009, 33, 618–625, discussion 626. [Google Scholar] [CrossRef] [PubMed]
- Makishima, M.; Okamoto, A.Y.; Repa, J.J.; Tu, H.; Learned, R.M.; Luk, A.; Hull, M.V.; Lustig, K.D.; Mangelsdorf, D.J.; Shan, B. Identification of a nuclear receptor for bile acids. Science 1999, 284, 1362–1365. [Google Scholar] [CrossRef]
- Claudel, T.; Staels, B.; Kuipers, F. The Farnesoid X receptor: A molecular link between bile acid and lipid and glucose metabolism. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Eloranta, J.J.; Kullak-Ublick, G.A. The role of FXR in disorders of bile acid homeostasis. Physiology 2008, 23, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Pircher, P.C.; Schulman, I.G.; Westin, S.K. Regulation of complement C3 expression by the bile acid receptor FXR. J. Biol. Chem. 2005, 280, 7427–7434. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Choi, M.; Moschetta, A.; Peng, L.; Cummins, C.L.; McDonald, J.G.; Luo, G.; Jones, S.A.; Goodwin, B.; Richardson, J.A.; et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005, 2, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lee, Y.K.; Bundman, D.; Han, Y.; Thevananther, S.; Kim, C.S.; Chua, S.S.; Wei, P.; Heyman, R.A.; Karin, M.; et al. Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell. 2002, 2, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, H.; Zhang, M.; Guo, G.L. Fatty liver diseases, bile acids, and FXR. Acta Pharmaceutica Sinica B 2016, 6, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.D.; Chen, W.D.; Wang, M.; Yu, D.; Forman, B.M.; Huang, W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 2008, 48, 1632–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elcombe, C.R.; Peffer, R.C.; Wolf, D.C.; Bailey, J.; Bars, R.; Bell, D.; Cattley, R.C.; Ferguson, S.S.; Geter, D.; Goetz, A.; et al. Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: A case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Crit Rev. Toxicol. 2014, 44, 64–82. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Meng, Z.; Wang, X.; Zeng, S.; Huang, W. The nuclear receptor CAR modulates alcohol-induced liver injury. Lab. Investig. A J. Tech. Methods Pathol. 2011, 91, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Augustin, O.; Sanchez de Medina, F. Intestinal bile acid physiology and pathophysiology. World J. Gastroenterol. 2008, 14, 5630–5640. [Google Scholar] [CrossRef] [PubMed]
- Boesjes, M.; Brufau, G. Metabolic effects of bile acids in the gut in health and disease. Curr. Med. Chem. 2014, 21, 2822–2829. [Google Scholar] [CrossRef] [PubMed]
- Duboc, H.; Tache, Y.; Hofmann, A.F. The bile acid TGR5 membrane receptor: From basic research to clinical application. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver. 2014, 46, 302–312. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Demehri, F.R.; Xiao, W.; Tsai, Y.H.; Jones, J.C.; Brindley, C.D.; Threadgill, D.W.; Holst, J.J.; Hartmann, B.; Barrett, T.A.; et al. Interdependency of EGF and GLP-2 Signaling in Attenuating Mucosal Atrophy in a Mouse Model of Parenteral Nutrition. Cell Mol. Gastroenterol Hepatol. 2017, 3, 447–468. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Liu, H.; Yang, S.; Li, Z.; Zhong, J.; Fang, R. Epidermal Growth Factor and Intestinal Barrier Function. Mediat. Inflamm. 2016, 2016, 1927348. [Google Scholar] [CrossRef] [Green Version]
- Mutanen, A.; Pakarinen, M.P. Serum fasting GLP-1 and GLP-2 associate with intestinal adaptation in pediatric onset intestinal failure. Clin. Nutr. 2016, 36, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, P.B.; Pertkiewicz, M.; Messing, B.; Iyer, K.; Seidner, D.L.; O’keefe, S.J.D.; Forbes, A.; Heinze, H.; Joelsson, B. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology 2012, 143, 1473–1481.e1473. [Google Scholar] [CrossRef]
