Effects of Extra Virgin Olive Oil (EVOO) and the Traditional Brazilian Diet on Sarcopenia in Severe Obesity: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization, Blindness, and Quality Control
2.4. DieTBra Intervention
2.5. EVOO and DieTBra + EVOO Interventions
2.6. Anthropometry and Body Composition
2.7. Sarcopenia-Muscle Strength and Gait Speed Test
2.8. Sociodemographic and Lifestyle Characteristics
2.9. Statistical Analysis
2.10. Ethical Aspects
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO consultation; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Health Risks. In Mortality and Burden of Disease Attributable to Selected Major Risks; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Goisser, S.; Kemmler, W.; Porzel, S.; Volkert, D.; Sieber, C.C.; Bollheimer, L.C.; Freiberger, E. Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons—A narrative review. Clin. Interv. Aging 2015, 10, 1267–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barazzoni, R.; Bischoff, S.; Boirie, Y.; Busetto, L.; Cederholm, T.; Dicker, D.; Toplak, H.; Van Gossum, A.; Yumuk, V.; Vettor, R. Sarcopenic obesity: Time to meet the challenge. Clin. Nutr. 2018, 37, 1787–1793. [Google Scholar] [CrossRef]
- Cederholm, T.; Morley, J.E. Sarcopenia: The new definitions. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 1–4. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liu, Y.; Tian, Q.; Papasian, C.J.; Hu, T.; Deng, H.W. Relationship of sarcopenia and body composition with osteoporosis. Osteoporos. Int. 2016, 27, 473–482. [Google Scholar] [CrossRef]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Sarcopenic obesity and risk of cardiovascular disease and mortality: A population-based cohort study of older men. J. Am. Geriatr. Soc. 2014, 62, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Cain, A.; Purcell, S.A.; Ormsbee, M.J.; Contreras, R.J.; Kim, J.S.; Thornberry, R.; Springs, D.; Gonzalez, M.C.; Prado, C.M. Sarcopenic obesity and health outcomes in patients seeking weight loss treatment. Clin. Nutr. ESPEN 2018, 23, 79–83. [Google Scholar] [CrossRef]
- Yeung, S.S.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.; Maier, A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Khadra, D.; Itani, L.; Tannir, H.; Kreidieh, D.; El Masri, D.; El Ghoch, M. Association between sarcopenic obesity and higher risk of type 2 diabetes in adults: A systematic review and meta-analysis. World J. Diabetes 2019, 10, 311–323. [Google Scholar] [CrossRef]
- Petroni, M.L.; Caletti, M.T.; Dalle Grave, R.; Bazzocchi, A.; Aparisi Gómez, M.P.; Marchesini, G. Prevention and treatment of sarcopenic obesity in women. Nutrients 2019, 11, 1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trouwborst, I.; Verreijen, A.; Memelink, R.; Massanet, P.; Boirie, Y.; Weijs, P.; Tieland, M. Exercise and nutrition strategies to counteract sarcopenic obesity. Nutrients 2018, 10, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfadda, A.A.; Sallam, R.M.; Park, J. Diet and nutrition for body weight management. J. Obes. 2019, 2019, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Ministério da Saúde (Brasil). Secretaria de Atenção à Saúde, Departamento de Atenção Básica. In Guia Alimentar Para a População Brasileira; Ministério da Saúde: Brasília, Brazil, 2014. [Google Scholar]
- Olinto, M.T.A.; Gigante, D.P.; Horta, B.; Silveira, V.; Oliveira, I.; Willett, W. Major dietary patterns and cardiovascular risk factors among young Brazilian adults. Eur. J. Nutr. 2012, 51, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Barbat-Artigas, S.; Garnier, S.; Joffroy, S.; Riesco, É.; Sanguignol, F.; Vellas, B.; Rolland, Y.; Andrieu, S.; Aubertin-Leheudre, M.; Mauriège, P. Caloric restriction and aerobic exercise in sarcopenic and non-sarcopenic obese women: An observational and retrospective study. J. Cachexia Sarcopenia Muscle 2016, 7, 284–289. [Google Scholar] [CrossRef]
- Musumeci, G.; Imbesi, R.; Szychlinska, M.A.; Castrogiovanni, P. Apoptosis and skeletal muscle in aging. Open J. Apoptosis 2015, 4, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Kelaiditi, E.; Jennings, A.; Steves, C.J.; Skinner, J.; Cassidy, A.; MacGregor, A.J.; Welch, A.A. Measurements of skeletal muscle mass and power are positively related to a Mediterranean dietary pattern in women. Osteoporos. Int. 2016, 27, 3251–3260. [Google Scholar] [CrossRef]
- Oliveras-López, M.J.; Berná, G.; Jurado-Ruiz, E.; Serrana, H.L.G.; Martín, F. Consumption of extra-virgin olive oil rich in phenolic compounds has beneficial antioxidant effects in healthy human adults. J. Funct. Foods 2014, 10, 475–484. [Google Scholar] [CrossRef]
- Abiri, B.; Vafa, M. Nutrition and sarcopenia: A review of the evidence of nutritional influences. Crit. Rev. Food Sci. Nutr. 2019, 59, 1456–1466. [Google Scholar] [CrossRef]
- Masood, A.; Alsheddi, L.; Alfayadh, L.; Bukhari, B.; Elawad, R.; Alfadda, A.A. Dietary and lifestyle factors serve as predictors of successful weight loss maintenance postbariatric surgery. J. Obes. 2019, 2019, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.P.S.; Rosa, L.P.S.; Silva, H.H.; Silveira-Lacerda, E.P.; Silveira, E.A. The single nucleotide polymorphism PPARG2 Pro12Ala Affects body mass index, fat mass, and blood pressure in severely obese participants. J. Obes. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.P.S.; Rosa, L.P.S.; Silveira, E.A. PPARG2 Pro12Ala polymorphism influences body composition changes in severely obese participants consuming extra virgin olive oil: A randomized clinical trial. Nutr. Metab. Nutr. Metab. 2018, 15, 1–13. [Google Scholar] [CrossRef]
- Santos, A.S.A.C.; Rodrigues, A.P.S.; Rosa, L.P.S.; Silveira, E.A. Cardiometabolic risk factors and Framingham Risk Score in severely obese participants: Baseline data from DieTBra Trial. Nutr. Metab. Cardiovasc. Dis. 2019, 30, 374–382. [Google Scholar] [CrossRef]
- Cardoso, C.K.D.S.; Rosa, L.P.D.S.; Mendonça, C.R.; Vitorino, P.V.D.O.; Peixoto, M.D.R.G.; Silveira, É.A. Effect of extra virgin olive oil and traditional brazilian diet on the bone health parameters of severely obese adults: A randomized controlled trial. Nutrients 2020, 12, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations. World Population Prospects: The 2015; Revision, Key Findings and Advance Tables; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Bussab, W.O.; Morettin, P.A. Estatística Básica, 5th ed.; Saraiva: São Paulo, Brazil, 2002; pp. 272–273. [Google Scholar]
- Organização Pan-Americana Da Saúde. Modelo de Perfil Nutricional; OPAS: Washington, DC, USA, 2016. [Google Scholar]
- Olinto, M.T.A.; Willett, W.C.; Gigante, D.P.; Victora, C.G. Sociodemographic and lifestyle characteristics in relation to dietary patterns among young Brazilian adults. Public Health Nutr. 2011, 14, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization. Influencing food environments for healthy diets. In Influencing Food Environments for Healthy Diets; FAO: Rome, Italy, 2016. [Google Scholar]
- Institute of Medicine. National Academies of Sciences, Engineering, and Medicine. Dietary Reference Intakes for Sodium and Potassium; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Santos, R.D.; Gagliardi, A.C.M.; Xavier, H.T.; Magnoni, C.D.; Cassani, R.; Lottenberg, A. Sociedade Brasileira de Cardiologia. I Diretriz sobre o consumo de gorduras e saúde cardiovascular. Arq. Bras. Cardiol. 2013, 100, 1–40. [Google Scholar] [CrossRef]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy balance and obesity. Circulation 2012, 126, 126–132. [Google Scholar] [CrossRef]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys. Act. Heal. 2009, 6, 790–804. [Google Scholar] [CrossRef] [Green Version]