- Mitra, A.; Ahn, J. Liver Disease in Patients on Total Parenteral Nutrition. Clin. Liver Dis. 2017, 21, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Corcos, O.; Forbes, A.; Holst, M.; Joly, F.; Jonkers, C.; Klek, S.; Lal, S.; Blaser, A.R.; Rollins, K.E.; et al. Intestinal failure in adults: Recommendations from the ESPEN expert groups. Clin. Nutr. 2018, 37 (6 Pt A), 1798–1809. [Google Scholar] [CrossRef] [Green Version]
- Lal, S.; Pironi, L.; Wanten, G.; Arends, J.; Bozzetti, F.; Cuerda, C.; Joly, F.; Kelly, D.; Staun, M.; Szczepanek, K.; et al. Clinical approach to the management of Intestinal Failure Associated Liver Disease (IFALD) in adults: A position paper from the Home Artificial Nutrition and Chronic Intestinal Failure Special Interest Group of ESPEN. Clin. Nutr. 2018, 37 (6 Pt A), 1794–1797. [Google Scholar] [CrossRef]
- Turner, J.M.; Josephson, J.; Field, C.J.; Wizzard, P.R.; Ball, R.O.; Pencharz, P.B.; Wales, P.W. Liver Disease, Systemic Inflammation, and Growth Using a Mixed Parenteral Lipid Emulsion, Containing Soybean Oil, Fish Oil, and Medium Chain Triglycerides, Compared with Soybean Oil in Parenteral Nutrition-Fed Neonatal Piglets. JPEN J. Parenter. Enter. Nutr. 2015, 40, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Raman, M.; Almutairdi, A.; Mulesa, L.; Alberda, C.; Beattie, C.; Gramlich, L. Parenteral Nutrition and Lipids. Nutrients 2017, 9, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klek, S.; Forbes, A.; Gabe, S.; Holst, M.; Wanten, G.; Irtun, Ø.; Damink, S.O.; Panisic-Sekeljic, M.; Pelaez, R.B.; Pironi, L.; et al. Management of acute intestinal failure: A position paper from the European Society for Clinical Nutrition and Metabolism (ESPEN) Special Interest Group. Clin. Nutr. 2016, 35, 1209–1218. [Google Scholar] [CrossRef]
- Dodge, M.E.; Bertolo, R.F.; Brunton, J.A. Enteral feeding induces early intestinal adaptation in a parenterally fed neonatal piglet model of short bowel syndrome. JPEN J. Parenter. Enter. Nutr. 2012, 36, 205–212. [Google Scholar] [CrossRef]
- Burrin, D.; Stoll, B.; Moore, D. Digestive physiology of the pig symposium: Intestinal bile acid sensing is linked to key endocrine and metabolic signaling pathways. J. Anim. Sci. 2013, 91, 1991–2000. [Google Scholar] [CrossRef]
- Wykes, L.J.; Ball, R.O.; Pencharz, P.B. Development and validation of a total parenteral nutrition model in the neonatal piglet. J. Nutr. 1993, 123, 1248–1259. [Google Scholar] [CrossRef]
- Wang, H.; Khaoustov, V.I.; Krishnan, B.; Cai, W.; Stoll, B.; Burrin, D.G.; Yoffe, B. Total parenteral nutrition induces liver steatosis and apoptosis in neonatal piglets. J. Nutr. 2006, 136, 2547–2552. [Google Scholar] [CrossRef] [Green Version]
- Shulman, R.J. The piglet can be used to study the effects of parenteral and enteral nutrition on body composition. Journal Nutr. 1993, 123 (Suppl. 2), 395–398. [Google Scholar] [CrossRef] [PubMed]
- Merritt, R.J.; Cohran, V.; Raphael, B.P.; Sentongo, T.; Volpert, D.; Warner, B.W.; Goday, P.S. Intestinal Rehabilitation Programs in the Management of Pediatric Intestinal Failure and Short Bowel Syndrome. J. Pediatric Gastroenterol. Nutr. 2017, 65, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Nandivada, P.; Carlson, S.J.; Chang, M.I.; Cowan, E.; Gura, K.M.; Puder, M. Treatment of parenteral nutrition-associated liver disease: The role of lipid emulsions. Adv. Nutr. 2013, 4, 711–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cober, M.P.; Teitelbaum, D.H. Prevention of parenteral nutrition-associated liver disease: Lipid minimization. Curr. Opin. Organ Transplant. 2010, 15, 330–333. [Google Scholar] [CrossRef]
- Cober, M.P.; Killu, G.; Brattain, A.; Welch, K.B.; Kunisaki, S.M.; Teitelbaum, D.H. Intravenous fat emulsions reduction for patients with parenteral nutrition-associated liver disease. J. Pediatrics 2012, 160, 421–427. [Google Scholar] [CrossRef]
- San Luis, V.A.; Btaiche, I.F. Ursodiol in patients with parenteral nutrition-associated cholestasis. Ann. Pharmacother. 2007, 41, 1867–1872. [Google Scholar] [CrossRef] [Green Version]