- Horie, L.M.; Gonzalez, M.C.; Torrinhas, R.S.; Cecconello, I.; Waitzberg, D.L. New specific equation to estimate resting energy expenditure in severely obese participants. Obesity (Silver Spring) 2011, 19, 1090–1094. [Google Scholar] [CrossRef]
- Prentice, A. Are defects in energy expenditure involved in the causation of obesity? Obes. Rev. 2007, 8, 89–91. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Dominguez, L.J.; Delgado-Rodríguez, M. Olive oil consumption and risk of CHD and/or stroke: A meta-analysis of case-control, cohort and intervention studies. Br. J. Nutr. 2014, 112, 248–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, K.D. What is the required energy deficit per unit weight loss? Int. J. Obes. 2008, 32, 573–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontogianni, M.D.; Vlassopoulos, A.; Gatzieva, A.; Farmaki, A.E.; Katsiougiannis, S.; Panagiotakos, D.B.; Kalogeropoulos, N.; Skopouli, F.N. Flaxseed oil does not affect inflammatory markers and lipid profile compared to olive oil, in young, healthy, normal weight adults. Metabolism 2013, 62, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Thomazella, M.C.D.; Góes, M.F.; Andrade, C.R.; Debbas, V.; Barbeiro, D.F.; Correia, R.L.; Marie, S.K.; Cardounel, A.J.; Laurindo, F.R. Effects of high adherence to mediterranean or low-fat diets in medicated secondary prevention participants. Am. J. Cardiol. 2011, 108, 1523–1529. [Google Scholar] [CrossRef] [Green Version]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaing, IL, USA, 1988; pp. 1–177. [Google Scholar]
- Agency IAE. Library Cataloguing in Publication Data Dual Energy x Ray Absorptiometry for Bone Mineral Density and Body Composition Assessment; International Atomic Energy Agency: Vienna, Austria, 2010. [Google Scholar]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef]
- Delmonico, M.J.; Harris, T.B.; Lee, J.S.; Visser, M.; Nevitt, M.; Kritchevsky, S.B.; Tylavsky, F.A.; Newman, A.B.; Health, Aging and Body Composition Study. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J. Am. Geriatr. Soc. 2007, 55, 769–774. [Google Scholar] [CrossRef]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Tationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Müller, M.J. Identification of skeletal muscle mass depletion across age and BMI groups in health and disease-There is need for a unified definition. Int. J. Obes. 2015, 39, 379–386. [Google Scholar] [CrossRef]
- Bellace, J.V.; Healy, D.; Besser, M.P.; Byron, T.; Hohman, L. Validity of the Dexter Evaluation System’s Jamar dynamometer attachment for assessment of hand grip strength in a normal population. J. Hand. Ther. 2000, 13, 46–51. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Kollen, B.; Kwakkel, G.; Lindeman, E. Hemiplegic gait after stroke: Is measurement of maximum speed required? Arch. Phys. Med. Rehabil. 2006, 87, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Cruz-jentoft, A.J.; Landi, F. Sarcopenia. Clin. Med. (Northfield Il) 2014, 14, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Associação Brasileira de Empresas de Pesquisa. Critério de Classificação Econômica Brasil; ABEP: São Paulo, Brazil, 2012. [Google Scholar]
- Organización Panamericana de la Salud. Guias para el Control y Monitoreo de la Epidemia Tabaquica; OPAS: Caracas, Venezuela, 1996. [Google Scholar]
- Bloomfield, K.; Allamani, A.; Beck, F.; Bergmark, K.H.; Csemy, L.; Eisenbach-Stangl, I. Gender, Culture and Alcohol Problems: A Multi-National Study. Project Final Report. Available online: https://www.researchgate.net/profile/Martha_Patricia_Mendoza/publication/309312782_Gender_Culture_and_Alcohol_Problems_a_multinational_study/links/580916cc08ae993dc0509f0f/Gender-Culture-and-Alcohol-Problems-a-multinational-study.pdf (accessed on 15 March 2016).
- Dillon, C.B.; Fitzgerald, A.P.; Kearney, P.M.; Perry, I.J.; Rennie, K.L.; Kozarski, R.; Phillips, C.M. Number of days required to estimate habitual activity using wrist-worn GENEActiv accelerometer: A cross-sectional study. PLoS ONE 2016, 11, e0109913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Agranonik, M.; Machado, L.R. Análise de covariância: Uma aplicação a dados de função pulmonar, ajustadospor idade. Revista. HCPA 2011, 31, 248–253. [Google Scholar]
- Newby, P.K.; Muller, D.; Hallfrisch, J.; Qiao, N.; Andres, R.; Tucker, K.L. Dietary patterns and changes in body mass index and waist circumference in adults. Am. J. Clin. Nutr. 2003, 77, 1417–1425. [Google Scholar] [CrossRef] [Green Version]
- Cândido, F.G.; Valente, F.X.; Silva, L.E.; Coelho, O.G.L.; Peluzio, M.C.G.; Alfenas, R.C.G. Consumption of extra virgin olive oil improves body composition and blood pressure in women with excess body fat: A randomized, double-blinded, placebo-controlled clinical trial. Eur. J. Nutr. 2018, 57, 2445–2455. [Google Scholar] [CrossRef]
- Musumeci, G.; Maria-Trovato, F.; Imbesi, R.; Castrogiovanni, P. Effects of dietary extra-virgin olive oil on oxidative stress resulting from exhaustive exercise in rat skeletal muscle: A morphological study. Acta Histochem. 2014, 116, 61–69. [Google Scholar] [CrossRef]
- Rolland, Y.; Lauwers-Cances, V.; Cristini, C.; van Kan, G.A.; Janssen, I.; Morley, J.E.; Vellas, B. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: The EPIDOS (EPIDemiologie de l’OSteoporose) Study. Am. J. Clin. Nutr. 2009, 89, 1895–1900. [Google Scholar] [CrossRef]
- Janssen, I.; Baumgartner, R.N.; Ross, R.; Rosenberg, I.H.; Roubenoff, R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am. J. Epidemiol. 2004, 159, 413–421. [Google Scholar] [CrossRef]
- Batsis, J.A.; Mackenzie, T.A.; Jones, J.D.; Lopez-Jimenez, F.; Bartels, S.J. Sarcopenia, sarcopenic obesity and inflammation: Results from the 1999–2004 National Health and Nutrition Examination Survey. Clin. Nutr. 2016, 35, 1472–1483. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Health Organization. Sustainable Healthy Diets–Guiding Principles; FAO/WHO: Rome, Italy, 2019. [Google Scholar]
- Van Der Heijden, G.J.; Wang, Z.J.; Chu, Z.; Toffolo, G.; Manesso, E.; Sauer, P.J.; Sunehag, A.L. Strength exercise improves muscle mass and hepatic insulin sensitivity in obese youth. Med. Sci. Sports Exerc. 2010, 42, 1973–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefan, L.; Cule, M.; Milinovi, I.; Sporis, G.; Juranko, D. The relationship between adherence to the Mediterranean diet and body composition in Croatian university students. Eur. J. Integr. Med. 2017, 13, 41–46. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Heber, D. Sarcopenic obesity in the elderly and strategies for weight management. Nutr. Rev. 2012, 70, 57–64. [Google Scholar] [CrossRef]