- Heubi, J.E.; Wiechmann, D.A.; Creutzinger, V.; Setchell, K.D.R.; Squires, R.; Couser, R.; Rhodes, P. Tauroursodeoxycholic acid (TUDCA) in the prevention of total parenteral nutrition-associated liver disease. J. Pediatrics 2002, 141, 237–242. [Google Scholar] [CrossRef]
- Parks, D.J.; Blanchard, S.G.; Bledsoe, R.K.; Chandra, G.; Consler, T.G.; Kliewer, S.A.; Stimmel, J.B.; Willson, T.M.; Zavacki, A.M.; Moore, D.D.; et al. Bile acids: Natural ligands for an orphan nuclear receptor. Science 1999, 284, 1365–1368. [Google Scholar] [CrossRef]
- Shaw, D.; Gohil, K.; Basson, M.D. Intestinal mucosal atrophy and adaptation. World J. Gastroenterol. 2012, 18, 6357–6375. [Google Scholar] [CrossRef]
- Duran, B. The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: A systematic review. BMC Nurs. 2005, 4, 2. [Google Scholar] [CrossRef] [Green Version]
Total Parenteral Nutrition | Enteral Nutrition |
---|---|
Ingredients: Leucine, Isoleucine, Valine, Lysine, Phenylalanine, Histidine, Threonine, Methionine, Tryptophan, Alanine, Arginine, Glycine, Proline, Serine, Tyrosine, Sodium, Potassium, Magnesium, Calcium, Acetate, Chloride, Phosphate, Dextrose, and Intralipid (Ingredients: Soybean Oil, Egg Yolk Phospholipids, Glycerin and Water). | Ingredients: Dried Whey Protein Concentrate, Animal Plasma, Animal and Vegetable Fat preserved with beta hydroxy acid (BHA), Dried Lactose, Lecithin, Dicalcium Phosphate, Magnesium Sulfate, Manganese Sulfate, Ferrous Sulfate, Zinc Sulfate, Cobalt Sulfate, Copper Sulfate, Calcium Iodate, Sodium Selenite, Vitamin A Acetate, d-Activated Animal Sterol, Vitamin E Supplement, Menadione Dimethylpyrimidinol Bisulfite, Choline Chloride, Riboflavin Supplement, Calcium Pantothenate, Niacin Supplement, Vitamin B12 Supplement, Biotin, Ascorbic Acid, Yucca Schidigera Extract, and Natural and Artificial Flavors. |
Primer | Sequence | |
---|---|---|
Fibroblast growth factor 19: FGF19 | Forward | ACACCATCTGCCCGTCTCT |
Reverse | CCCCTGCCTTTGTACAGC | |
Farnesoid X receptor (FXR) | Forward | ACATTCCTCATTCTGGGGCTTT |
Reverse | TTTCGGGGTCTTACTCCTTACA | |
Cholesterol 7 alpha-hydroxylase (CyP7A1) | Forward | AGGGTGACGCCTTGAATTT |
Reverse | GGGTCTCAGGACAAGTTGGA | |
Constitutive androstane receptor (CAR) | Forward | CCGCCATATGGGCACTATGT |
Reverse | GCGAAATGCATGAGCAGAGA | |
G protein-coupled receptor TGR5 | Forward | CCATGCACCCCTGTTGCT |
Reverse | GGTGCTGTTGGGTGTCATCTT | |
Epidermal growth factor (EGF) | Forward | ACTACTACAGGACTCAGAAG |
Reverse | CCTGATACCACTCACATCTC | |
Organic anion transporter (OAT) | Forward | GAAAATGCCGAGAAGATGG |
Reverse | CAAGCGTCGTAATCTTTGG | |
Mitogen-activated protein (MAP) kinase | Forward | CTACACCAACCTCTCCTAC |
Reverse | GTAGGTCTGATGCTCAAATG | |
Sodium uptake transporter sodium glucose-linked transporter (SGLT-1) | Forward | GGCTGGACGAAGTATGGTGT |
Reverse | ACAACCACCCAAATCAGAGC | |
Beta actin | Forward | GGACCTGACCGACTACCTCA |
Reverse | GCGACGTAGCAG AGCTTCTC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzman, M.; Manithody, C.; Krebs, J.; Denton, C.; Besmer, S.; Rajalakshmi, P.; Jain, S.; Villalona, G.A.; Jain, A.K. Impaired Gut–Systemic Signaling Drives Total Parenteral Nutrition-Associated Injury. Nutrients 2020, 12, 1493. https://doi.org/10.3390/nu12051493
Guzman M, Manithody C, Krebs J, Denton C, Besmer S, Rajalakshmi P, Jain S, Villalona GA, Jain AK. Impaired Gut–Systemic Signaling Drives Total Parenteral Nutrition-Associated Injury. Nutrients. 2020; 12(5):1493. https://doi.org/10.3390/nu12051493
Chicago/Turabian StyleGuzman, Miguel, Chandrashekhara Manithody, Joseph Krebs, Christine Denton, Sherri Besmer, Pranjali Rajalakshmi, Sonali Jain, Gustavo Adolfo Villalona, and Ajay Kumar Jain. 2020. "Impaired Gut–Systemic Signaling Drives Total Parenteral Nutrition-Associated Injury" Nutrients 12, no. 5: 1493. https://doi.org/10.3390/nu12051493
APA StyleGuzman, M., Manithody, C., Krebs, J., Denton, C., Besmer, S., Rajalakshmi, P., Jain, S., Villalona, G. A., & Jain, A. K. (2020). Impaired Gut–Systemic Signaling Drives Total Parenteral Nutrition-Associated Injury. Nutrients, 12(5), 1493. https://doi.org/10.3390/nu12051493