- Bouchonville, M.F.; Villareal, D.T. Sarcopenic obesity: How do we treat it? Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Welch, A.A.; MacGregor, A.J.; Minihane, A.M.; Skinner, J.; Valdes, A.A.; Spector, T.D.; Cassidy, A. Dietary fat and fatty acid profile are associated with indices of skeletal muscle mass in women aged 18–79 Years. J. Nutr. 2014, 144, 327–334. [Google Scholar] [CrossRef] [Green Version]
Total n (%) | Olive oil (n = 34) n (%) | DieTBra (n = 38) n (%) | DieTBra + Olive Oil (n = 39) n (%) | |
---|---|---|---|---|
Sex * | ||||
Female | 104 (93.7) | 32 (94.1) | 36 (94.7) | 36 (92.3) |
Male | 7 (6.3) | 2 (5.9) | 2 (5.3) | 3 (7.7) |
Age * | ||||
18–29 | 13 (11.7) | 5 (14.7) | 3 (7.9) | 5 (12.8) |
30–39 | 39 (35.1) | 14 (41.2) | 14 (36.8) | 11 (28.2) |
40–49 | 42 (37.9) | 10 (29.4) | 19 (50.0) | 13 (33.3) |
≥50 | 17 (15.3) | 5 (14.7) | 2 (5.3) | 10 (25.7) |
Skin color ** | ||||
White | 34 (30.6) | 12 (35.3) | 9 (23.7) | 13 (33.3) |
Brown | 60 (54.1) | 17 (50.0) | 24 (63.1) | 19 (48.7) |
Black | 17 (15.3) | 5 (14.7) | 5 (13.2) | 7 (18.0) |
Marital status * | ||||
Single | 24 (21.6) | 7 (20.6) | 9 (23.7) | 8 (20.5) |
Married/Civil union | 74 (66.7) | 24 (70.6) | 22 (57.9) | 28 (71.8) |
Widower/Divorced/Separated | 13 (11.7) | 3 (8.8) | 7 (18.4) | 3 (7.7) |
Years of study * | ||||
≤4 | 10 (9.0) | 1 (2.9) | 2 (5.3) | 7 (17.9) |
5 to 11 | 83 (74.8) | 27 (79.4) | 30 (78.9) | 26 (66.7) |
≥12 | 18 (16.2) | 6 (17.7) | 6 (15.8) | 6 (15.4) |
Economic Classification * | ||||
Class A, B | 28 (25.2) | 12 (35.3) | 7 (18.4) | 9 (23.1) |
Class C | 65 (58.6) | 15 (44.1) | 24 (63.2) | 26 (66.7) |
Class D, E | 18 (16.2) | 7 (20.6) | 7 (18.4) | 4 (10.2) |
Smoking * | ||||
Non-Smokers | 76 (68.5) | 25 (73.5) | 27 (71.0) | 24 (61.5) |
Ex-Smokers | 28 (25.2) | 7 (20.6) | 9 (23.7) | 12 (30.8) |
Smokers | 7 (6.3) | 2 (5.9) | 2 (5.3) | 3 (7.7) |
Binge drinking events (n = 107) ** | ||||
No | 75 (70.1) | 24 (70.6) | 27 (73.0) | 24 (64.9) |
Yes | 32 (29.9) | 9 (29.4) | 10 (27.0) | 13 (35.1) |
Aerobic physical activity (n = 104) * | ||||
<150 min/week | 101 (97.1) | 31 (96.9) | 35 (97.2) | 35 (97.2) |
≥150 min/week | 3 (2.9) | 1 (3.1) | 1 (2.8) | 1 (2.8) |
BMI (kg/m2) * | ||||
35–39 | 22 (19.8) | 7 (20.6) | 8 (21.0) | 7 (18.0) |
40–49 | 76 (68.5) | 23 (67.6) | 23 (60.5) | 30 (76.9) |
≥50 | 13 (11.7) | 4 (11.8) | 7 (18.5) | 2 (5.1) |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
ASMMI (kg/m2) *** | 8.2 ± 1.3 | 8.45 ± 1.3 | 8.4 ± 1.2 | 7.8 ± 1.4 |
ASMM (kg) *** | 21.0 ± 4.3 | 21.3 ± 4.3 | 21.5 ± 3.8 | 20.2 ± 4.7 |
ASMM/BMI *** | 0.48 ± 0.11 | 0.50 ± 0.11 | 0.49 ± 0.10 | 0.47 ± 0.12 |
Total body fat (kg) *** | 54.7 ± 8.0 | 52.8 ± 7.3 | 55.2 ± 8.3 | 55.9 ± 817 |
Percentage of body fat *** | 51.7 ± 5.1 | 50.6 ± 5.0 | 51.5 ± 4.7 | 5.5 ± 52.6 |
Walking speed (m/s) *** | 1.01 ± 0.18 | 1.02 ± 0.18 | 1.01 ± 0.17 | 1.02 ± 0.19 |
Handgrip strength (Kg) *** | 22.9 ± 7.5 | 23.2 ± 9.6 | 23.6 ± 7.0 | 21.9 ± 5.7 |
Weight (kg) *** | 110.9 ± 11.7 | 108.7 ± 10.9 | 112.2 ± 12.1 | 111.7 ± 11.9 |
Time of Sedentary behavior (min) (n = 93) *** | 1162.8 ± 82.0 | 1159.1 ± 67.2 | 1154.1 ± 76.3 | 1173.8 ± 97.7 |
Total lean mass (Kg) *** | 50.7 ± 9.1 | 49.7 ± 11.0 | 51.9 ± 7.6 | 50.4 ± 8.6 |
Fat free mass (Kg) *** | 53.4 ± 8.0 | 53.49 ± 7.9 | 54.2 ± 7.4 | 52.6 ± 8.8 |
Olive Oil | DieTBra | DieTBra + Olive Oil | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD Before (n = 34) | Mean ± SD After (n = 38) | p * | Mean ± SD Before (n = 38) | Mean ± SD After (n = 32) | p * | Mean ± SD Before (n = 39) | Mean ± SD After (n = 37) | p * | |
Weight (kg) | 108.7 ± 10.9 | 108.5 ± 11.6 | 0.939 | 112.2 ± 12.1 | 111.7 ± 11.4 | 0.839 | 111.7 ± 11.9 | 109.0 ± 12.5 | 0.350 |
ASMMI (kg/m2) | 8.4 ± 1.3 | 8.1 ± 1.3 | 0.243 | 8.4 ± 1.2 | 8.3 ± 1.4 | 0.720 | 7.8 ± 1.4 | 7.8 ± 1.2 | 0.913 |
ASMM (kg) | 21.3 ± 4.3 | 20.2 ± 4.1 | 0.309 | 21.5 ± 3.8 | 21.4 ± 4.1 | 0.848 | 20.2 ± 4.7 | 20.0 ± 4.0 | 0.872 |
ASMM/BMI | 0.50 ± 0.11 | 0.47 ± 0.10 | 0.265 | 0.49 ± 0.10 | 0.50 ± 0.11 | 0.925 | 0.47 ± 0.12 | 0.47 ± 0.10 | 0.882 |
Total body fat (kg) | 52.8 ± 7.3 | 54.1 ± 8.5 | 0.509 | 55.2 ± 8.3 | 47.7 ± 20.6 | 0.041 † | 55.9 ± 8.1 | 52.4 ± 15.2 | 0.207 |
Percentage of body fat (%) | 50.7 ± 5.0 | 51.9 ± 4.7 | 0.303 | 51.5 ± 4.7 | 51.4 ± 4.8 | 0.920 | 52.7 ± 5.5 | 52.7 ± 6.0 | 0.941 |
Walking speed (m/s) | 1.02 ± 0.18 | 1.00 ± 0.18 | 0.683 | 1.01 ± 0.17 | 1.05 ± 0.21 | 0.359 | 1.02 ± 0.19 | 1.04 ± 0.14 | 0.632 |
Handgrip strength (kg) | 23.2 ± 9.6 | 23.4 ± 6.2 | 0.905 | 23.6 ± 7.0 | 23.9 ± 7.0 | 0.854 | 21.9 ± 5.7 | 21.8 ± 5.9 | 0.934 |
Olive Oil (n = 38) | DieTBra (n = 32) | DieTBra + Olive Oil (n = 37) | p * | Olive Oil × DieTBra | Olive Oil × DieTBra + Olive Oil | DieTBra × DieTBra + Olive Oil | |
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | p ** | p ** | p ** | ||
Weight (kg) | 108.5 ± 11.6 | 111.37 ± 11.4 | 109.0 ± 12.5 | 0.592 | 0.332 | 0.850 | 0.422 |
ASMMI (kg/m2) | 8.1 ± 1.3 | 8.3 ± 1.4 | 7.8 ± 1.2 | 0.249 | 0.425 | 0.432 | 0.100 |
ASMM (kg) | 20.2 ± 4.1 | 21.4 ± 4.1 | 20.0 ± 4.0 | 0.361 | 0.281 | 0.868 | 0.181 |
ASMM/BMI | 0.47 ± 0.10 | 0.50 ± 0.11 | 0.47 ± 0.10 | 0.486 | 0.288 | 0.862 | 0.334 |
Total body fat (kg) | 54.1 ± 8.5 | 55.2 ± 8.3 | 55.3 ± 8.9 | 0.852 | 0.637 | 0.606 | 0.963 |
Percentage of body fat (%) | 51.9 ± 4.7 | 51.4 ± 4.8 | 52.7 ± 6.0 | 0.575 | 0.672 | 0.561 | 0.319 |
Walking speed (m/s) | 1.00 ± 0.18 | 1.06 ± 0.20 | 1.04 ± 0.14 | 0.375 | 0.215 | 0.319 | 0.572 |
HGS (kg) | 23.4 ± 6.2 | 23.9 ± 7.1 | 21.8 ± 5.9 | 0.368 | 0.770 | 0.296 | 0.186 |
Olive Oil (n = 38) | DieTBra (n = 32) | DieTBra + Olive Oil (n = 37) | p * | Olive Oil × DieTBra | Olive Oil × DieTBra + Olive Oil | DieTBra × DieTBra + Olive Oil | |
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | p ** | p ** | p ** | ||
∆ Weight (kg) | 0.98 ± 2.26 | −1.38 ± 3.41 | −1.29 ± 2.72 | 0.002 † | 0.003 † | 0.001 † | 0.904 |
∆ ASMMI (kg/m2) | −0.42 ± 0.96 | −0.22 ± 1.04 | −0.15 ± 1.08 | 0.553 | 0.441 | 0.285 | 0.765 |
∆ ASMM (kg) | −1.05 ± 2.29 | −0.57 ± 2.68 | −0.40 ± 2.80 | 0.600 | 0.466 | 0.318 | 0.789 |
∆ ASMM/BMI | −0.03 ± 0.05 | −0.01 ± 0.06 | −0.01 ± 0.06 | 0.178 | 0.125 | 0.073 | 0.810 |
∆ Total body fat (kg) | −1.16 ± 2.72 | −0.34 ± 3.46 | −0.45 ± 2.90 | 0.077 | 0.070 | 0.026 † | 0.881 |
∆ Percentage of body fat (%) | 0.64 ± 2.43 | 0.27 ± 2.59 | 0.13 ± 2.25 | 0.690 | 0.575 | 0.380 | 0.801 |
∆ Walking speed (m/s) | −0.01 ± 0.13 | 0.04 ± 0.15 | 0.01 ± 0.15 | 0.283 | 0.108 | 0.567 | 0.302 |
∆ Handgrip strength (Kg) | 1.14 ± 5.64 | 0.31 ± 4.49 | −0.05 ± 4.09 | 0.593 | 0.528 | 0.325 | 0.724 |
Olive Oil (n = 38) | DieTBra (n = 32) | DieTBra + Olive Oil (n = 37) | |
---|---|---|---|
p | p | P | |
Total body fat (kg) | - | - | 0.001 ¥ |
∆ Total body fat (kg) | - | 0.016 † | 0.004 † |
∆ Walking speed (m/s) | - | 0.042 † | - |
∆ Handgrip strength (Kg) | - | 0.044 † | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparecida Silveira, E.; Danésio de Souza, J.; dos Santos Rodrigues, A.P.; Lima, R.M.; de Souza Cardoso, C.K.; de Oliveira, C. Effects of Extra Virgin Olive Oil (EVOO) and the Traditional Brazilian Diet on Sarcopenia in Severe Obesity: A Randomized Clinical Trial. Nutrients 2020, 12, 1498. https://doi.org/10.3390/nu12051498
Aparecida Silveira E, Danésio de Souza J, dos Santos Rodrigues AP, Lima RM, de Souza Cardoso CK, de Oliveira C. Effects of Extra Virgin Olive Oil (EVOO) and the Traditional Brazilian Diet on Sarcopenia in Severe Obesity: A Randomized Clinical Trial. Nutrients. 2020; 12(5):1498. https://doi.org/10.3390/nu12051498
Chicago/Turabian StyleAparecida Silveira, Erika, Jacqueline Danésio de Souza, Ana Paula dos Santos Rodrigues, Ricardo M. Lima, Camila Kellen de Souza Cardoso, and Cesar de Oliveira. 2020. "Effects of Extra Virgin Olive Oil (EVOO) and the Traditional Brazilian Diet on Sarcopenia in Severe Obesity: A Randomized Clinical Trial" Nutrients 12, no. 5: 1498. https://doi.org/10.3390/nu12051498